
A System Design Methodology Based on a Formal
Computational Model

Wenbiao Wu
Axel Jantsch

TRITA-ESD-99-2

ISSN 1104-8697

ISRN KTH/ESD/FOU--99/2--SE

ELECTRONIC SYSTEMS DESIGN LABORATORY
ROYAL INSTITUTE OF TECHNOLOGY

ESDLAB/KTH-ELECTRUM
ELECTRUM 229

S-164 40 KISTA, SWEDEN

1

A SYSTEM DESIGN METHODOLOGY BASED ON A FORMAL
COMPUTATIONAL MODEL

Wenbiao Wu, Axel Jantsch
ESD Lab, Department of Electronics

Royal Institute of Technology
S-164 42 Kista, Sweden

Abstract

The modern electronic system design has become extremely complex due to the
increasing demand of higher performance and improved functionality. In this paper,
we address this problem with a system design methodology which is based on
functional language and uses skeletons for design exploration. Transformational
design method is also introduced during various design exploration stages. The final
design is synthesized into a VHDL and C model which can be further implemented.

1. INTRODUCTION

The modern electronic system design has become extremely complex due to
increasing demand of higher performance and improved functionality, which requires
an immense investment of time and efforts to create and verify from the high-level
abstract descriptions downwards. One of the characteristics of such systems is the co-
existence of HW and SW blocks. With the complexity of system design, Intellectual
Property blocks (IPs) such as embedded processor cores, DSP cores, filter
components, interface units, real time kernels, etc. are also becoming increasing
popular. An IP based design approach uses these building blocks and connects them
together. The main problem here is the validation of the whole system design and the
design of custom software and hardware for connecting the building blocks.

Traditional hardware system design forces the designer to partition hardware and
software in an early stage and design them separately which results in a
implementation difficult to verify and change. Usually a concurrency-process based
system model follows the system requirement with complicated synchronous or
asynchronous communication mechanism. In this process model, functions can't be
easily moved from one process to another since this will require the redesign of
communication structure between processes.

A fundamental aspect of system design is the specification process. We argue that
there should be an intermediate layer between the system requirement and the
concurrency-based process model. A specification that is written in a language whose
syntax and semantics are formally defined. The development of a formal specification
model will provide insights into and an understanding of both the system requirement
and the implementation. This will on one hand reduce the errors in requirement, while
on the other hand can be conveniently used to capture the essential functionality of a
system, hence provides a good basis for future design and implementation.

Because of the formal nature of the specification model, which can be regarded as
consisting of mathematical entities, it can be further analyzed by using some

2

mathematical methods which in turn can also be mechanized. For example, this
formal model can be integrated with theorem provers, model checkers and other
formal analysis and verification techniques, which can in some way guarantee the
correctness of the specification model.

The preliminary result of specification language evaluation suggests that specification
languages based on a functional paradigm can be more suitable than other languages
based on communicating processes because the partitioning into concurrent processes
is not determined in a functional model and therefore the communication need not be
defined in detail. [JKS98]

Another advantage of formal
specification is that this methodology
can also be employed together with
transformation techniques, i.e. the
specification can be transformed through
a series of correctness preserving steps
to a final synthesizable system model
which meets the system requirement and
constraints imposed by designers (See
Fig 1). The transformation result of each
step is sufficiently close to the previous
expression that the effort of verifying the
transformation is not excessive. It can
therefore be guaranteed that the final
implementation is a true implementation
of the specification. A transformation
approach made up of a sequence of
small steps is very effective and much
more efficient than a theorem prover
which is usually very difficult because the gap between implementation and a
specification is much larger than the gaps between transformation steps. Of course,
there are still difficulties in applying a purely transformational approach to large
system design. However, the incorporation of this approach into the design
methodology will offer the opportunities to improve the design process. For example,
in HW/SW co-design, transformation techniques can be employed in the system's
custom parts that are not covered by pre-designed building blocks (IPs).

