

LiTH-IDA-R-88-07
ISSN-0281-4250

Spring 1988

The Department of Computer and Information Science

Linköping University

Annual Research Report 1987

This report describes research on software technology and related areas within
the Department of Computer and Information Science at Linköping University
and Institute of Technology. Main areas of current research are programming
environments, artificial intelligence, natural language processing, application
systems, computer-aided design of digital systems, representation of knowledge
in logic, complexity of algorithms, logic programming, library and information
science, and administrative data processing. The report also presents other
activities in the department, e.g. undergraduate education, the graduate study
programme, knowledge transfer to industry, etc.

Mailing address:
Dept, of Com puter and Information Science
Linköping University
S-581 83 Linköping
Sweden
Tel: int + 46 13 28 10 00
Telex: 8155076 LIUIDA S
Telefax: int + 46 13 14 22 31

Postadress:
Inst, för datavetenskap
Universitetet och
Tekniska Högskolan i Linköping
581 83 Linköping
Tel: 013 - 28 10 00
Telex: 8155076 LIUIDA S
Telefax: 013 - 14 22 31

C O N TE N TS

1 . I n t r o d u c t i o n a n d o v e r v i e w .. 1
1.1 Research o b je c t iv e s .. 1
1.1.1 Current research objectives .. 1
1.1.2 Strategic Research Planning... 2
1.2.Organization.. 4
1.2.1 ID A ’s current research organization... 4
1.2.2 IDA:s organization in general... 5
1.3 Educational p rog ra m m es.. 6
1.3.1 Review o f teaching o rg a n iza tion ... 6
1.3.2 Undergraduate c u r r ic u la ... 8
1.3.3 Continued education for Swedish I n d u s tr y ... 9
1.3.4 Other programmes ... 10
1.3.5 Organization ... 11
1.4 Knowledge Transfer Activities.. 11
1.4.1 Knowledge Transfer Program to industry.. 12
1.4.2 K T P as a knowledge engineer training programme 13
1.4.3 Experiences and plans for further activities ... 13
1.4.4 LAIC - Linköping AI C o n sort iu m .. 14
1.4.5 CENIIT - The Center for Industrial Information T e ch n o lo g y 15
1.4.6 Spinoff Companies.. 16
1.5 International Cooperation... 16
1.6 Research Facilities... 17

2 . T h e L a b o r a t o r y f o r C o m p l e x i t y o f A l g o r i t h m s 19
2.1 In tr o d u ct io n .. 19
2.2 Laboratory M e m b e r s ... 21
2.3 Current R e s e a r c h .. 21
2.3.1 Computational Geometry ... 21
2.3.2 Data S tru ctu re s .. 24
2.3.3 Parallel and Sequential Graph A lg o r ith m s ... 26
2.4 External c o n t a c t s .. 27

3 . T h e A r t i f i c i a l I n t e l l i g e n c e E n v i r o n m e n t s L a b o r a t o r y 29
3.1 In tro d u ct io n .. 29
3.2 Researchers and Project .. 30
3.2.1 Laboratory m e m b e r s 30
3.2.2 The AIM project .. 30
3.3 Current research: The freeshape subproject ... 32
3.3.1 The freeshape Language ... 33
3.3.2 The freeshape s y s t e m ... 35
3.4 Research c o o p e r a t io n ... 36

4 . T h e A p p l i c a t i o n S y s t e m s L a b o r a t o r y .. 39
4.1 Summary o f current research 39
4.2 ASLAB p e rs o n n e l...42
4.3 Review o f m ajor research activities... 43
4.3.1 Knowledge acquisition and maintenance environments 43
4.3.2 Knowledge-base migration and generic expert systems 45
4.3.3 Intelligent human-computer interaction ..46
4.3.4 Knowledge-based approaches to systems development49
4.3.5 Statistical information systems..50
4.4 External cooperation..51
4.5 P u b lic a t io n s52

5. The L aboratory for C om puter-A ided Design o f
D igital Systems 55

5.1 In tro d u ct io n55
5.2 Current W o r k ..56
5.3 Asynchronous A rch ite c tu res ...56
5.4 Ongoing CAD LAB Projects57
5.5 Progress During 198761
5.6 Automated Synthesis o f VLSI S y s te m s 61
5.7 Specification and Verification of VLSI Systems 65
5.8 Related A c t iv it ie s .. 66
5.9 Personnel .. 66
5.10 Licentiate Theses 66
5.11 Ph.D . T h e s e s ... 67
5.12 References 67

6 . T h e L i b r a r y a n d I n f o r m a t i o n S c i e n c e L a b o r a t o r y . . 69
6.1 In tro d u ct io n69
6.1.1 Assessment o f L I B L A B70
6.2 A new research program for L I B L A B ...70
6.3 Project H Y P E R C A T a lo g71
6.3.1 H YPERKITtens ...72
6.4 Other projects and a c t iv it ie s ..73
6.5 Laboratory m e m b e r s74
6.6 Publications in 198775

7 . T h e L o g i c P r o g r a m m i n g L a b o r a t o r y 77
7.1.In tro d u ct io n 77
7.2 The Objectives o f the Present Research 78
7.3 The Research T o p i c s 78
7.3.1 Amalgamation o f Logic Programs with Functional Procedures 78
7.4 M ethodology o f Amalgamated P rogram m in g 80
7.5 The R e s u l t s 81
7.5.1 A Restricted Class o f Logic Programs ... 81
7.5.2 Context-free types in logic p rog ra m m in g .. 81
7.5.3 A method for proving run-time properties o f logic p r o g r a m s 82
7.5.4 S-unification: a basis for amalgamated programming 82
7.6 R e fe r e n c e s 83

8 . T h e L a b o r a t o r y f o r N a t u r a l L a n g u a g e P r o c e s s i n g . . 85
8.1 In tr o d u ct io n .. 85
8.2 NLPLAB P erson n e l.. 85
8.3 A Short Overview o f Current R e s e a r c h ... 86
8.3.1 Parsing techniques for constraint-based grammars 86
8.3.2 LINLIN — architecture for a natural language interface 87
8.3.3 Discourse re p resen ta tion .. 88
8.3.4 The study of dialogues between human users and N L I s 88
8.3.5 C LO C K W ISE — a system that interprets temporal expressions . . . 90
8.4 External contacts and major events o f 1987 ... 91
8.5 List o f p u b lic a t io n s .. 92

9 . T h e P r o g r a m m i n g E n v i r o n m e n t s L a b o r a t o r y 95
9.1 PE LA B Personnel 1987 .. 97
9.2 Overlapping Kernel P r o je c t s ... 97
9.3 Research P r o je c t s .. 99
9.3.1 The DICE Project ... 99
9.3.2 The PEPSy P r o je c t ... 101
9.3.3 Next Kernel Project ... 103

1 0 . T h e L a b o r a t o r y F o r R e p r e s e n t a t i o n o f
K n o w l e d g e in L o g i c .. 105

10.1 Researchers and Projects.. 105
10.1.1 A c t iv it ie s .. 105
10.1.2 Laboratory members... 106
10.1.3 Main current achievements... 106
10.2 Focal point o f research: Plan-Guided Systems... 107
10.3 Non-standard logics and their implementations.. 108
10.3.1 Non-m onotonic logic and reason maintenance.. 108
10.3.2 Logic o f uncertainty.. 109
10.3.3 Constraint programming systems... 109
10.4 Professional knowledge and information management systems 109
10.5 Representation of knowledge about machinery and p r o c e s s e s 110
10.5.1 Reasoning about time and action.. 110
10.5.2 Introductory studies o f plan guided vehicles... I l l
10.5.3 Plan guided manufacturing systems... I l l
10.6 International activities... I l l
10.7 Special feature. Reasoning under uncertainty:

Towards a many-valued logic o f b e l i e f ... 112

1 1 . T h e A d m i n i s t r a t i v e D a t a P r o c e s s i n g G r o u p 121
11.1 Administrative data p rocess in g .. 121
11.2 Research activities... 122
11.3 Personnel during the year: ... 122

A p p e n d i x A : A d m i n i s t r a t i v e o r g a n i z a t i o n 123

A p p e n d i x B: G r a d u a t e S t u d y P r o g r a m .. 127

A p p e n d i x C : U n d e r g r a d u a t e E d u c a t i o n .. 139

A p p e n d i x D : C o m p u t e r F a c i l i t i e s .. 145

A p p e n d i x E : P u b l i c a t i o n s .. 147

1.

Introduction and
Overview

1.1 Research objectives

This is the January, 1988 issue of the yearly overview report of research done
at the Department of Computer and Information Science (IDA) of Linköping
University. This introductory chapter reviews the scope of our research
programme and explains the organizional background for activities in the
department.

1.1.1 Current research objectives

The scope and the objectives of our research is influenced by the following
external factors:

We are located in the University’s School of Engineering (Tekniska högskolan i
Linköping). Knowledge areas which are significant for Swedish industry before
the end of this century, should have high priority for us.

The scope of IDA’s interest is partly defined by the natural borderlines to
other departments in the university, notably:

Electrical engineering
Mechanical engineering
Mathematics
Physics
Business administration
Communication studies
Technology and social change

2 IDA ANNUAL RESEARCH R E P O R T 1987
Introduction and Overview

(The last two of those are in the ’Themes’ research organization which has an
emphasis on social sciences).

Our main source of research grants is the Swedish Board of Technical
Development (STU); only about 20% of the research resources are internal
university money. STU supports good research, according to the criteria that
are commonly accepted in the international research community. They are
eager to support the establishment and growth of ” centers of excellence” in
selected areas. However, it is also important for our sponsor that research
results should be transferred to applications in industry, commercial users of
computer systems, public administration, or in other areas of research outside
computer science.

These goals are sometimes competing, and possibly even contradictory. In IDA
we have tried to balance our efforts so that both the basic research goal and
the applied goal should be achieved reasonably well. We also recognize the
importance of continuous interaction between basic and applied research in our
field.

Besides the external factors, the research direction of our department is
naturally determined by the roots and the traditions that it has emerged from.
Our research profile has evolved from early Swedish efforts in the following
areas:

artificial intelligence
programming environments
computer architectures
administrative data processing, data base

and office systems

These areas still represent a large portion of the department’s research, but
they have been complemented with research also in areas such as

logic programming
complexity theory
library science

We do not wish to be a single-issue department, but at the same time we can
not afford to spread out over all possible parts of computer science. The
present research profile, as realized by the ten laboratories/groups described in
chapters 2-11, attempts to make a reasonable trade-off between concentration
and breadth.

1.1.2 Strategic Research Planning.

In early 1986, our University’s School of Engineering decided to focus on
Industrial information technology (IIT) as the primary area for new research
efforts. The choice was based on the observation that information technology is
both the underlying technology for the information industry (computers,
software, telecommunications, electronic components), and also it is one very

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

3

important enabling technology for other industries. The term ’industrial
information technology’ that was adopted by the School of Engineering, refers
to that second aspect of the use of information technology.

Government approval of the plan came in February, 1987, with funding being
available from July 1988. During the academic year 1987/88 the effort in
industrial information technology has been planned by a group with
representatives from our department (Erik Sandewall) and the departments of
Mechanical Engineering, Electrical Engineering, and Physics. Dr. Tore
Gullstrand from Saab-Scania has also participated as a representative for
industry.

The actual work in the new Center for Industrial Information Technology,
CENIIT, will begin in mid-1988. It may eventually involve most of the
departments of our school. Activities planned for our part are described in
section 1.4 below.

Within our department, we presently find it more important to strengthen the
existing laboratories, than to start new ones. The recruiting situation is
relatively good, both for faculty and for students, and funding is therefore the
primary constraint in most areas of our activities.

IDA’s work in the area of administrative data processing has been plagued for
many years with a number of problems. The undergraduate study-line in
” computer science and business administration” (” systemvetenskapliga linjen”)
is badly under-funded. On the research side, there are organizational problems
along the administrative borderline between ’engineering’ and ’social sciences’ .
IDA brought out these problems for concrete discussion in 1986, and there has
been a fairly lengthy debate about how to proceed for the future. Some
temporary solutions have been created, but the main problems still remain to
be solved.

Our main sponsor, STU, established a ” ramprogram” (literally, ” frame
program”) for research in information processing during the period 1980 to
1985. That program was very important for strengthening computer science
research in Swedish universities, both because the total amount of funding
increased, and because it provided fairly stable funding during a five year long
period. A new frame program in our area started January 1988. Our
applications for funding from that program came out very favourably, with
about one third of the granted money in the first round allocated to IDA.

