
The Power of Abstraction

Barbara Liskov
September 2013

MIT CSAIL

Software is Complex

n  Systems are big
n  and they do complicated things
n  and they may be distributed and/or

concurrent

Addressing Complexity

n  Algorithms, data structures, protocols

Addressing Complexity

n  Algorithms, data structures, protocols

n  Programming methodology
n  Programming languages

This Talk

n  Programming methodology as it
developed

n  Programming languages
n  Programming languages today

The Situation in 1970

n  The software crisis!

Programming Methodology

n  How should programs be designed?
n  How should programs be structured?

The Landscape

n  E. W. Dijkstra. Go To Statement
Considered Harmful. Cacm, Mar. 1968

The Landscape

n  N. Wirth. Program Development by
Stepwise Refinement. Cacm, April 1971

The Landscape

n  D. L. Parnas. Information Distribution
Aspects of Design Methodology. IFIP
Congress, 1971

n  “The connections between modules are
the assumptions which the modules
make about each other.”

Modularity

n  A program is a collection of modules

Modularity

n  A program is a collection of modules
n  Each module has an interface,

described by a specification

Modularity

n  A program is a collection of modules
n  Each has an interface, described by a

specification
n  A module’s implementation is correct if it

meets the specification
n  A using module depends only on the

specification

Modularity

n  A program is a collection of modules
n  Each has an interface, described by a

specification
n  A module’s implementation is correct if it

meets the specification
n  A using module depends only on the

specification

n  E.g. a sort routine sort(a)

Benefits of Modularity

n  Local reasoning
n  Modifiability
n  Independent development

The Situation in 1970

n  Procedures were the only type of
module

n  Not powerful enough, e.g., a file system
n  Not used very much
n  Complicated connections

Partitions

n  B. Liskov. A Design Methodology for
Reliable Software Systems. FJCC, Dec.
1972

Partitions

Partition state

op1 op2 op3

From Partitions to ADTs

n  How can these ideas be applied to
building programs?

Idea

n  Connect partitions to data types

Partitions as Data Types

Partition state

op1 op2 op3

Exploring Abstract Data Types

n  Joint work with Steve Zilles

The Landscape

n  Extensible Languages
n  S. Schuman and P. Jourrand. Definition

Mechanisms in Extensible Programming
Languages. AFIPS. 1970

n  R. Balzer. Dataless Programming. AFIPS.
1967

The Landscape

n  O-J. Dahl and C.A.R. Hoare. Hierarchical
Program Structures. Structured
Programming, Academic Press, 1972

The Landscape

n  J. H. Morris. Protection in Programming
Languages. Cacm. Jan. 1973

Abstract Data Types

n  B. Liskov and S. Zilles. Programming
with Abstract Data Types. ACM Sigplan
Conference on Very High Level
Languages. April 1974

What that paper proposed

n  Abstract data types
n  A set of operations
n  And a set of objects
n  The operations provide the only way to use

the objects

n  A sketch of a programming language

From ADTs to CLU

n  Participants
n  Russ Atkinson
n  Craig Schaffert
n  Alan Snyder

Why a Programming
Language?

n  Communicating to programmers
n  Do ADTs work in practice?
n  Getting a precise definition
n  Achieving reasonable performance

Some Facts about CLU

n  Static type checking
n  Heap-based
n  Separate compilation
n  No concurrency, no gotos, no

inheritance

CLU Mechanisms

n  Clusters
n  Polymorphism (generics)
n  Iterators
n  Exception handling

Clusters
IntSet = cluster is create, insert, delete, …
 % representation for IntSet objects
 % implementation of the operations
end IntSet

Clusters
IntSet = cluster is create, insert, delete, …
 % representation for IntSet objects
 % implementation of the operations
end IntSet

IntSet s = IntSet$create()
IntSet$insert(s, 3)

Polymorphism

Set = cluster[T: type] is create, insert, …
 % representation for Set object
 % implementation of Set operations
end Set

Set[int] s := Set[int]$create()
Set[int]$insert(s, 3)

Polymorphism

Set = cluster[T: type] is create, insert, …
 where T has equal: proctype(T, T)
 returns (bool)

Iterators

n  For all x in C do S

Iterators

n  For all x in C do S
n  Destroy the collection?
n  Complicate the abstraction?

Visit to CMU

n  Bill Wulf and Mary Shaw, Alphard
n  Generators

Iterators

sum: int := 0
for e: int in Set[int]$members(s) do
 sum := sum + e
 end

Also

n  Exception handling
n  Strong specifications, e.g., IntSet$choose

n  First class procedures and iterators

After CLU

n  Argus and distributed computing
n  Programming methodology

n  Modular program design
n  Reasoning about correctness
n  Type hierarchy

From CLU to Object-Oriented
Programming

n  SmallTalk provided inheritance

The Landscape

n  Inheritance was used for:
n  Implementation
n  Type hierarchy

Type Hierarchy

n  Wasn’t well understood
n  E.g., stacks vs. queues

The Liskov Substitution
Principle (LSP)

n  Objects of subtypes should behave like
those of supertypes if used via
supertype methods

n  B. Liskov. Data abstraction and
hierarchy. Sigplan notices, May 1988

What Next?

n  Modularity based on abstraction is the
way things are done

Programming Languages
Today

n  Languages for experts, e.g., Java, C#

Programming 1A

n  E.g., Python

Challenges

n  A programming language for novices
and experts
n  Ease of use vs. expressive power
n  Readability vs. writeability
n  Modularity and encapsulation
n  Powerful abstraction mechanisms
n  State matters

Challenges

n  Massively-parallel computers
n  Programming methodology
n  Programming language support

The Power of Abstraction

Barbara Liskov
September 2013

MIT CSAIL