Our second assumption to system design is that system development is an iterative
process. The specifications of large systems are not written as one homogenous
document, but they are developed and improved over a long period of time by
different people trying to meet changing requirements and constraints. So, this process
should be supported by a technique, which allows the designer to add, modify and
remove the entities or functions of his concern without a large impact on the rest of
specifications.

2. RELATED WORKS

As we have argued in the first part that the design approach should be based on the
use of formal models to describe the behavior at a high level of abstraction before a

Formal Specifications

Intermediate
Implementation

Intermediate
Implementation

Synthesizable System
Model

Tn Rn

T1 R1

Fig 1: Transformational System Design

3

decision on its decomposition into hardware and software components is taken. For a
comprehensive overview of the computational models available see Edwards et al
[ELLS97]. Many real-time systems are specified by means of concurrent processes
which communicate asynchronously. However, since this model's closeness to the real
architecture, we argue that this is not a good choice for a functional system model.
There are mainly two drawbacks in this model. One is that many design decisions are
already present in such a model (for example, the partitioning into processes). It is
very difficult to correct a wrong design decision in the later design phases. The other
drawback is that the complexity of the communication mechanism in the model is a
major difficulty for the functional design exploration and the subsequent
implementation.

The synchrony hypothesis [BB91] forms the base for the family of synchronous
languages, which are designed to target reactive systems. It assumes that the outputs
of a system are synchronized with the system inputs, while the reaction of the system
takes no observable time. The synchrony hypothesis abstracts from physical time and
serves as a base for a mathematical formalism. All synchronous languages are defined
formally and system models are deterministic. The family of synchronous languages
can be divided into two groups, one group targeting data flow applications (e.g. Lustre
[HCRP91], Signal [GGBM91]), the other targeting control oriented applications (e.g.
ESTEREL [BS91], Statecharts [HAR87]). However, there is no language, which is
good in both areas as elaborated in [BB91]. We use this theory for our computational
model, but go beyond it by using a more powerful language paradigm, which allows
us to address both data flow and control flow applications.

Transformational system design [WJ99] supports the idea of designing at a higher
level of abstraction which implies describing the behavior of the required system and
then transforming this into a structural and behavioral description at a low level,
possibly in a hardware description language. Such kind of design methodology can
reduce the overall design time and ensure the correctness of the implemented system.
In [WJ99], transformational design is divided into four categories based on the system
specification notations or languages. That is: imperative language based
transformation systems, functional language based transformation systems, logic
language based transformation systems and concurrent process based transformation
systems. As pointed out in [WJ99], functional language as its name implies is based
on the mathematical notation of functions. In contrast to the logic programming
language where underlying model of computation is the relation, functional language
has a more efficient operational behavior.

Haskell [HPF99] is a modern functional language that provides a common ground for
research into functional languages and functional programming. However, now it has
also been used in hardware design. In Hawk project [MCL98], Hawk is embedded
into Haskell. In their work, Hawk has been used to specify and simulate the integer
part of a pipelined DLX microprocessor. Lava [BCSS98] is a collection of Haskell
modules. It assists circuit designers in specifying, designing, verifying and
implementing hardware. O'Donnell [DON95] has developed a Haskell library called
Hydra that models gates at several levels of abstraction ranging from implementations
of gates from using CMOS and NMOS, up to abstract gate representations using lists
to denote time-varying values. Bernhard Möller [MOL97] provided a deductive
hardware design approach for basic combinational and sequential circuits. The goal of

4

his approach is the systematic construction of a system implementation starting from
its behaviour specification. Gofer/Haskell has been used in his work to formulate a
functional model of directional, synchronous and deterministic systems with discrete
time. However, all of the above approaches are targeted on gate-level or circuit design
which differ significantly from our approach. Reekie [REE95] used Haskell to model
digital signal processing applications. He modelled streams as infinite lists and used
higher-order functions to operate on them. Finally, correctness-preserving
transformations were applied to transform a system model into an effective imple-
mentation.