The STU program described above is part of the national information
technology program, which also contains a substantial part aiming at industrial
R&D projects. A special effort in that part will be joint activities between our
university and the Defense Research Institute, where IDA participate in
cooperative research on AI funded with 6 MSEK during 1987/88. Another
substantial effort in this area is the PROART project, which is the AI part of
the Prometheus Eureka project (future road traffic systems). PROART is
coordinated by Erik Sandewall and part of the research is done in our

4 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

department.

1.2 Organization.

This annual research report is intended both for our colleagues internationally,
and for Swedish readers in industry as well as in the universities. When it
comes to the sections about organization and about undergraduate teaching,
those two audiences have different frames of reference, and maybe also
different interests. If a reader finds some parts of the following text redundant,
then maybe that is a result of our attempts to cater to both groups of readers
at once.

1.2.1 ID A ’s current research organization.

The department for computer and information science (institutionen för
datavetenskap, IDA for short) has presently about 120 employees. This figure
includes 17 researchers with a Ph.D. degree. The research in our department is
organized as nine (at present) laboratories and one smaller group (for
administrative data processing). Each lab consists of one or a few graduated
(Ph.D.) researchers, five to ten (typically) graduate students, and some
lab-specific support staff. From the department’s point of view, the
laboratories are the units which perform research projects, teach graduate
courses, and are responsible for finding their own funding. From the graduate
student’s point of view, the laboratory is his or her organizational ” home” . The
thesis project is done in one’s own laboratory, but the graduate student must
take courses across the range of all the laboratories.

The research program is coordinated by the research committee, headed by
Erik Sandewall. The current laboratories are:

A C T L A B (Lingas) for complexity o f algorithms
AIELAB (Tengvald) for artificial intelligence environments
ASLAB (Hägglund) for application systems,
C A D L A B (Kuchcinski) for computer-aided design o f digital systems,
LIBLAB (Hjerppe) for library and information sciences.
L O G P R O (Maluszynski) for logic programming,
NLPLAB (Ahrenberg) for natural language processing,
PE LAB (Lennartsson) for programming environments,
R K LLAB (Sandewall) for representation o f knowledge in logic,

The group for administrative data processing (Goldkuhl), although primarily a
group for undergraduate teaching, also includes some research activities.

The laboratory system is an intermediate form between the ” flat” university
department and the ” formally structured” one. In the ” flat” department there
is in principle no organization, just a number of professors each of which is the
advisor for a number of graduate students. The laboratory structure
encourages, and makes visible those cases where several professors /researchers

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

5

/advisors work jointly with their research and their students. In particular,
faculty members who do a lot of work for undergraduate teaching find it
convenient to be a member, but not a leader of a research laboratory. Also, a
visiting scholar would be a member of an existing laboratory and would not
form a new one.

The ” formally structured” department is the one where the academic positions
(several professorship levels, lecturer, etc.) define the hierarchical structure of
the department. This has often been the traditional organization in Swedish
universities. The laboratory structure at IDA is more uniform. It is also easier
to change, since the department’s decisions about changing laboratories
(adding, deleting, splitting, or merging them) can be taken according to the
needs of the research activities. The creation of a senior position does not
automatically imply the creation of an organizational unit, nor the other way
around either.

1.2.2 ID A :s organization in general.

IDA:s general organization is described in more detail in appendix A. The
department is lead by a department board (institutionsstyrelse), whose
chairman (” prefekt”) is Bengt Lennartsson. The two main areas of activity are
reflected in the two subordinate committees:

- the committee for undergraduate teaching, whose chairman
is Anders Haraldsson;

- the research committee, whose chairman is Erik Sandewall.

The research committee equals approximately the set of laboratory leaders,
and is responsible for all aspects of the department’s graduate education
programs and research.

The organizational groups within the department are:

- the research laboratories, headed by the lab leaders;

- two undergraduate teaching groups, one for the teaching in the School of
Engineering (” tekniska högskolan”), and another for the teaching in the School
of Arts and Sciences (” filosofiska fakulteten”). The teaching groups are each
headed by a ” studierektor” , namely Anders Haraldsson and Lise-Lotte Raunio.
The teaching groups report to the undergraduate teaching committee;

- a technical support and service group (TUS), which is headed by Anders
Aleryd and reports directly to the department board.

The department’s resources are almost consistently measured in monetary
units, kronor, and not as e.g. ” positions” or ” slots” for teachers. For example,
the School of Engineering buys a number of courses from the department, for a

6 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

price that is set in kronor. The ” studierektor” uses the money partly for paying
people in his own teaching group, and partly for sub- contracting research labs
to do some of the courses. The laboratory leaders see a number of distinct
sources of income, such as sub-contracted courses, research grants, and
industry cooperation, and must make the ends meet.

Through this organization, we try to de-centralize responsibilities within the
department with a minimum of bureaucracy, and without sacrificing the
advantages of joint strategical planning and continuous synergy effects between
the different parts of the department. The organizational and economic
structure defines a small set of ” rules of the game” , and the task of the
laboratory leaders and laboratories is to maximize the lab’s performance
according to the criteria that were discussed in section 1.1.1, and within the
constraints of the rules.

1.3 Educational programmes

Industry representatives often point out that teaching the next generation of
engineers, ” knowledge engineers” and systems analysts is the most important
knowledge transfer activity for a university. For IDA, it accounts for roughly
45% of the total budget, whereas knowledge transfer directly to industry
accounts for about 10%, and research accounts for the other 45%.

Before giving an overview of our undergraduate educations for readers familiar
with the Swedish educational system, the next section briefly reviews the
system, for the benefit of the international reader, and using terms from the
U.S. educational system for comparison.

Information about graduate education is given in appendix B.

1.3.1 R eview o f teaching organization

Students are admitted to the university after having completed senior high
school with a matriculation exam, usually the year when the student is 19
years old. The student is admitted to a specific ” study line” , which defines
what he or she will be majoring in. The school of engineering has the following
study lines:

Mechanical Engineering
Electrical Engineering and Applied Physics
Engineering and Economics
Computer Engineering
Computer Science

The first four of these study lines are nominally for 4 1/2 years, in practice
often more. They lead to the degree which in Swedish is termed ” civilingenjör” ,
but which is used for all branches of engineering, not only for civil engineering
in the English language sense. It is comparable to a Master’s degree, with the

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

7

qualification that the concluding thesis project is of moderate size - about three
months’ work - and is usually performed in industry and not as a research
assignment. The courses in the study line are almost exclusively of a technical
character; the student is assumed to have acquired the necessary knowledge of
”Western Civ”, foreign languages, etc. before matriculation.

For the Computer Science study line, which is a knowledge engineering type
education, the nominal study time is 4 years instead of 4 1/2. Study lines in
the School of Arts and Sciences are often for 3 years, and end with a Bachelor
of Science degree.

In the School of Engineering, the study lines are not directly tied to
departments. There is a matrix organization, where each study line buys
courses from (at least potentially) all the departments. In particular, IDA sells
courses to all five study lines. When we refer to courses in the ”undergraduate”
eduction in this volume, we really mean the courses in these study lines leading
to a Master’s or a Bachelor’s degree.

All the students in a study line take the same courses (with minor exceptions)
during the first two years, and have a free(-er) choice from the third year
onwards.

The students who go to graduate school must have completed the
’undergraduate’ degree with (in principle) 60 points of computer science
courses. One full-time academic year is 40 points so one point is roughly one
work-week. The graduate study proceeds through two successive levels, the
”teknologie licentiat” degree nominally after two years, and the ”teknologie
doktor” (Ph.D. in engineering) nominally after two additional years. Both
levels require a combination of coursework and a thesis. The ”tek.lic.” can
therefore be seen as an advanced Master’s degree with a substantial, research
oriented thesis.

There are two reasons for having the licentiate degree in the system. For those
students wishing to go into industry, it is a good break point in the education.
Industry wants people to be as young as possible when they come, and the
licentiate has already had a participation in research which is a sufficient
background for many industrial jobs. Secondly, for students who contemplate
whether to enter a research education at all, the Ph.D. seems a very long way
off, and the licentiate is a more immediate and tangible goal. Many of the
licentiates continue towards the Ph.D. but appreciate having had the
breakpoint.

Students that come from the 4-year Computer science study line or from the
3-year Systems science line (Computer science and business administration) go
to ”filosofie licentiat” and ”filosofie doktor” degrees. Three years on those lines
gives 60 points in computer science, so the 2+2 years research education is
counted from the end of the third year. Thus most of the courses in the fourth
year of the Computers science study line are valid for graduate studies also.
Students are encouraged to complete the study line, independently of any

8 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

graduate studies. Stipends for graduate studies will normally not be available
until after that fourth year of study.

1.3.2 U ndergraduate curricula

The Linköping University has since 1975 had a strong position in
undergraduate curricula and teaching in computer science. Linköping is today
the only university which offers the three main 3-4.5 years undergraduate
study programs in the area of computer science and systems analysis. An
increasing part is also other educational activities such as a continuing
education programme in computer science for Swedish industry.

As the first institute of technology in Sweden we started 1975 the D-line
(Computer Science and Technology - ” Datateknik-linjen”) as a four-year (now
converting to 4.5 years) programme leading to a Master of Engineering. It was
the first full and specialized programme in computer science, specialized on
software and hardware. The programme was introduced 1982 at all other
Swedish institutes of technology.

Many persons at IDA made substantial contributions during the development
of the D-line and about 25% of the courses are given by IDA. The expansion of
staff and graduate students at IDA during the period 1980 - 1985 is to a large
extent a result from recruiting students graduated from the D-line. The
number of students accepted annually to the line has grown from 30 students
the first year to 120 students.

A new computer science programme, the C-line (Computer Science -
” Datavetenskapliga linjen”) was started in 1982. It is a four-year programme
leading to a Master of Science degree. The number of students accepted
annually is 30. The programme is also given at Uppsala and Umeå Universities.
This new programme is at Linköping in the school of engineering, but differs
from ordinary engineering curricula (such as electrical engineering, or
mechanical engineering) in some significant ways:

= significantly more discrete mathematics and logics, partly gained by
reduction of the calculus courses

= LISP as the first programming language

= relevant humanities, such as psychology and linguistics, are significant
parts of the curriculum, and are introduced as basic courses during the first
years

= courses in theoretical branches of computer science

= courses in AI and AI-oriented subjects

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

9

The major part of the C-line was developed by persons from IDA and most
courses are given by us. It is quite clear that these students develop a different
’culture’ , and in particular a more solid basis for graduate research in computer
science, than what students in our other lines do. While certainly our other
lines will continue to be of very high importance, the computer science line has
provided a significant addition.

The D-line will from last year pass through some changes. The new base with
discrete mathematics, logics and to start programming with LISP instead of
Pascal will be introduced there. An advantage is that the students from the C-
and D-lines get the same basis and we expect a large number of students from
the D-line to be better prepared to specialize their studies in both more
theoretical computer science areas and in artificial intelligence. In the D-line
there is also a specialization for telematics, relying partly on our research in
interactive systems and office systems.

The set of courses that are available in the other programmes has been
extended, and many of the courses have been improved. Technically, this has
often been done by making new courses from the computer science curriculum
available to other lines as well.

The mechanical engineering programme has been extended with a new
specialization that combines mechanical and computer engineering. We believe
that especially research in artificial intelligence will be significant within that
specialization.

The School of humanities and sciences offers since 1977 a three-year
programme in System analysis. The number of students accepted annually is
60. The programme is given at several other Swedish universities and colleges
as well.

This programme aims at professional activities of design, evaluation and
implementation of computer-based information systems. Because of that,
ADP-systems analysis dominates the programme. Nevertheless great
importance has been attached to other subjects in order to give the programme
the necessary breadth and also to ensure that the students will become aware
of the complexity of the community where computers can be used. IDA is
responsible for the major part of courses in the curriculum.

1.3.3 C ontinued education for Swedish Industry

Our programme for ” continued education” of engineers in computer science is
rapidly expanding. The programme was developed in cooperation with a
coalition of Swedish engineering industry (Oktogonen). The aim is to renew the
knowledge basis in computer science for engineers working with programming.
Often they are hardware-oriented engineers. Several are leaders for groups and
sections in the organization. Responsible for the programme from IDA is
Anders Haraldsson.