There are also some other languages for specifying hardware design. The Ruby
language, created by Jones and Sheeran [JS90], is a circuit specification and
simulation language based on relations, rather than functions. The target applications
are regular, data flow intensive algorithms, and much of its emphasis is on layout
issues. In contrast, our approach is based on a functional language, addresses data
flow and control dominated applications, uses a fully fledged functional language, and
links to commercial logic synthesis tools rather than dealing with layout directly.
HML [LL95] is a hardware modeling language based on the functional language ML,
which is a functional language similar to Haskell used in our approach. However,
HML attempts to replace VHDL or Verilog as hardware description languages, while
we propose a hardware and system specification concept on a significantly higher
abstraction level with a very different computational model. A direct translation of
HML to VHDL is described in their paper [LL95], which would not be possible in our
approach since we propose a design space exploration and synthesis method which
requires explicit user input in the form of design decisions.

3. THE DESIGN METHODOLOGY

3.1 The Computational Model

Our computational model is based on
the synchronous hypothesis which
assumes the outputs of a system are
synchronized with the system inputs,
while the reaction of the system takes
no observable time. In this
methodology, we use the denotational
framework of Lee and Sangiovanni-
Vincentelli [LS97]. They defined a
signal as a set of events, where an
event has a tag and a value. A signal is
shown in Fig 2. Here events are totally ordered by their tags. Events with the same tag
are processed synchronously. A special value '⊥' (“bottom”) is used to model the
absence of an event. Absent events are necessary to establish a total ordering among
events for real time systems with variable event rates. Compared with finite state
machines which are more operational in their nature, this approach leads to a
computational model with a definite denotational flavor.

3.2 The Modeling Language

17 9 20 7⊥ 8

 Event

Tag

Absent Event

ValuePresent Event

Fig 2: A signal is a set of events

5

We choose Haskell, a purely functional language, as our modeling language. The
reasons for this are the following:

• Haskell is based on formal semantics and purely functional;
• Supports higher-order functions;
• Polymorphism allows generic formulations and hence supports reuse;
• All the specification is executable which allows the simulation of the system

model.

3.3 Skeletons Used in the Functional Model

A skeleton is a higher-order function which is used to model elementary process. It
takes elementary functions and signals as input parameters and produces signals as
output. In design, we can define an elementary function as a function that is
combinatorial and does not include any timing behaviour.
For example, we can define add :: (Int, Int) -> Int as a simple adder. The definition of
map add :: [(Int, Int)] -> [Int] will be its clocked equivalent. Here map is defined as:

map f [] = []
map f (x:xs) = f x : (map f xs)

3.4 Transformation Rules and Patterns

The system specification is written in a functional language. Transformation-based
design exploration is employed to transform the initial specification into a
synthesizable architecture model during the process. A design library is used to
facilitate this process.

The research of program transformation has been active for several decades since the
pioneering work of Burstall and Darlington [BD75]. Previous works in this area will
provide a solid basis for our design methodology.

In the design process, each small step of transformation is the result of applying one
transformation rule to the previous expression. Transformation rules include:

• Definition: Introduce new functions to the system model.
• Unfolding: Replace the application of a function with its definition.
• Folding: This is the opposite of unfolding.
• Abstraction: Abstract common expressions used in system models into one

separate function to be reused.
• Algebraic Rules

Transformations are also guided by transformation patterns which correspond to
different design exploration stages and purposes. They are:

• Combinatorial function transformations
• Data type transformations
• Skeleton-based transformations

We will give some transformation examples in the following sections.

6

3.5 Intermediate Design Steps

3.5.1 The Unconstrained Functional Model

System design (Fig. 3) starts with
the development of an
unconstrained functional system
model which is based on a
synchronous computational model,
a functional modelling language
(Haskell) and the use of skeletons.
The system model is functional in
the sense that it uses formally
defined functions to focus on the
system functionality rather than
structure and architecture. The
system model is unconstrained in
the sense that it uses unconstrained
data types, such as infinite lists or
trees. The nature of the
unconstrained system model leaves
a wide design space. During this
stage, functions can be added or
removed as needed. The whole
system functionality is acquired
through the use of skeletons.

Functional transformation is employed on this model to meet the user specified
constraints or to optimise system design. So, at first the designer just provides an
initial correct but maybe inefficient system model. In the following design
explorations in this stage, the designer can transform this system model using the
transformation rules to get a new functional model which is not only correct but also
satisfies the system requirements. Here we present some transformation examples.

Example 1: As described, a signal is a list of events. Now, we want to process the
particular events which satisfy some property. To simplify this, let's say the property
be P which is a function p :: Event -> Bool and the operation we want to do be sum ::
Signal -> int which returns the sum of the event's values in the signal.
So, the functions can be:

sumByProperty :: Signal -> Int
sumByProperty s = sum (properList (s)) (1)

properList :: Signal -> Signal
properList [] = []
properList (x:xs) = if p x then x : properList xs else properList xs

sum :: Signal -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Constrained Functional Model

Unconstrained Functional Model

Architecture Based Model

Synthesis to VHDL and C

Synthesizable VHDL-Model

Hardware Synthesis

Hardware Description

Verification
Method

Design
Library

Data Type
Decisions

Unconstrained
Functional Model

Data Type
Decisions

Unconstrained
Functional Model

Architecture
Decisions

Functional
Domain

VHDL
Domain

Data Type Transformation

Library Based
Interpretation

Skeleton Based
Transformations

Fig 3: System Design Methodology

Function or Skeleton
Transformations

7

Here, properList is a function used to generate the list where the event satisfies
property P. sum is a function used to sum the events in a signal. This is also shown in
Fig 4.

By using function composition strategy, we can avoid the construction of an
intermediate list. This list is passed to sum in (1).

First, we define a new function :

newSum :: Signal -> Int
newSum = sum•properList

newSum [] = sum•properList [] = sum (properList []) = sum [] = 0
newSum (x:xs) = sum•properList (x:xs) = sum (properList (x:xs))

= sum (if p x then x : properList xs else properList xs)
= if p x then sum (x : properList xs) else sum (properList xs)
= if p x then x + sum•properList xs else sum•properList xs
= if p x then x + newSum xs else newSum xs (2)

So, here we have transformed the old functions into a new function newSum (Fig 5)
which doesn't need to generate an intermediate list and is much more efficient. This
will reduce the communication and buffer size if implemented in hardware design
later.

Example 2: The final function in the previous example can be further optimised if it is
to be implemented in SW part. Function newSum gets the final result through
successive recursive calls which requires O(n) space to remember the arguments of
operator '+'. Also, the sum of the lists can only start until the recursion is completely
unrolled. To solve this problem, we can rewrite the function as:

newSum s = newSum' s 0
And,
newSum' :: Signal -> Int -> Int
newSum' [] result = result
newSum' (x:xs) result

sumByProperty

properList sumsignal signal output

signal output

Fig 4: Function sumByProperty

newSumsignal output

Fig 5: Function newSum

8

| p x = newSum' xs (result+x)
| otherwise = newSum' xs result

The execution of these two functions is shown in Fig 6 and Fig 7. In this example, the

input is 5, 4, 6, 7, 9, 2. The events in bold and italic types satisfy property P. (Here
we have ignored the tags.)

This transformation will reduce the space needed to O(1) and is much more efficient
since we already get the final result when the recursive calls is completed.

Usually, it will be tedious to do such transformations by hand. However, the
mathematical nature of transformation decides that these steps can be mechanized and
proved correct by tools.

3.5.2 The Constrained Functional Model

The constrained functional model is developed from the unconstrained model using
data type exploration. This intermediate stage is needed in order to synthesize the
functional model because it's difficult and inefficient to implement infinite data types
in the final design. Some other data type related transformations are also included in
this stage. The followings are the main transformations will be used in this stage.