10 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

The courses are given as academic courses and give academic credits after
normal examination. They are organized for half-times studies and are given in
such way that the participants are free for studies 2 days a week with one
full-day teaching and one day for reading and exercises of their own.

The programme consists of a base-part Computer Science 20 points with the
following courses:

= Discrete Mathematics 6 points (corresponding to 12 weeks half-time studies)
= Data Structures and Algorithms 4 points
= Principles of Programming and Programming Languages, 10 points

and two additional parts, each approx 10 points

= Programming in LISP and Prolog, 5 points
= Artificial intelligence, 5 points

= Distributed Systems, 4 points
= Computer Network, 3 points
= Operating System, 2 points
= Databases, 2 points

Thirteen course programmes, varying in size up to 28 points, have been given
during 1987 with Ericsson Telecom, Ericsson Information Systems, ASEA,
Saab Scania, Ellemtel and Ericsson Radio Systems as major participants.

1.3.4 O ther program m es

Among other educational activities we can mention a 25 points programme
given in the area of Al/expert systems in the form of a knowledge engineering
training programme, which covers the theoretical basis needed in that area.
The programme wets developed 1986 in connection with the knowledge transfer
program, KTP, (where also practical issues in knowledge engineering are
covered). Participants have been both external from industry (Volvo, Saab
Scania and Asea Atom) and KTP-members (Asea and Philips).

The programme consists of the following courses:

= Discrete mathematics
= Logics
= AI programming languages (LISP Prolog)
= AI cognitive structures
= AI knowledge representation
= Expert systems
= Project work with an expert system tool.

During 1987/88 the programme is given directly for ASEA Brown Boveri in
Västerås, administred by the local college.

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

11

A Swedish International University (SIU), giving Master of Science
Programmes, will start operation in 1988. Several Swedish universities will set
up special Master’s programmes using the English language as medium of
instruction. Responsible for the initial work with the SIU is Harold Lawson at
IDA, who is on leave for a position at the Swedish Board of Universities and
Colleges (UHÄ).

Linköping University and IDA will offer in SIU a Master’s programme in
Computer Science - Knowledge Engineering. The programme will be similar to
the 25 points program mentioned above. The plan is to start during 1989.

1.3.5 O rganization

The undergraduate education at IDA is organized as follows:

The Committee for Undergraduate Education (IDUN - IDA’s
undervisningsnämnd), headed by Anders Haraldsson, is responsible for the
contents of courses given by the department and the planning of teachers for
the courses. There are representatives from the student unions in the board.

The department is responsible for the subject areas computer science
(datalogi), telecommunication and computer systems (telesystem) and
administrative data processing (administrativ databehandling).

There is a responsible director of undergraduate studies (studierektor) for each
subject area. The computer science area is further divided into subareas. The
directors are

Anders Haraldsson, computer science
Mikael Patel, telecommunication and computer systems, system programming
Arne Jönsson, artificial intelligence
Mats Wiren, natural language processing
Rolf Karlsson, theoretical computer science
Lise-Lotte Raunio, administrative data processing

The directors and many of the courses belong closely to a research laboratory
and the division of areas of responsibilities reflects to a great extent our
laboratory organization.

Appendix C lists the courses given during the academic year 1986/87, teaching
personal and computer facilities for undergraduate education.

1.4 Knowledge Transfer Activities.

A research department produces and exchanges new knowledge. In order to
flourish, it must itself produce new results, and also participate in the
international ” barter trade” for research results. The useful outcome of those

12 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

activities, from the point of view of the taxpayers and the sponsoring agencies,
is when the accumulated knowledge is transferred to practical use. We use the
term ” knowledge transfer activities” collectively for the various ways of
transferring accumulated research knowledge.

1.4.1 K now ledge Transfer Program to industry.

There is an increasing awareness in Swedish industry about the need for
continuing education, and for transferring new research results directly to
corporations. IDA:s activities in this area were reported in section 1.3.3.

An important task for a university department is to disseminate knowledge
into the surrounding society, public sector, trade and industry. This means
that the research organization should serve as a source of competence, bringing
together and distributing not only its own results but also importing and
collecting state-of-the-art information from the international research
community.

The main channel for effectuating this task is obviously the knowledge transfer
that results when people trained in undergraduate and graduate study
programs enter working positions outside the university. Less efficient but
equally important is the spreading of results through written reports and oral
presentations by active researchers. A third way of achieving technology
transfer is through cooperative work in joint projects.

In our department we have actively pursued these strategies, e.g. by issuing a
special series of reports summarizing important results in central research areas
specifically directed towards industry, by arranging and participating in
tutorial conferences, (recent tutorials include Artificial Intelligence, Software
Development Environments, Prolog Programming Environments, A I and
Expert Systems, Advanced Human-Computer Interaction), by developing
continuing education programs for industry and by direct consultations and
cooperation in applied projects.

However, we felt that in many cases these methods were too slow or to
restricted in order to achieve an effective technology transfer in rapidly
developing areas of strategic importance for industry. Thus we initiated some
years ago a discussion with industry about this problem which led to the
decision to start a special knowledge transfer program, KTP, in 1984.

The goal of this program is to ’inject’ competence derived from research into
the existing industrial organization. The method is that typically two persons,
located on a middle level in the organization, come to our department for a
period of one or a few years, in order to learn new technology, and return to
their organization after that time. The participating company also pays a
yearly contribution that helps pay for researchers (particularly guest lecturers)
and equipment.

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

13

Since the start in 1984 six companies have joined the programme, namely in
the order of the time for their affiliation: S-E-Banken, Ericsson, ASEA,
Alfa-Laval, Philips and Sandvik Coromant. All these are large multi-national
manufacturing companies, with the exception of S-E-Banken, which is a major
Swedish bank.

The programme has a budget of its own, but participating individuals are
associated with one of the research laboratories in the department. Each
participant is assigned a faculty supervisor and one graduate student, who is
supposed to work closely together with the participant. Courses and other
training activities are organized and coordinated at the department level.

1.4.2 K T P as a knowledge engineer tra in ing program m e

The major area of interest for the companies participating in the knowledge
transfer programme has been AI and expert systems. One ambition is to
provide a reasonable training in knowledge engineering and expert systems
development for people from industry. It is our experience that a one year
combination of a half time course programme and about half time participation
in applied work on expert systems development provide a good basis for
continued undertakings in this area.

Our knowledge engineer training programme tries to fill the gap between
commercially available tutorials including at best a course programme for a
number of days or a few weeks, and the academic 4 year computer science
curriculums in the area. We thus offer, in addition to the KTP project
participation with apprenticeship in research, training projects and tools
evaluation activities, a one year half time course programme including:

- Introduction to AI and expert systems
- Discrete mathematics
- Logic
- AI programming systems
- AI - cognitive processes
- AI - knowledge representation
- Expert systems methodology and tools

In addition to being part of KTP, this programme is also offered either in
Linköping for participants from different companies (who spend 3 days in
Linköping every other week) or for a full group of 20-30 participants from a
single company. In this case most of the training is given on site.

1.4.3 Experiences and plans for further activities

As far as we can judge the knowledge transfer programme has become a
success. However, there are also aspects which have turned out to be more
problematic than we anticipated.

14 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

Before the programme was started, we analyzed the experiences of previous
efforts to work together with industry trying to achieve an effective technology
transfer. It seemed that a crucial problem in many cases had been the tendency
for industry participants to give a higher priority to short-term obligations
than to research-related work. This often gave as a result that projects did not
achieve a critical mass of activity and thus were felt as a waste of time by
participants from both sides.

To handle this problem we decided to concentrate our knowledge transfer
activities to a small number of partners, who showed a definite commitment to
the cooperation, e.g. by allocating a substantial amount of financial support to
the programme. However, it still seems that the problem of allocating
personnel at an appropriate competence level to programme participation
delayed the start of activities in many cases.

Most companies have chosen to work with two KTP participants. Typically
one of them is a more experienced person with a PhD (although not in
computer science) and an established position in company. The other person is
often younger and with a good background in computer science. The period of
participation for a person tends to be about one year on a half time basis,
visiting Linköping 2-3 days each week. Courses and other KTP activities are
concentrated to certain days during a week and thus planned to meet the
needs of part time visitors.

The time for active participation in Linköping varies between one and three
years for participating companies. For companies that have completed the
knowledge transfer programme we offer a less expensive associated
membership, which does not include active project work in the department but
cooperation in various forms. Similar agreements on joint efforts have also been
made with Volvo, Pharmacia and Ericsson Telecom.

We are presently working on a further development of the kind of activities
offered within an associated membership in KTP, for instance in connection
with LAIC and CENIIT as described below. It is a general experience that a
great effort has to be spent during the initial phases of cooperation between
the university and a particular company. In the successful cases such a
cooperation is rapidly evolving into a situation, where the infrastructure of
communication and personal contacts exist, and where a mutual understanding
improves the effectiveness of the joint activities. The KTP programme has
served well to establish a foundation of such contacts between our department
and a number of companies.

1.4.4 LAIC - Linköping AI Consortium

Current efforts also include the establishment of LAIC, Linköping AI
Consortium, which incorporates the cooperative research programme in AI
with the Defence Research Institute and participation in the AI subproject of
the Prometheus Eureka project together with the Swedish car manufacturers

EDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

15

Volvo and Saab, as mentioned above.

One major theme for R&D efforts within LAIC is plan-guided, systems, as
described in chapter 10 of this report, with applications for autonomous
vehicles or for automated manufacturing cells. Examples of other areas to be
pursued within LAIC are geographical information systems and systems
supporting strategical decision making.

1.4.5 C E N IIT - The Center for Industrial In form ation T echnology

During 1988 a special competence center in industrial information technology
will be formed at Linköping University, with the intension to improve the
possibilites to utilize advanced information technology in industrial processes
and products. Researchers from different areas and departments will work
together in projects within this center. We believe that this will provide
excellent opportunities to further develop and integrate knowledge engineering
methodologies with front-line domain expertise in areas such as computer-aided
engineering, robotics, process control and office information systems.

The following areas is planned to be pursued as our department’s contribution
to CENIIT:

• Plan-guided systems for autonomous vehicles and computer-integrated
manufacturing. This area will for the time being be covered by existing
projects in IDA’s laboratories and additional CENITT funding is not
claimed. (Erik Sandewall)

• Geometrical algorithms. The purpose of this activity is to develop
competence in the area efficient algorithms for three-dimensional
geometrical problems and the planning of movements, in an active
communication with applied projects in other departments. (Rolf
Karlsson)

• Engineering databases. This area covers issues related to database
technology, with a special emphasis on databases to be used in support of
design, development and maintenance of (large) technical systems. Here is
included design support for as well mechanical engineering as software or
knowledge engineering. Of special interest are object-oriented databases,
extensions to first-normal-form relational databases, and integration with
information retrieval technologies for document management. Activities
involve several laboratories in IDA. (Area coordinator: Sture Hägglund)

• User Interface Management Systems. This area covers certain aspects of
human-computer interaction, with a special emphasis on tools for design
and management of user-computer dialogues. During the planning period,
Ralph D. Hill from ECRC in Munich has visited IDA several times for
discussions. Possible activities relate to several labs in IDA. (Area
coordinator: Sture Hägglund)

16 IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

1.4.6 Sp inoff Com panies.

ID A ’s policy is to accept industry contracts for knowledge transfer, i.e. for
work where the customer wants (his employees) to acquire knowledge in some
area, but not to accept consulting jobs or other projects where the customer
wants software, hardware, or designs to be delivered. In such cases we refer to
existing spinoff companies, and we may also encourage IDA employees to form
new spin-off companies in order to catch an opportunity.

The significance of university spinoff companies for industrial growth is well
known. One part of the previous artificial intelligence laboratory split off a few
years ago and formed Epitec AB. The company has presently about 25
employees and is active in development of tools for knowledge systems
development, in development of applications for clients in industry, in
consulting and in training of knowledge engineers.

As an even earlier spinoff, Jerker Wilander and Kenth Ericson founded the
company Softlab AB in Linköping in 1981. Softlab is working in the areas of
compiler design and advanced tools for software development The company is
growing steadily and is also expanding its scope of applications.

Other spinoffs, primarily from CADLAB, are Grafitec AB, founded by Michael
Pääbo and active in business graphics, and DIGSIM led by Bengt Magnhagen.