(+) 5

(+) 0

(+) 6

(+) 7

(+) 0

(+) 2
0

2

20

2

9

15

15

Fig 6: The execution of function newSum

(+) 5 5 (+) 4 5 (+) 6 11 (+) 7 18 (+) 9 18

(+) 2 20 (+) null 20 Fig 7: The execution of function newSum'

Step 1 Step 2 Step 3 Step 4 Step 5

Step 6 Step 7

operator

Incoming
data

Intermediate
result

9

• Transform lists to multi-lists or vice versa
Sometimes, we need to split a signal into several signals to be processed by several
processes simultaneously to acquire high efficiency or vice versa. This is illustrated in
Fig 8.

Here, the signal is a list of pairs. And unzip is the function used to split the signal. Fst
return the first element in the pair. Snd returns the second element in the pair.

fst :: (a, b) -> a snd :: (a, b) -> b
fst (x, y) = x snd (x, y) = y

unzip :: [(a, b)] -> ([a],[b])
unzip [] = ([], [])
unzip ((x, y):ps) = (x:xs, y:ys) where (xs, ys) = unzip ps

We can also modify unzip to meet some special splitting criteria.

• Transform data structures (e.g. trees and lists.)
It's true in both hardware design and software design that the organization of data
structure has a big influence on the system efficiency. In some cases, it's desirable to
transform the input data structure to accommodate the specific HW or SW structure.
For example, in the design of IP filter in a router, how the IP address table is
organized is an important issue because searching the table costs most of the time.
The IP address table can be organize either in lists or trees. However, from the
algorithm and implementation point of view, it's better to implement the data structure
in trees. Specific operations can then be performed on this structure. Usually, this kind
of transformation will be based on the implementation the designer has in mind and
thus is very powerful and efficient.

• Transform unbounded data types to bounded data types
We can use templates to transform unbounded data types into bounded data types
[SJ99].

For example, an unconstrained FIFO is defined as:
unconstrainedFifoT :: Timed [a] -> Timed a
unconstrainedFifoT = mooreS fifoState fifoOutput []
The function fifoState is used to calculate the new state of the buffer. The function
fifoOutput analyses the buffer and outputs the first element.

Process
signal S output

Process 1

Process 2

fst•unzip S

snd•unzip S

output 1

output 2

output

Fig 8: Transform list to two lists

10

We obtain a template by replacing the function fifoState with a new function
constrainedFifoState with two additional parameters b for the buffer size and i for the
number of parallel inputs.

constrainedFifoTemplate :: Int -> Int -> Timed [a] -> Timed a
constrainedFifoTemplate b i = mooreS (constrainedFifoState b i) fifoOutput []

We can then build instances of constrained FIFOs by specifying the parameters b and
w.
constrainedFifoT_b8_i4 :: Timed [a] -> Timed a
constrainedFifoT_b8_i4 = constrainedFifoTemplate 8 4

3.5.3 Architecture Based Model

The design library contains implementations for skeletons and library elements. Based
on the unconstrained functional model, data type decisions and the design library,
architecture based model can be obtained through a library-based interpretation. Some
skeleton-based transformations are introduced here which is used to optimize system
design.

• Merge separate skeletons
We can merge separate skeletons into one skeleton (see Fig 9). Here, skeletons are
represented as FSMs, i.e. they have next state functions f1 and f3 and output functions
f2 and f4. The final skeleton is also an FSM whose next state function is f5 and output
function is f6. Skeleton merging is usually only a re-grouping of the existing

skeletons. However, as far as the communication between skeletons is concerned,
regrouping the skeletons can sometimes minimize the communication overhead. So,
this kind of transformation is usually based on library estimation.

• Split a skeleton into several skeletons
This transformation is opposite to the previous one and may be used when the desired
skeleton doesn't have a direct hardware representation in the design library while the
skeletons resulted can be found in the library. It also supports skeleton reuse, i.e.
common sub-skeletons may be reused.

S1
f1

f2 S2
f3

f4
signal output

next statenext state

S
f5

f6
output

next state

signal

Fig 9: Combine two skeletons together

Final skeleton

Original skeletons

output

11

• Move functions between skeletons
The functions in skeletons can be easily moved in the functional model. Usually, the
moving of functions is based on library estimation or user decisions. For example, in
Fig 10, there are two skeletons. Skeleton B will use data C from skeleton A. Since C
is a very large table in skeleton A, it's desirable to move the function get_entry in
skeleton B to skeleton A to minimize the communication between two skeletons. The
final skeletons are also shown in Fig 10.

• Share elementary functions between skeletons
Some elementary functions in one skeleton may already exist in another skeleton.
Thus, it will be more efficient to reuse the elementary function that has already been
defined. For example in Fig 11, two skeletons s1 and s2 use the same elementary
function 'mapS' at the end which is based on the higher-order function map and
recursively applies a function f on all elements of a list. Based on library estimation, it
is possible that we combine these two functions into one.

• Transform elementary functions inside skeletons

mapS

S1

mapS

S2
signal signal output

Before transformation

After transformation

output

Fig 11: Elementary function reuse in skeletons

mapSsignal
couple

signal
decouple

output1

output2

signal

S2signal

S1

Update
Switch
Table

Distribute
Table

CInput

Skeleton A

get_entrymk_cell extractVInew VI VI

C

A B

Skeleton B

Update
Switch
Table

Distribute
Table

Input
get_entry

C

VI

new VI

Skeleton A'

mk_cell extractVI

new VI
VIA B

VI

Skeleton B'

Fig 10: Move Functions between Skeletons

12

Besides the above transformations, we can also transform the elementary functions
inside the skeleton as the methods described in section 3.5.1. This will also improved
the performance of the skeletons. At the same time, some of the skeleton-based
transformations can also be used in the unconstrained functional model.

3.6 Summary of Design Steps and Transformations

In the previous sections, we have introduced several design phases in our
methodology and presented some design exploration examples. Since our model is
based on the functional language, it's very natural and effective to employ
transformation based design space exploration on this model. The main challenge here
is how to combine different transformation rules and patterns with library estimation
which will largely depend on the implementation of the design library.

Elementary function transformations and skeleton based transformation can be
employed in all the design stages. However, the former is mostly used in early stages
because in early stages design library is still not introduced and the designer usually
have much wider exploration space for elementary function transformation. On the
other hand, skeletons have hardware or software representations in the design library.
It is much easier and more profitable to employ skeleton based transformtion in later
stages.

4. SYNTHESIS INTO VHDL AND C MODEL

With the intermediate information we get during the design exploration, the synthesis
can be done in a structural way. The information useful in synthesis stage includes
data type decision, architecture decision and so on. In this methodology, the synthesis
can be divided in two steps. First we transform the unconstrained functional model
together with the design exploration results into a synthesizable VHDL and C model.
Then the VHDL model can be further synthesized with a logic synthesis tool. The C
code is implemented as the software part of the final implementation.

The first step mainly consists of the following parts:

• Synthesis of data types
We map the data types used in Haskell to types in VHDL or C.

• Synthesis of skeletons
The skeleton has a hardware interpretation in the design library. So, it can
be directly modeled in VHDL.

• Synthesis of communications model
We synthesize the synchronous timing model into the clocked signal in
VHDL.

• Synthesis of combinatorial functions

5. CONCLUSION AND FUTURE WORK

We have provided a design methodology for HW/SW co-design system. The
methodology is based on the synchronous hypothesis and use functional language as
the specification language. System design is accompanied by transformational design
exploration. The system model abstracts from implementation issues such as

13

communication mechanisms and its formal nature supports formal methods and
verification. The use of skeletons also makes it possible to interpret the system model
as a hardware or software structure which will lead to an efficient implementation.

As the next step of our project, we will apply the methodology to a real industrial
example. And we will focus on the connection of formal verification methods to our
design methodology.