Some other spinoff companies in Linköping have required a considerable
number of software specialists, although their main business is something else.
In particular, Context Vision (formed in 1983, for building picture processing
systems) recruited heavily from our department. There are also a number of
software companies founded by former students, such as e.g. Programsystem
AB (programming support environments, user interface management systems,
datacom), having close contacts with the department and active in transferring
software originating from research projects into commercial products. The
intensive communication with the many developing high tech software
companies around the university is a vitalizing force for the department.

1.5 International Cooperation.

In computer science, like in most other disciplines, the most important
international cooperation is the informal one. It takes place through personal
contacts and visits, and at international conferences.

In addition, IDA or specific labs within IDA also participate in a number of
organized international projects, namely:

- the SYDPOL programme, a Scandinavian project on SYstems Development
and Profession Oriented Languages, together with the universities in Aarhus
(Denmark) and Oslo (Norway). Formal activities in the programme are
presently at a lower level than a few years ago, but the programme has

IDA ANNUAL RESEARCH REPORT 1987
Introduction and Overview

17

resulted in ongoing contacts with for instance visiting researchers and students.

- the COST-13 project, a European project on Computer Architectures for
A.I., together with the Free University of Brussels (Belgium), the University of
Rome ’La Sapienza’ (Italy), and Delphi S.A. in Pisa (Italy).

- the PROMETHEUS project, which is part of the European EUREKA
programme, and which has now gone through its planning phase. Prometheus
is concerned with future traffic and automobile-systems and is a joint effort by
the European car manufacturers. Erik Sandewall is the European coordinator
for the AI subproject, PROART.

IDA also has extensive contacts with university and industrial research
laboratories, primarily in USA but also in Europe and to a certain degree also
in the Far East. For instance, IDA regularly send students to the Xerox Palo
Alto Research Center in USA for periods of 3-6 months.

1.6 Research Facilities.

IDA moved into a new functional building in 1985. However, one third of the
department’s personnel had to be left behind in another building. Some
laboratory space in the new building also had to be used as offices. We foresee
serious problems with office and laboratory space in the near future.

In May, 1986, IDA was awarded a grant from Rank-Xerox consisting of 18
Xerox workstations, plus additional file servers, print servers, and other
computer equipment including software. This grant covered the needs
expressed in an invited application and it was one of the three large grants
awarded in Europe. It represents a valuable contribution to our activities,
including the possibilities to provide advanced workstations for the
undergraduate and masters-level education. The total number of Xerox
workstations in IDA is presently 32.

During the year we have also expanded the installed base of SUN-3
workstations to 15, with a further expansion planned in the near future.

Although we have a relatively favourable situation with respect to computer
equipment at present, there are still some unresolved problems. The
DEC-system 2060, which we use as a ’background’ computer resource and as a
tool for office services, has far exceeded its technical and economical life-length
and must be replaced as soon as possible.

More details on equipment are given in appendix D.

18 IDA ANNUAL RESEARCH R E P O R T 1987
Introduction and Overview

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

19

2 .

ACTLAB
The Laboratory for

Complexity of Algorithms

A ndrzej Lingas

2.1 Introduction.

The Laboratory for Complexity of Algorithms is concerned with the design and
analysis of efficient algorithms and data structures for combinatorial and
geometric problems arising in computer science and the study of the inherent
complexity of these problems in simple models of computation. Members of the
laboratory believe that work on algorithm and data structures efficiency is no
less important than the development of new programming methodologies, or
new faster computers.

The laboratory is a continuation of the so called Group for Complexity of
Algorithms which in turn originated from a part of the former Group for
Theoretical Computer Science in the spring of 1985. Since then, the members
of the laboratory have published more than twenty papers in international
journals and conference proceedings on computer science. In 1987, the
laboratory acquired a new graduate student, Sven Moen, whereas its first
graduate student, Christos Levcopoulos, defended his Ph. D. thesis entitled
“ Heuristics for Minimum Decompositions of Polygons” .

The third year of the laboratory (group) research was mainly spent on a
project called Efficient Algorithms and Data Structures for Geometric and
Graph Problems funded by STUF and STU. The objectives of the project fall
into three mutually interrelated categories of data structures, computational
geometry and graph algorithms. They are structured as follows:

The work in the Laboratory for Complexity of Algorithms is mainly supported by STU, The
Swedish Board for Technical Development.

20 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

Computational Geometry:

Computational Geometry on a Grid
Theoretical Aspects of Robotics: Traversing a Maze with a Robot Arm
Heuristics for Minimum Decomposition of Planar Figures
Voronoi Diagrams with Barriers and Minimum Weight Triangulation
Recognizing Polygons

Data Structures:

Data Structures Requiring Minimal Changes per Update
Inherent Cost for Maintaining Data Structures
Heuristics for Optimal Search Trees

Graph Algorithms:

Fast Parallel and Sequential Algorithms for Subgraph Isomorphism and
Homeomorphism
Efficient Solutions for Weighted Graph Problems

The considered problems have applications in VLSI chip design and
fabrication, graphics, robotics, numerical analysis (in particular, terrain
interpolation), chemistry and optimization.
In 1987, several new problems within the above project have been attacked by
the laboratory members. Here we mention only the most important: the design
of search trees with constant cost of structural changes per update (see Section
4.3.2), and the design of superfast parallel algorithms for subgraph
homeomorphism, disjoint connecting paths and other related problems
restricted to non-trivial graph families (Section 4.3.3).
The new student, Sven Moen, has started research on algorithmic aspects of
text editing and maintained his interest in efficiently drawing graphs (he
devoted his “ examensarbete” to the latter topic). The other student, Ola
Petersson, together with dr. Christos Levcopoulos has obtained interesting
results on the problem of dividing a rectangle into a minimum number of
squares related to electrical circuit design (see Section 4.3.1).

In addition to the research, the laboratory undertakes important consulting
and educational tasks on aspects of algorithm analysis and complexity theory
within the department, and is open to cooperate with other laboratories and
departments. For instance, the laboratory members have recently become
interested in the problem of interpolating two-dimensional surfaces in
three-dimensional space with triangular nets raised by the group of dr.
Fahlander at the Department of Electrical Engineering.

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

21

2.2 Laboratory Members

Laboratory leadership : Andrzej Lingas, Ph.D.

Bodil Mattsson-Kihlstrom, seer.

Supervisors:

Rolf Karlsson, Ph.D.

Christos Levcopoulos, Ph.D.

Graduate Students:

Sven Moen

Ola Petersson

2.3 Current Research

2.3.1 C om putational G eom etry

C om putational G eom etry on a Grid (Rolf Karlsson)

Computational geometry studies the computational complexity of finite
geometric problems. This research focuses on problems where geometric objects
are defined by edges between points taken from multi-dimensional grids.
Typical problems we consider are: finding closest points, determining connected
components, and computing all line segment intersections. The solutions are
based on an efficient point location algorithm or use a new data structure, the
interval trie, when sweeping the plane with a line. For problems in higher
dimensions, we use a divide-and-conquer technique until the dimension is
reduced to 2 (or 3) where the sweep-line algorithms apply. The efficient
methods we present should be useful within computer graphics and VLSI. For
instance, when implementing geometry routines in computer graphics the
domain is a moderate sized raster. Our attention is concentrated to orthogonal
objects (the edges are parallel to one of the coordinate axes). VLSI technology,
for example, often uses only a fixed number of orientations for the object
boundaries and wires. Much of this research is joint work with Dr. Mark
Overmars of Utrecht University. Some of the results have been published and
some are submitted for publication.

Theoretical A spects o f R obotics (Rolf Karlsson)

Motion planning, which tries to move an object from one position to another,
while avoiding obstacles, has attracted much interest in recent years. In this
preliminary investigation we consider the problem of efficiently propagating a
linkage through an orthogonal maze. The linkage moves strictly in two
dimensions, no crossing is allowed. Given the layout of a 2-dimensional maze

22 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

with corridors of width w, we express the time complexity of moving a robot
arm (linkage) of k equal-length links through the maze using a basic 2-joint
motion. We give an algorithm which pushes a linkage with link length I=
2sqrt(2) w - epsilon around one corner in O(log(w/epsilon)) time, combine this
with the complexity of moving along the corridors, and generalize it to apply
for maze routes with corridors of different widths. The derived traversal
complexity we can use to efficiently find a shortest route.

H euristics for M inim um D ecom positions o f Polygons
(Christos Levcopoulos)

The above heading is also the title of Levcopoulos’s thesis published and
defended in 1987. The following problems of minimally decomposing polygons
were considered: (1) decompose a polygon into a minimum number of
rectangles, (2) partition a polygon into rectangles by inserting edges of
minimum total length and (3) partition a polygon into triangles by inserting a
maximal set of non intersecting diagonals, such that their total length is
minimized.

The first problem has an application in fabricating masks for integrated
circuits. Tight upper and lower bounds were shown for the maximal number of
rectangles which may be required to cover any polygon. Also, a fast heuristic
which achieves these upper bounds was presented. Further refinements of the
results appearing in the thesis were achieved during 1987, and were already
published.

The second problem has an application in VLSI design, in dividing routing
regions into channels. Several heuristics were proposed in the thesis which
produce solutions within moderate constant factors from the optimum. Also,
by employing an unusual divide-and-conquer method, the time performance of
a known heuristic was substantially reduced.

The third problem has an application in numerical analysis and in constructing
optimal search trees. Here, the contribution of the thesis concerns an analysis
of the so called greedy triangulation. It is one of the most known heuristics for
minimum weight (length) triangulation of planar figures (the latter has
applications in interpolation of two-argument functions and finite element
method). It consists in iterating the following step: insert a shortest diagonal of
the input figure that does not intersect those already in the plane. In the
thesis, it has been shown that there is a constant c such that for any polygon,
with or without holes, with w concave vertices, the length of any greedy
triangulation of the polygon is no longer than c(w +l) times the length of a
minimum weight triangulation of the polygon. An independent proof of this
fact for convex polygons has been given by Andrzej Lingas. On the other hand,
it has been shown that for every integer n greater than 3, there exists a set S
of n points in the plane such that the greedy triangulation of S is Omega
(sqrt(n)) times longer than the minimum weight triangulation, improving the
previously known lower bound substantially. Finally, a simple linear-time
algorithm for computing the greedy triangulation of the so called semi-circular

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

23

polygons has been presented in the thesis. The above results have been partly
published.

V oron o i diagram s w ith barriers, the shortest diagonal p rob lem and
m inim um w eight triangulation (Andrzej Lingas)

Planar figures which are called planar straight-line graphs (PSLG for short)
are considered. A PSLG G is a pair (V,E) such that V is a set of points in the
plane and E is a set of non-intersecting, open straight-line segments whose
endpoints are in V. The points in V are called vertices of G, whereas the
segments in E are called edges of G. If G is a simple cycle, it is just a (simple)
polygon. If G has no edges, it is a planar point set. A diagonal of G is an open
straight-line segment that neither intersects any edge of G nor includes any
vertex of G and that has its endpoints in V. A triangulation of G is a maximal
set of non-intersecting diagonals of G. The concept of the greedy triangulation
(see the previous section) can be easily generalized to include any PSLG.

(1) To solve the problem of finding a shortest diagonal of a PSLG, a new
generalization of Voronoi diagrams of planar finite point sets to include
diagrams of PSLG’s has been used. The Voronoi diagram with barriers of G
(Vorb(G) for short) is a net that together with G partition the plane into the
regions P(v), v in V, such that a point p is inside the region P(v) if and only if
(p,v) is the shortest straight-line segment connecting p with a vertex in V that
does not intersect any edge in E. Wang and Shubert independently considered
such diagrams and showed that they can be constructed in time O (n log n)

A simple characterization of shortest diagonals of G in terms of Vorb(G) has
been provided. This combined with the algorithm of Wang and Shubert yields
0 (n log n) time solution to the shortest diagonal problem.

Our method of finding a shortest diagonal of a PSLG implies that the greedy
triangulation of a planar point set or any PSLG can be computed in time
0(n**2 log n) and space O(n). The most efficient known algorithm for
computing the greedy triangulation of a planar point set which is due to
Gilbert takes 0(n**2 log n)-time and 0(n**2) space. Instead of computing the
Voronoi diagram with barriers of the current PSLG from scratch every time
after inserting a shortest diagonal, the current diagram can be adequately
updated. Although this approach does not yield better worst-case complexity
bounds, it is provably much more efficient in the average.

Further important applications of Voronoi diagrams with barriers can be found
in planar nearest visible neighbor, shortest-path, minimum spanning tree and
matching problems in the presence of barriers.

(2) Complexity analysis of another, polynomial-time heuristic for minimum
weight triangulation of planar point sets has been improved. The heuristic first
constructs a polygon whose vertices are all points from the input set. Next, a
minimum weight triangulation of the polygon is found by dynamic
programming. The union of the polygon triangulation with the polygon yields a
triangulation of the input n-point set. A non-trivial upper bound on the worst
case performance of the heuristic in terms of n and another parameter has been

24 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

derived. Under the assumption of uniform point distribution it has been
observed that the heuristic yields a solution within the factor of O (log n) from
the optimum almost certainly, and the expected length of the resulting
triangulation is of the same order as that of a minimum length triangulation.

The obtained results have been already either published or submitted for
publication.

R ecognizing Polygons (Andrzej Lingas)

The joint work with Dr. Dean of Northern Bell Research and Dr. J. Sack of
Carleton University on the so called pseudo star-shaped polygons started in
1986 has been continued. A polygon is pseudo star-shaped if there is a point
from which we can see/eavesdrop its whole interior provided that it is possible
to see/hear through its single edges. The class of pseudo star-shaped polygons
generalizes and unifies the well known classes of convex, monotone and pseudo
star-shaped polygons. An algorithm for constructing all regions from which the
polygon is pseudo star-shaped running in quadratic time has been improved.
On the other hand, a corresponding quadratic lower time-bound has been
provided. The above results have been already accepted for publication.

2.3.2 D ata Structures

D ata Structures Requiring M inim al Changes per U pdate
(Christos Levcopoulos)

A basic set of operations on data consists of so called dictionary operations
and nearest neighbor queries. These can be described as follows. Given is a
set of real (or integer) keys S. The keys in S have to be stored such that for
any query number q, the key in S which is closest to q can be efficiently
computed. Such queries can be interleaved with operations which delete or
insert keys into the set S. The aim is to minimize the time required for
answering queries and performing updates (insertions and deletions), while also
keeping the size of the data structure small. Another aim has been to minimize
the number of changes in the data structure per insertion and deletion, i.e. the
number of memory cells which have to be written on.

A reason to minimize the number of changes is that such data structures can
be applied to implement so-called “ finger” trees, where queries are answered
very quickly in the vicinity of some specified nodes, called “ fingers” . We can
find another application in shared environments (either with many users or
with many processors). In such environments it is possible for many users (or,
processors) to read the same file simultaneously, but the file can be changed by
at most one user at a time. Therefore it is desirable to minimize the number of
changes required.

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

25

It has been an open problem whether we can achieve a worst-case , constant
number of changes. Together with Dr. Mark Overmars, expert in dynamic data
structures, we discovered a way to show that this can be achieved. The
starting idea is to use a balanced binary tree, where every node corresponds to
a sequence of at most O (log n log n) keys. The proof is presently fairly
complicated, concerning both implementation details and combinatorics.
However, we have ideas for simplifying the method, and we hope to find simple
and practical algorithms for this problem.

Inherent C ost for M aintaining D ata Structures (Rolf Karlsson)

This research is two fold. The first part looks at designing a realistic lower
bound model suitable for problems that use a bounded domain. We have
developed a segment graph model , where a single-source directed graph
represents an algorithm solving the problem under consideration. Using
versions of this model, we have proved lower bounds for the dictionary
(support insert, delete and search) and nearest neighbor (support insert,
delete and find closest) problems. These results have been published in the
proceedings of international conferences. Current research tries to further unify
these problem-oriented techniques, and to make the lower bound model we
have introduced more general. In part, this is joint research with Dr. Ian
Munro, University of Waterloo, and Dr. Ed Robertson, Indiana University.

Another problem we study is proving an adversary-based Omega (klogk) lower
bound for finding the kth smallest element in a large heap. This would then
prove a known algorithm as optimal. This research is conducted together with
Dr. Thomas Strothotte, Stuttgart University.

Optim al Search Trees and Optim al Partitions o f P olygons

(Christos Levcopoulos, Andrzej Lingas)

The research on optimal binary search trees with zero key access probabilities
(with applications eg. in point location), started in 86, has been continued. It
has been shown that for an arbitrarily small positive constant e there exists a
linear-time heuristic for such search trees, producing solutions within the factor
of 1+e from the optimum. Also, by using an interesting amortization
argument, a simple and practical, linear-time implementation of a known
greedy heuristic for such trees has been given. The above results have been
obtained in a more general setting, namely in the context of minimum length
triangulations of so-called semi-circular polygons. They have been carried over
to binary search trees by proving a duality between minimum weight partitions
of infinitely-flat semi-circular polygons into m-gons and optimal (m-1)-way
search trees. This duality has also helped to obtain better heuristics or
algorithms for minimum length partitions of polygons using known algorithms
for optimal search trees. In particular, it has been shown that a minimum
length partition of a simple polygon into m-gons can be found in time
O(n**δm**2), and if the polygon is convex, in time O(n**δlogm). The above

26 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

results have been partly obtained in cooperation with Dr. J. Sack, and they
have been already published in conference proceedings (ICALP) and in a
journal. An extended version of the conference paper paper has been submitted
to a journal.

2.3.3 Parallel and Sequential Graph Algorithm s

(Andrzej Lingas)

The problems of subgraph isomorphism and subgraph homeomorphism belong
to the most general NP-complete graph problems and they have many
applications in computer science. The former problem consists in determining
whether a graph is isomorphic to a subgraph of another graph. The latter
problem is, given two graphs, decide whether a subgraph of the second graph is
homeomorphic to the first graph, i.e. whether there is a subgraph of the second
graph that becomes isomorphic to the first graph after contracting some of its
paths with inner vertices of degree two to single edges. If the first graph is
fixed, the subgraph isomorphism can be trivially solved in polynomial time
whereas the status of the fixed subgraph homeomorphism problem is open in
general. The fixed subgraph homeomorphism problem is closely related to the
following problem of k disjoint connecting paths: Given k pairs of vertices of a
graph, find k mutually vertex disjoint paths respectively connecting paired
vertices. Note that the latter problem can be seen as a generalization of several
routing problems including VLSI routing. We have shown that the following
restrictions of the above problems are in the class NC, i.e. can be solved by
parallel algorithms running in poly-log time using a polynomial number of
processors:

i) The subgraph isomorphism problem for two-connected outerplanar graphs
(the first example of a restriction of subgraph isomorphism to non-trivial graph
family shown to be in NC).

ii) The fixed subgraph homeomorphism problem, and the related problems of k
disjoint connecting paths and of graph recognition, all restricted to to any
proper sub-family of planar graphs closed under the so called operation of
minor-taking.
The above results have been obtained in cooperation with Prof. A.
Proskurowski of University of Oregon. On the other hand, the first known
polynomial-time algorithm for subgraph isomorphism restricted to
two-connected series-parallel graphs has been designed in a cooperation with
Prof. M. Syslo of Wroclaw University. Series-parallel graphs are a popular
model of electrical circuits. Thus, the important problem of deciding whether a
circuit contains a given pattern can be modeled as the subgraph isomorphism
problem for series-parallel graphs. It has been also shown that the subgraph
isomorphism problem for two-connected series-parallel graphs can be solved by
a random parallel algorithm running in poly-log time and using a polynomial
number of processors. The discussed results have been already accepted for
publication.

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

27

2.4 External contacts

Rolf Karlsson: Participated in the 3rd ACM Symposium on Computational
Geometry, Waterloo, Canada, in June. Given seminars at University of Vila
Real, Portugal, and University of Bergen. Finishing two papers with Dr. Mark
Overmars, Rijksuniversiteit Utrecht, The Netherlands, and one paper with Dr.
Ian Munro, Waterloo, Canada. Writing a paper with Dr. Thomas Strothotte,
Stuttgart University, West Germany.

Christos Levcopoulos: Written a paper with Dr. M. Overmars, Rijksuniversiteit
Utrecht, The Netherlands. Presented his common paper with A. Lingas and J.
Sack at the 14th International Colloquium on Automata, Languages and
Programming, Karlsruhe, Germany, and other his paper at the 5th Conference
on Foundations of Software Technology and Theoretical Computer Science,
Pune, India. At the latter conference, he also presented a paper by A. Lingas
and A. Proskurowski.

Andrzej Lingas: during his visit at Department of Computer and Information
Science of University of Oregon, USA, in May, gave a graduate course on
computational geometry and written a paper with Prof. A. Proskurowski. Gave
a seminar at University of British Columbia and participated in the 3rd ACM
Symposium on Computational Geometry, Waterloo, Canada, in June. Finished
a paper and started new research with Prof. J. Sack of Carleton University
who visited IDA in June and August. Presented papers at the 2nd
International Conference on Combinatorial Mathematics and Computing,
Canberra, Australia, in August, at the 13th IFIP Conference on System
Modelling and Optimization, Tokyo, and at International Workshop on
Computational Geometry and Discrete Algorithms, Osaka, Japan, in
September. Also, he gave a seminar at University of Fukuoka, Japan. Written
a paper with Prof. M. Syslo of Wroclaw University who visited IDA in
September. Acted as an opponent and gave a guest seminar at University of
Turku, Finland, in November.

Sven Moen: participated in the 14th International Colloquium on Automata,
Languages and Programming, Karlsruhe, Germany.

Ola Petersson: participated in the 3rd ACM Symposium on Computational
Geometry, Waterloo, Canada, in June.

On a domestic level, the group has maintained contacts through mutual visits
with an active research group (Ferenc Belik, Svante Carlsson, Arne Andersson)
at the Computer Science department, Lund University.

28 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Complexity of Algorithms

Courses for Graduate Students

An important task of the group is to spread the knowledge of algorithm
analysis and complexity theory among graduate students within the
department. The following graduate courses are offered for the academic year
87-88:

Computational Geometry

Analysis and Complexity of Parallel Algorithms

Lower Bounds Techniques

Algorithm Analysis and Complexity Theory

Previously, the following courses were given by the group members:

Algorithm Analysis and Complexity Theory (83,84-85)

Mathematical Aspects of VLSI (84)

Search Structures (85)

Analysis and Complexity of Parallel Algorithms (86)

Amortized Computational Complexity (87)

Computational Geometry (87)

IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

29

3.

AIELAB
The Artificial Intelligence
Environments Laboratory

Erik Tengvald

3.1 Introduction

The laboratory for artificial intelligence environments (AIElab), formed in
1986, is one of the descendants of the original artificial intelligence laboratory
formed in 1981. The AIElab continues the mainstream of the knowledge
representation work initiated at the artificial intelligence laboratory, viz.,
design of programming systems for A.I., supporting applications selected from
Mechanical Engineering .

The research outlook and current projects of AIELAB are based in the
considerable experience gained in the previous knowledge representation work
in AILAB. A major early work is OBS an operations planning system for
turning [Tengvald 84]. This system was based on the object oriented
representation system PAUL [Hein 83].

Most of the research in knowledge representation at the AIELAB is based in
the considerable experimental experience of the OBS/PAUL project. An
experience of maybe highest importance for later work is:

Geometric reasoning steps consume a large amount of computing
resources. If the geometric reasoning steps take too long, the method
of explorative programming [Sandewall 78] breaks down.

Further work by Jalal Maleki [Maleki 86], now at the RKLLAB, and the
experience of other researchers, as for example [Hayes-Roth 83] and [Forbus
87], has validated this our experience.

The work in AIELAB has mainly been supported by STU, The Swedish Board for Technical
Development.

30 IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

Explorative programming is central for building expert systems. Consequently,
our experience indicates that the possibility of constructing expert systems
with a substantial content of geometric reasoning is slim indeed. That is, if you
do not increase the processing power of the hardware. This is precisely the
intended mode of approach chosen in the AIM-project described below.

3.2 Researchers and Project

The AIELAB research interest is on one hand directed towards geometric
reasoning or more precisely on the combination of symbolic and geometric
reasoning. This research interest has been formalized in the artifical
Intelligence for Manufacturing (AIM) project. The objective of the AIM project
is to design an AI-environment able to support expertsystems performing
combined symbolic and geometric reasoning. The AIM project can be seen as a
new experiment in the OBS tradition.