REFERENCES:

[BB91] A. Benveniste and G. Berry, The Synchronous Approach to Reactive and Real-Time
Systems, Proceedings of the IEEE, Vol. 79, No. 9, pp. 1270-1282, September 1991.

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran and Satnam Singh, Lava: Hardware
Design in Haskell. In ACM Int. Conf. on Functional Programming, 1998.

[BD75] R. M. Burstall and John Darlington. Some Transformations for Developing Recursive
Programs. In Proceedings of International Conference on Reliable Software (Los Angels)
IEEE, New York, pp. 465-472, 1975.

[BS91] F. Boussinot and R. de Simone, The ESTEREL Language, Proceedings of the IEEE,
Vol. 79, No. 9, pp. 1293-1304, September 1991.

[DON95] J. O'Donnell, From Transistors to Computer Architecture: Teaching Functional
Circuit Specification in Hydra, In Symposium on Functional Programming Languages in
Education, July 1995.

[ELLS97] S. Edwards, L. Lavagno, E. A. Lee and A. Sangiovanni-Vincentelli, Design of
Embedded Systems: Formal Models, Validation and Synthesis, Proceedings of the IEEE, Vol.
85, No. 3, pp. 366-390, March 1997.

[GGBM91] P. Le Guernic, T. Gautier, M. Le Borgne and C. de Marie, “Programming Real-
Time Applications with SIGNAL”, Proceedings of the IEEE, Vol. 79, No. 9, pp. 1321-1335,
September 1991.

[HAR87] D. Harel, “STATECHARTS: A Visual Approach to Complex Systems”, Science of
Computer Programming, 8-3, pp. 231-275, 1987.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The Synchronous Data Flow
Programming Language LUSTRE, Proceedings of the IEEE, Vol. 79, No. 9, pp. 1305-1320,
September 1991.

[HPF99] P. Hudak, J. Peterson and J. H. Fasel, A Gentle Introduction to Haskell. At
http://www.haskell.org/tutorial.

[JKS98] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani, P.
Ellervee, M. O’Nils, "Comparison of Six Languages for System Level Descriptions of
Telecom Systems", Proceedings of the Forum on Design Languages, vol. 2, pp. 139-148,
1998.

[JS90] G. Jones and M. Sheeran, “Circuit Design in Ruby”, in Formal Methods for VLSI
Design, North Holland, edited by J. Staunstrup, 1990.

14

[LL95] Y. Li and M. Leeser, “HML: An Innovative Hardware Description Language and its
Translation to VHDL”, Conference on Computer Hardware Description Languages and Their
Applications (CHDL), 1995.

[LS97] E. A. Lee and A. Sangiovanni-Vincentelli, A Denotational Framework for comparing
Models of Computation, Technical Memorandum UCB/ERL M97/11, University of
California, Berkeley, California, 1997.

[MCL98] J. Mattews, B. Cook and J. Launchbury, Microprocessor Specification in Hawk, In
Proceedings of ICCL'98, May 1998, Chicago.

[MOL97] B. Möller, Deductive Hardware Design: A Functional Approach, Report 1997-09,
Institute of Computer Science at the University of Augsburg, 1997.

[REE95] H. J. Reekie, Realtime Signal Processing, PhD Thesis, University of Technology at
Sydney, Australia, 1995.

[SJ99] I. Sander and A. Jantsch, System Synthesis Based on a Formal Computational Model
and Skeletons, Proceedings of IEEE Workshop on VLSI’99 (WVLSI’99), pp. 32-39, April 8-
9, Orlando, Florida, USA, 1999.

[WJ99] W. Wu and A. Jantsch, A Survey of Design Transformation Techniques, Internal
report, TRITA-ESD-99-1, ISSN 1104-8697, ISRN KTH/ESD/FOU--99/1--SE, Royal Institute
of Technology, Department of Electronics, ESDlab, Stockholm, Sweden, 1999.