As noted above our previous results and general experience indicate that a
substantial increase of the raw processing power of the hardware is necessary
to make such an AI-environment feasible and usable. Such an increase in
processing power is only possible by the use of parallell programming.

Consequently, AIELAB has parallell programming as another research area.
During this and probably also during the next year, parallell programming is
the area in which most if not all research has and will be concentrated. The
parallell programming research is currently formalized in the freeshape
subproject .

3.2.1 L aboratory m em bers

AILAB members working in the AIM-project (eg. Freeshape subproject) during
1986 has been:

Erik Tengvald
Bernt Nilsson
Leif Finmo
Mikael Svensson
Anders Nyberg
Jonas Wallgren

3.2.2 The A IM project

The characterising trait of the reasoning necessary to solve the OBS problem of
operations planning was the numerous and complex interdependencies between
the geometric and symbolic steps in the reasoning process. Indeed, this
interdependency between geometric and symbolic reasoning steps is in general
a characteristic of the reasoning processes typical for the manufacturing

ID A AN N U AL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

31

industries. Examples are the reasoning performed in, design, process-planning,
and in many cases, robot-planning, jobshop planning and materials selection.

For this reason we have found it useful to coin a new word, geombolic
reasoning, for reasoning processes characterised by such interdependencies
between geometric and symbolic reasoning steps.

The objective of the A IM -project is to design an A l-environm ent in
which it is not only possible but also easy to design expert system s
executing geombolic reasoning processes.

Due to the need of sufficient processing power such an environment has to
reside on a parallel computer. Its overall structure will be (fig 1).

fig 1.

Overall structure of the AIM-environment

In our opinion the symbolic Al-environment is to be structured as extant
AI-environments, like for example KEE, ART and Epitool.

The more programming paradigms the symbolic Al-environment subsystem
supports, the better the geombolic environment will be for designing expert
systems in general and geombolic expert systems in particular. The better
integrated the debugging environments of the respective programming
paradigms are, the better the environment will be for designing expert systems
in general and geombolic expert systems in particular.

The only difference between the symbolic Al-environment subsystem and
extant AI-environments is the tightly integrated geometric modeller contained.
There are a number of interesting human engineering problems in this area,
but as far as we can see no research issues of an implementational nature. The
geometric reasoning language is at most only one more programming paradigm.

32 IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

In our opinion the geometric modeller should be structured as the geometric
modellers of modern CAD-systems. It must be of the solid modelling kind, it
will have to support the constructive solid geometry operations of union,
intersection and relative complement, it will have to support sweep operations,
it must support boundary representations. The more primitive shapes the
modeller subsystem make avaliable, the better the geombolic environment will
be for designing geombolic expert systems.

Here we have interesting research issues of an implementational nature. The
major portion of the computational resources used by an geombolic expert
system will be consumed by the geometric reasoning steps. Consequently, the
geometric modeller must utilise the parallel hardware efficiently.

The basic systemware should supply the implementors of the geometric
modeller and the symbolic Al-environment with the right programming
languages and tools, so the implementation of the higher levels can proceed
speedily. We will return to this question below. For reasons of hardware
economy we consider it necessary to base our software on a machine with a
message passing architecture. It should have sufficient computational and
graphics resources. Our current estimate is that something like an NCUBE/ten
with 256 processing nodes and a graphic I/O-card [NCUBE 85], will be needed
as a base for geombolic Al-environment, when used to design geombolic expert
systems of practical utility for the manufacturing industries.

Today such a machine cost about 5 Mkr, by the middle of the 1990:s, when we
hope to see our research results in practical use, it might cost around 100 kkr.
Then it will be cost effective to place AI-environments for geombolic reasoning
residing on parallel computers of said size, on most of the tables of the
engineers in the manufacturing industries.

3.3 Current research: The freeshape subproject

The software requirements of the symbolic AI-environment are considerable,
symbolic AI-environments are complex systems containing a plethora of detail.
If we were to implement the symbolic AI-environment directly in assembler or
even a systems programming language like C or Occam, our chances of meeting
the project deadline would be slim. Consequently, we must introduce basic
systemware defining an intermediate language higher than the systems
programming languages. We call this basic systemware, the freeshape system,
and the language it defines, the freeshape language.

The basic systemware is called ” freeshape” since it automates the hardware
related implementation tasks and thereby liberates the implementor from
hardware related implementation details.

IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

33

3.3.1 The freeshape Language

The freeshape language is of the ”dataflow” or ”forward reasoning” kind. A
freeshape program can be viewed as a network of processes. The processes
interact by sending values of the links which interconnect them. An example is
a program for computing cos(x)*sin(x) is shown in (fig 2).

fig 2.
A split process copies the value received to it's two outputs. A both process
constructs a pair (a cons) over the two values received. All the other
primitive processes have only one input and output. Some of these expects
an input in the form of a pair, or a list composed of pairs. An example is
multiplication, which expect a pair as input.

The rationale for selecting the ”dataflow” execution mode is simplicity. In
”dataflow” execution the flows of control and of data are inseparable.
Consequently, problems emanating from having the control on one processor
and the corresponing data on another processor are minimized.

The freeshape system maintains a subjective time. All values created by
constructs of the freeshape language are marked with the subjective timepoint
at which the value are created.

The machinery for maintaining this subjective time can be implemented as an
ordered sequence of process queues (fig 3).

fig 3.
The process queues are executed in subjective time order, first the t0
queue, then the t0+ 1 queue, and so on.

Within a process queue there is only a partial order over the process
activations. Two activations are ordered if an only if one of the processes,
directly or indirectly, send a value to the other. Otherwise the activations are

34 IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

considered unordered (concurrent). One process queue correspond directly to a
point in the subjective time.

The process queues and the points in the subjective time they represent are
strictly ordered. This order is projected over to the process activations. Two
activations residing in different process queues are always ordered.

The subjective time makes it easy to introduce a number of interesting
language features. Of these, the most important is probably the resettable
race-free variable.

The freeshape langage supplies the basic type ”variable” and the corresponding
access functions put and get (fig 4).

fig 4.
Put takes a pair as input. The pair is composed of a ”value”, 6, and a
variable set to 3, at the time t0. It sends the variable reset to the received
value in the next point of time t0 + 1. Get takes a variable and sends its
value, 6, in the same point of time in which it was received. Put takes
subjective time to execute, while get takes no subjective time.

if more than one put-process tries to reset one and the same variable at one
and the same point in subjective time, the variable is left unchanged and all
put-processes involved will send exception values. This exception contain a list
of all put-processes involved in the reset-conflict (fig 5).

fig 5.
Two put-processes attempt to reset the same variable, at the same point in
the subjective time. Both send exceptions.

Consequently, the system satisfy the following invariant: Within one point of
the subjective time a variable has one and only one value. As the points of the
subjective time are strictly ordered, the sequence of resets of the variables will
be a function of the program and input at hand.

In other words, the freeshape system is race-free even though it supplies the
user with resetable variables. This has been accomplished without resorting to

ID A AN N U AL RESEARCH RE PO R T 1987
The Artificial Intelligence Environments Laboratory

35

using explicit locks, semaphores, monitors or similar devices.

3.3.2 The freeshape system

The overall design of the freeshape system is as shown in (fig 6). The freeshape
system is implemented in a number of language levels. As one progress up from
the harshshape to the freeshape level, the languages takes over more and more
responsibilities of the programmer.

Freeshape interpreter

Garbage
Collector

Load
Balancer

M em shape interpreter

Tim eshape interpreter

Exception-shape interpreter

Harshshape interpreter

Parallel hardware

fig 6.
Overall design o f the freeshape system

The most primitive of these is the harshshape language. Harshshape is nothing
more than a small set of processtypes handcoded in assembler. The is a
put-process but no subjective time concept. Consequently, the race-freeness of
harshshape programs is the responsibility of the programmer. The harshshape
system is an unfriendly programming system.

On the exception-shape level the machinery for creating exceptions are
supplied. The exceptions are needed in the timeshape level where the above
described subjective time machinery is introduced. At the memshape level the
race-free variable and other race-free memory constructs are defined. The
memshape system is an friendly programming system.

In the memshape subsystem it is possible to comparatively quickly implement
the load balancer and the garbage collector which automates the hardware
related implementation tasks and thereby liberates the implementor from
hardware related implementation details.

A subset of all the memshape processes constitutes the primitives of the
freeshape interpreter. The load balancer and the garbage collector automates
the majority of hardware related implementation tasks. Consequently, we can

36 IDA ANNUAL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

exclude all processes which provide explicit access to the processors, memories
and communication links of the hardware, from the freeshape language. Thus,
the freeshape interpreter acts as a barrier protecting the programmer from the
complex structure of the parallel hardware.

3.4 Research cooperation

We are participating in the COST-13 project number 21, :Advanced Issues in
Knowledge Representation:, together with universities in Brussels (Professor
Luc Steels), Rome (Professor Luigia Aiello), and Pisa (Dr. Maria Simi). The
RKL laboratory at our department is also participating from the Linköping
side. The aim of the cooperation is to study theoretical issues relevant for
massively parallel AI architectures.

We are members of the PARSYM computer mail group and regularly get the
PARSYM digest via the computer mail network. Thus, we can follow what is
happening in the parallel computing community in the US and indeed the
world at large.

In the field of geometric modelling we have had some preliminary discussions
with Professor Tom Lyche at the University of Oslo and with Peter Ta’tray at
the Royal Institute of Technology in Stockholm. It is our intention to intensify
this cooperation as the detailed work on the geometric modeller is undertaken.
We are cooperating with Sandvik Coromant Inc. (Lennart Rohlin) in a
knowledge transfer project.

We are cooperating in the use and programming of parallel hardware with the
National Defence Research Institute here in Linköping and with the section for
numerical analysis here at Linköping University.

The group at the National Defence Research Institute have kindly invited us to
use their 16-node NCUBE system for the implementation of the freeshape
system.

N otes

1. The natural language work initiated at the artificial intelligence laboratory continues
in the laboratory for natural language processing, also formed in 1986. The work on
non-m onotonic logics initially pursued at the artificial intelligence laboratory, was
transferred to the RKLlab on its formation in 1985.

2. AI-environments are also called Knowledge engineering environment, Expert system
shells, et cetera.

3. The freeshape project was formerly called the hideshape project. The rationale for the
freeshape system is to free the programmer from hardware related considerations.
Only incidentally this implies hiding the hardware.

ID A AN N U AL RESEARCH REPORT 1987
The Artificial Intelligence Environments Laboratory

37

References
[Forbus 87] K.D. Forbus, P. Nielsen, B. Faltings, Qualitative kinematics: A

Framework, IJCAI-87 pp 430-435

[Hayes-Roth 83] F. Hayes-Roth, D.A. Waterman, D.B. Lenat, Building expert Systems,
Addison-Wesley Publishing Company Inc. (1983), p. 85 ,end of first
paragraph.

[Hein 83] U. Hein, PAUL - the kernel of a representation and reasoning system for
knowledge engineering tasks. 1983

[Maleki 86] J. Maleki, A Dependency Directed Deduction System Based on the
Constraints Paradigm of Computation, Licentiate Thesis no. 71, Dept, of
Computer and Information Science, Linköping University, 1986.

[NCUBE 85] NCUBE inc. 1815 N.W. 169th Place, Suite 2030, Beaverton, OR 97006,
(503) 629-5088. Sales office: 700 E. Baseline Rd, Suite D -l, Tempe, AZ
85283, (602) 839-7545

[Sandewall 78] Erik Sandewall, Programming in an interactive environment: the ” lisp”
experience, Computing Surveys, Vol 10, No 1. pp 35-71, 1978

[Tengvald 84] E. Tengvald, The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning. 1984

38 IDA ANNUAL RESEARCH R E P O R T 1987
The Artificial Intelligence Environments Laboratory

IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

39

4.

ASLAB
The Application Systems

Laboratory

Sture H ägglund

The research program in the Applications Systems Laboratory (ASLAB) is
oriented towards the study of theory, methods and tools, in particular
knowledge-based approaches, for the development and maintenance of a
non-trivial range of applications software aiming at a significant increase in
productivity, maintainability, understandability and user control. A central
theme for our research is the integration of applied AI techniques and expert
systems methodology with more traditional information technology, in
particular human-computer interaction and database technology. Projects
usually take an experimental approach and emphasize participation in
application-oriented projects with industry and the public sector.

4.1 Summary of current research

Project activities are carried out mainly in three areas e ls summarized below.

K now ledge-based application systems.

This is the major activity in the lab, where we study a number of aspects of
expert systems and knowledge-based techniques. In particular we take the
approach that in the end a typical knowledge-based system will run in an
environment where it will have to interface with traditional software,
databases, conventional terminal interfaces, etc. Thus we believe that an
effective strategy for productive knowledge-based application development has
to start with a consideration of the ultimate delivery environment, and that we
have to work backwards towards the design of facilities needed in the
development environment.

The work in A SLA B is mainly supported by STU, The Swedish Board for Technical
Development.

40 IDA ANNUAL RESEARCH R E PO R T 1987
The Application Systems Laboratory

• Knowledge acquisition and maintenance environments. It is generally
agreed that knowledge representation and knowledge acquisition are key
issues in successful expert systems development. Our approach
emphasizes the importance of making knowledge re-usable, both for
simplified development of generic applications and for the reuse of
problem solving knowledge for e.g. teaching and training. Experimental
projects have been concerned with the acquisition and representation of
knowledge about technical equipment in a maintainable way. Practical
applications were studied together with SATT Control (previously
Alfa-Laval Automation), where we have implemented expert systems for
fault diagnosis including graphical interfaces for visual interaction.
Starting from these experiences current efforts are directed towards the
integration of deep and shallow reasoning models, in particular
” compilation” of heuristics from deep models based on qualitative
reasoning. The motivation for this approach is to improve the re-usability
of knowledge. Partial results have been reported in [Nordin, Weintraub
87]. A model for diagnosing multiple faults using knowledge about
malfunctioning behaviour has also been developed [Hansen 88]. Current
applications concern bio-chemical experiment planning (Pharmacia).

• Knowledge-base migration and generic expert system s architectures.
Continued work has been conducted on knowledge base migration from
environments supporting knowledge acquisition and knowledge
engineering into possibly diverse delivery environments, including
requirements on interfaces to existing systems, such as e.g. databases.
Practical cases include the migration of a knowledge base (The Antibody
Analysis Advisor) from the Lisp-based EMYCIN system into the database
system MUMPS. A summary of experiences in this area was among other
things presented in a licentiate thesis by Sandahl 1987. A related problem
was studied in a master’s thesis project (Andersson), where a
conventional database application (a budget quotation system) was
connected to an expert system in a PC environment.

When studying techniques for building knowledge-based system, it is also
necessary to evaluate to what degree commercial tools and environments
for expert systems development can be used. Our aim is to build as far as
possible on existing tools and undertake tool implementation efforts only
when necessary. For this purpose we are continually surveying available
software on market in cooperation with the knowledge transfer program
(Johansson). However, certain work on the architecture level can not be
avoided and this together with our interest in efficient strategies for
knowledge base migration has forced us to devote some effort to this issue
(Rehmnert).

• Intelligent human-computer interaction. In knowledge-based systems, as
in other kinds of software, the design of the human-computer interface
accounts for a large part of the effort and contributes significantly to the
resulting quality and usefulness of the finished system. This area has been
touched upon in several of the current projects. Intelligent front-ends, i.e.
systems for simplifying the interaction with complicated special-purpose

IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

41

software packages, have been studied e.g. for statistical systems
(Chowdhury, Sisk, Nilsson). A tool for dialogue prototyping has been
developed and tested in a real application together with Philips
(Löwgren). Techniques for visual interaction in trouble-shooting expert
systems have been explored in cooperation with the knowledge transfer
program (Hansen, Eriksson, Johansson). A main theme for our work in
this area is methodology for generation of natural language text and
explanations, with an emphasis on expert critiquing systems (Rankin). An
preliminary experiment has been carried out on a critiquing expert system
for urinary tract infections (Molin, Wiklund). Another area of great
concern is knowledge-based systems for tutoring and training, with initial
experiments in the economical and medical areas respectively (Hansson,
Sokolnicki, Hägglund).

• Knowledge-based, approaches to systems development. Activities in this
subarea have been rather low during the year. Our long-term objective is
to investigate the potential for iterative methodologies for systems
development and how they can be supported in an effective way by
knowledge-based approaches. Prototyping the human-computer interface
is part this problem. Our efforts in this direction was described above and
[Löwgren 88] outlines possible future investigations.

Statistical inform ation systems.

This group, under the leadership of adj. professor Bo Sundgren, has been
studying systems for processing of aggregated information concerning groups of
objects in a universe of discourse. Their work in the area of intelligent aids for
statistics production has involved a preliminary explorative implementation of
certain aspects of a statisticians workstation on a Xerox Lisp machine
(Chowdhury, Sisk et al.). This activity resulted in a licentiate thesis during
1987 and several publications by Chowdhury. Other investigations were
performed by associated researchers in the Mathematics Department, for
instance regarding the study of how administrative data could be reused for
statistical purposes.

The group never reached a critical size. Since Bo Sundgren now has been
granted a professorship in Stockholm, statistical information systems will no
longer be a separate area of study in our group. Shamsul Chowdhury will
however continue his studies in the Medical Informatics Department and
contacts with that research will be maintained. We also expect that the
database aspects of the area will be continued as part of our contributions to
the center for industrial information technology starting summer 1988.

K now ledge transfer and other industry-related activities.

During 1987 KTP participants from ASEA, Alfa-Laval and Philips have been
associated with our lab. This has involved project cooperation and course
activities in expert systems and knowledge engineering. Experiences from
technology transfer in the area of knowledge engineering are reviewed in
[Hägglund 88].

42 IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

Current involvements include cooperation with Volvo PV and with Pharmacia.
We are also actively participating in planning activities for the industrial part
of the Swedish Information Technology Programme, and expect that this will
lead to applied projects from 1988 on. Closely related to this are the planning
of joint activities with the Defense Research Institute on human-computer
interaction in AI-related systems.

Another major channel for industry contacts is Sveriges Mekanförbund, where
we participate in several study groups. We also carry out commissioned study
projects, e.g. in the area of knowledge-based expert systems. These projects
contribute significantly to the funding of our group, in addition to providing an
effective way of communication with people from industry.

Members of the lab have also been very active in presenting our research areas
and results, both on professional conferences and for industrial audiences. We
also participated as one of the main organizers for the conferences on Visual
Languages and on Human-Computer Interaction with 250 participants, August
1987.

More details on these and other activities within the laboratory are given in a
later section.

4.2 A SLAB personnel

The following list presents persons who has participated in ASLAB project
activities during 1987.

Project leadership/thesis supervision:

Sture Hägglund, PhD, acting professor
Gunilla Lingenhult, secr.

Bo Sundgren, PhD, adj. professor (until summer 1987)

Graduate students:

Shamsul Chowdhury, MSc, Tekn.Lic. (continues in medical informatics)
Henrik Eriksson, MSC
Tim Hansen, MSc
Malin Johansson, MSc, (1986/87)
Jonas Löwgren, MSc
Henrik Nordin, MSc, Tekn. Lic. (until summer 1987)
Torbjörn Näslund, BSc
Ivan Rankin, BA
Roland Rehmnert, MSc
Kristian Sandahl, MSc, Tekn. Lic. (at Epitec until summer 1987)
Tomas Sokolnicki, MSc (starting full time 1988)
Tingting Zhang, (starting late fall 1987)
Mikael Weintraub, MSc, guest researcher, (summer 1987)

IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

43

Associated, persons:

This list includes persons who have actively contributed to ASLAB projects
during the last year, either as industry participants in the knowledge transfer
program, as cooperating researchers in other departments or as undergraduate
students doing their master’s thesis projects in the lab. These persons are
normally not paid over the lab budget.

Martin Andersson, master’s thesis work
Hans Block, SCB, Stockholm
Torbjörn Eriksson, master’s thesis work
Stefan Hammar, Philips Elektronikindustrier, Uppsala
Kerstin Johansson, master’s thesis work
Christian Krysander, lecturer
Eva Molin, master’s thesis work
Erling Nordmark, Philips Elektronikindustrier, Järfälla
Pablo Lozan-Villegas, ASEA, Västerås
Toomas Timpka, Dept of medical informatics
Ann-Charlotte Wiklund, master’s thesis work

4.3 Review of major research activities.

Work in the laboratory has previously been organized in two subgroups, one
for Knowledge-based software systems, led by Sture Hägglund and one for
Statistical information systems, led by Bo Sundgren. During the last year
activities have gradually become concentrated on the first of these areas. The
main research themes are discussed below.

From 1988 on the major focus of research will be on studies of engineering
environments for generic knowledge systems. Activities described below all
contribute to these studies.

4.3.1 K now ledge acquisition and m aintenance environm ents

Knowledge acquisition, i.e. the process of understanding, formulating and
representing of the relevant knowledge for solving problems in a particular
area, is generally recognized as a problem of prime importance in knowledge
system development. Our studies focus on methodological support for
understanding the application domain, formulating a specification of the task
to be solved, developing the appropriate knowledge representation and problem
solving strategies, and finally finding an efficient implementation in the
delivery environment.

Our main approach is to support a two-phase development strategy, where
properties of the final delivery environment is studied independently of the
knowledge acquisition and development (KAD) environment. The latter should
provide extensive support for formulating and understanding a given

44 IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

information processing problem, including the possibility to execute the stored
representation of its solution. In a second phase this solution is transformed
into a production version in such a way that external constraints regarding e.g.
efficiency, database size, robustness, interface to other systems, etc are
observed. It is assumed that although this version of a system will allow
considerably less freedom than is provided in the development environment, it
will still be flexible with respect to modifiability and maintainability.

We have so far focussed our interest on knowledge-based advisory systems, in
particular on what we call initial advice consultation systems, i.e.
knowledge-based systems for supporting a non-expert user to make decisions
and solve problems in a given domain. In particular it is necessary to be able
to decide when a case should be handed over to a real expert. We are
especially interested in diagnosis (in a wide sense), e.g. fault finding and
maintenance of technical equipment. But we have also participated in and
collected experiences from applications in medicine and economy.

our work on technical trouble shooting employs an approach which combines
deep and shallow reasoning models. Shallow models expressing local heuristics
in the form of symptom-cause rules have been successful in many cases, but
suffer from the inability to provide good causal explanations or from restricted
potential for reuse in similar but not identical situations. Qualitative reasoning
models on the other hand have better properties from these points of view, but
are harder to express and handle. We try to promote the use of qualitative
models when appropriate, but with fall-back methods employing simple
heuristics or user-controlled strategies as a complement. The idea is to study
families of fault diagnosis systems, rather than starting from scratch in each
new application [Nordin 87]. The use of this approach for detecting multiple
faults is studied by Hansen [Hansen 1988].

In technical applications, the use of graphics and in particular the possibilities
for visual interaction during dialogues in a consultation system for e.g. trouble
shooting is of prime importance. Although we try to avoid spreading out over
too many issues and thus basically intend to rely on standard graphics, we
have found the design of visual interaction techniques to be so intertwined
with the design of the knowledge system interface in general that it deserves
further study.

Several master’s thesis projects (Johansson, Eriksson, Eriksson) have been
initiated in this area. Thus we have developed a graphics editor and a dialogue
interface for the kind of illustrations (schemata, sketches, pictures of
components, etc.) that is typically found in technical manuals. As a practical
application an interface to the Alfa-Laval separator trouble shooting expert
system was developed and integrated with the Epitool-based knowledge
system. In an additional project this system was directly connected to a CAD
system of the type used at Alfa-Laval, so that pictorial information could be
directly downloaded into the trouble shooting system (Eriksson).

IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

45

The visual interaction system is based on hierarchically organized composite
graphic objects, where each component at a given level can be presented in
different ways, views, e.g. as a piece of the composite object, as an icon, a
(photographic) picture, or as a composite object at a lower level. The system
allows the user during a dialogue to refer to a certain component by pointing
as an alternative to naming, and can also highlight current components as an
aid for the user to identify a specific object referenced by the system. Pictures
and schemata are entered with the help of the graphics editor, the standard
bitmap editor, by scanning from a paper representation, or directly from the
CAD system.

4.3.2 K now ledge-base m igration and generic expert system s

Historically expert systems have dealt with hard problems which could not
readily be solved by conventional software development approaches. Projects
were thus organized with an extreme emphasis on development support with
little or none concern for conditions to be met in a regular production
environment with routine users. When a successful solution was achieved,
developers had to face the problem of adaption to demands regarding
computational efficiency, interfacing to standard software, smoothing the user
interface, technical reliability and maintainability. Sometimes these goals could
be satisfactorily solved by a continued development effort. In other cases a
reimplementation with a partly different technology was forced. In still other
cases no fielded system was ever achieved.

Vendor of tools and environments for knowledge system development have
recently recognized the importance of this problem and strive for solutions
mainly along two lines. One is to reimplement the tool in a language which is
easier to support in a corporate data processing center and also to interface to
conventional software. It is not obvious that this approach improves the
flexibility, power and usability of the development tool. The other line is to
provide delivery versions of the tool, which are tuned to efficient performance
in a production environment and where knowledge bases can be compiled when
migrated to the delivery environment. This approach preserves the full power
of the development environment, but introduces a seemingly unattractive
dichotomy between the development and delivery environment.

We believe that this dichotomy should not be regarded as a drawback, but
rather be envisioned as a powerful strategy which in many cases provide
decisive advantages. Further we believe that time is now ripe to start from the
perspective of viewing the delivery environment as the primary object and thus
design the development tools starting from the anticipated spectrum of
software technology indicated by application demands. With this view the
reason for a separate development environment is not only to provide the best
possible support in the development process, but also to avoid making
premature decisions on run-time technology or particularities of a specific
installation, while still designing with delivery in mind.

46 IDA ANNUAL RESEARCH R E P O R T 1987
The Application Systems Laboratory

The first step in such a migration project has been undertaken for the
Antibody Analysis Advisor (A) [Sandahl 1985, 87]. An EMYCIN-compatible
core system was written for MUMPS (Reshagen) and a semi-automated
translation system of the rule base from Lisp to MUMPS made the migration
smooth [Shasavar 1985].

3A is a medical expert system developed for the purpose of providing guidance
in the initial selection of analysis techniques for antibody identification in
blood samples. The system was developed as a joint effort between the
departments of computer science, medical informatics and the blood center at
the regional hospital in Linköping. It is a medium-size, quite typical rule-based
consultation system in the MYCIN tradition, with provisions for reasoning
under uncertainty (with was however used only to a very limited extent),
explanations and a backward-chaining control regime.

However, the routines in different blood centers differ significantly, as do their
3

computing equipment. Thus a delivery of an A -like system to another blood
center would presume a renewed customization of the knowledge base and the
run-time environment. We believe that customized migration o f generic
knowledge system s in the long run might prove to be at least as useful as
running parameterized application programs under a standard operating
system.

4.3.3 Intelligent human-computer interaction

In our view, human-computer interaction can not be studied out of context. It
appears that generally applicable results concerning dialogue design guidelines
and interaction techniques are scarce and that the application-dependent
aspects of a particular human-computer interface are of prime importance. We
also believe that knowledge-based systems provide an appropriate background
for development of high-quality interfaces, where aspects of dialogue initiative,
sequencing, help and explanation facilities, division of tasks between user and
system respectively, etc. are primary, while syntactic details of the language
used are secondary factors.

One area of particular interest to us has been to find more effective ways of
producing help and explanations, in particular involving text generation. Most
tools for developing expert systems which provide support for explanations use
very simple techniques, e.g. display what is essentially a trace of the
computation with a limited explanatory value for human. Thus the translation
of the internal representation for each piece of information needs to be
supplemented with an intelligent selection strategy based on a model of the
user’s cognitive understanding of what is going on.

Critiquing expert systems

Our experiences during the project so far has led us to concentrate our studies
on expert critiquing as an important paradigm for knowledge-based advisory
systems (Rankin 87). The critiquing approach is contrasted with the

IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

47

transaction model of traditional data processing, where a predefined set of
input data is required for a solution and with the expert problem-solving
model, where the inferenceing of the system initiates the demand for input
data. In a critiquing consultation system it is assumed that the user has to
propose a solution, but that the system then produces a critical review of of
this proposal.

We identify basically three subtasks in critiquing, possibly overlapping or
mutually dependent, namely:

1. knowledge generation, where the following situations can occur:

1. All background knowledge and all knowledge about the current
situation is available before the critiquing starts;

2. Additional knowledge is derived in order to improve the
critique to be generated. For instance it may be the case that
the system has to infer a ’correct’ solution itself before it can
produce the critique;

3. Additional knowledge can be obtained by the user through a
dialogue.

2. focussing, where a subset of the available or derived knowledge is
selected and assigned priorities.

3. text generation, where the selected information is translated into an
efficient presentation, presumably but not necessarily in written form.
It is assumed that the presentation (or all three subtasks) is dependent
upon the intended category of readers and thus that the same internal
structure may result in different external texts.

We envisage at least the following cases, where all or some of the above tasks
have to be solved:

1. Expert critiquing, e.g. commenting upon a medical diagnosis or
treatment plan.

2. Tutorial comments, e.g. the judgements to be produced when a student
has passed a computer-based training session.

3. Problem solving explanations, e.g. during a dialogue or after a session
in an expert system.

4. Individualized instructions, e.g. how use or manipulate technical
equipment, the functioning of which is described in a knowledge
system.

5. Data interpretation, e.g. a weather forecast or a financial summary.

We have performed initial experiments in the first two of these areas, namely
an expert critiquing system for urinary tract infections (Rankin, Molin,
Wiklund) and a medical case management training system (Sokolnicki). We

48 IDA ANNUAL RESEARCH REPORT 1987
The Application Systems Laboratory

intend to pursue this research further in continued projects.

K now ledge-based tutoring and training

The primary motive for development of expert systems has typically been the
desire to support or automate problem-solving processes in the domain of
application. However, the explicit representation of knowledge in a system can
also serve the dual purpose of providing the basis also for a tutoring system,
which can be used to train inexperienced personnel in decision making,
especially for unfamiliar or extraordinary situations.

We believe the potential for reuse of knowledge in new applications or for
different purposes, such as e.g. problem solving or training respectively, to be a
core issue in expert systems technology. In order to develop a methodology and
practical techniques for supporting application-oriented training in knowledge
systems, we have investigated how a rule-based consultation system giving
advice on economical and legal issues (LUCKY) could be reused for training
(Hansson), in the same style that has previously been tried for medical decision
making (MEDICS).

With these experiences as a background, we have also developed a generalized
approach, which tries to incorporate support for knowledge-based training, in
particular of emergency procedures, in a hybrid expert systems development
environment (Hägglund 87). This approach calls for an integration of deep and
shallow models for reasoning, e.g. in order to support process supervision or
fault diagnosis in technical equipment based to a reasonable degree on a
qualitative understanding of the corresponding processes. As mentioned before,
a first study was made in the medical area. The KNOTS system (Sokolnicki) is
built upon Epitool and allows the user to develop simulation problems for
decision making in a structured context, in particular for medical case
management.

P rototyp in g hum an-com puter dialogues

An area of special importance also for the design of working knowledge-based
applications is the support for a good human-computer interface. In an effort
to explore these possibilities we are undertaking a study of rapid prototyping
techniques and in particular the use of user interface management systems. An
experimental environment for prototyping of control-panel dialogues was
developed and tested both for an application at Philips and as the basis for a
lab assignment in a course on interactive systems [Löwgren 87].

We expect that dialogue prototyping and knowledge-based systems can be
mutually supportive, and in particular that support for local adaption of the
user interface will be relevant for our work on families of customizable
knowledge systems. It is also obvious that a knowledge-based system provide
good support for modelling of the application functionality needed for realistic
user interface prototypes [Löwgren 88].

ID A AN N U AL RESEARCH RE PO R T 1987
The Application Systems Laboratory

49

4.3.4 Knowledge-based approaches to systems development

The impact of knowledge-based techniques on systems development
methodology can be twofold. Either we use these techniques to support the
development process, e.g. by introducing new tools or improving the old ones,
or else we change the methodologies, e.g. by substituting automated procedures
for work previously carried out manually.

We believe that a combination of those effects will turn out to be very
important in the near future. Thus for instance the availability of powerful
techniques to represent and manipulate domain knowledge about objects,
concepts and procedures, etc. will in a decisive way improve the possibilities to
employ methods in the tradition of the rapid prototyping approach to systems
development.

Experiences from previous projects in the area of office information systems led
us to the formulation of stepwise structuring as a generalization of rapid
prototyping, both being examples of methods for iterative development of
software. Using a stepwise structuring approach essentially means that the
degree of formalization (and thus the possibility for automated operations) of
information is gradually increased during successive implementations of
working prototypes or system generations. For instance, a formatted data
record is conceived as a more formalized representation than a text string for a
certain piece of information.

We believe that finding the right delimitation of a system’s tasks and the
appropriate representation of the information concerned is a crucial problem in
many application areas, and that working prototypes are often effective aids in
that process. Thus we think that methods for iterative development and
adaptive maintenance are much needed and we also believe that
knowledge-based techniques can contribute a lot to this end.

One useful strategy employed in knowledge systems for finding the right
concepts and decision rules is (inductive) learning. A system for learning rules
from examples was previously implemented as an experiment (Moen) and we
are now looking into an approach suggested by Borgida at Rutgers regarding
how to ” learn” concepts and which specific attributes characterize these
concepts. The idea is is to be very restrictive when the properties of vague
concepts are initially specified, but periodically review all exceptions that have
been encountered and when necessary relaxing the constraints or reconsidering
the concept hierarchy.

This approach presumes an ability to handle exceptions in a knowledge system,
which is more flexible than simply rejecting transactions that violate
constraints. This is essential for systems concerned with information systems
dealing with ” natural” objects. Such objects are typically vague to a certain
degree and it is often very hard to specify integrity constraints which prevent
faulty data to enter the system, while allowing correct but unusual variations
to pass. Certain (declared) types of violations of constraints applying to objects

50 IDA ANNUAL RESEARCH R E P O R T 1987
The Application Systems Laboratory

in the knowledge base should thus not force a fatal error, but result in
” exception objects” which are allowed to persist in the knowledge base.

The activities in the area of knowledge-based approaches to information
systems development has been carried out at a relatively low level during 1987,
mainly by associated people from the ADP group (Näslund et al.).

4.3.5 Statistical information systems.

(Sundgren, Block, Chowdhury, et al.)

The main area of study for this group has been statistical information systems,
i.e. systems for observation, collection, entry, storing, processing and
retrieval/presentation/distribution of aggregated information concerning
groups of objects (or higher level objects) in the current universe of discourse.
Important aspects here are problems regarding quality of information (e.g.
incomplete, unreliable, or misused data), support for selection of methods and
tools for statistics production, techniques for interpretation and presentation of
results and formal methods for description of statistical operators.

The Statistician’s Workstation.

The main effort has been the study of consultation systems for statistical
analysis. The background is the well-known problem of understanding how to
apply different tools for statistical analysis as correctly as possible on a given
data material. The broad availability of statistical library software as well as
computer-stored information bases will significantly increase the danger of
misuse or even making faulty conclusions due to a lacking understanding of the
often intricate problems involved in the proper use and interpretation of
statistical data.

The goal was to build an integrated environment to support the analysis and
effective presentation of aggregated information. Subtasks involve quality
control of available data, assistance for selection of appropriate statistical
methods, for adjustment of data, and for preparing parameters for the
corresponding analysis programs, support for interpretation of results and for
tabular, graphical and verbal presentation of abstracted information.

As part of the activities an experimental implementation of a statistician’s
workstation was carried out in Lisp on a Xerox Lispmachine (Sisk). This
implementation primarily supports the use of a statistical program package
MINITAB, which is actually run on a different computer via the local area
network. The idea is to demonstrate a situation where different tools for data
analysis and interpretation are available and where an intelligent front-end
system helps the user to select the appropriate tool, connect to the
recommended computer, initialize the processing of data and finally assists in
the presentation and interpretation of the results.

ID A AN N U AL RESEARCH RE PO R T 198T
The Application Systems Laboratory

51

In the current implementation the system basically assists in multivariate table
analysis, carrying out a dialogue with the user and initiating different analyses
to be done by MINITAB. Built-in statistical expertise is needed in order to
structure the analysis in successive steps and guide in the choice between
alternatives. The system illustrates possible relationships between variables
(indicating potential dependencies) using the graphics of the Lisp Machine.

This effort is part of a research project where the possibilities of utilizing
expert systems techniques in statistical information systems are studied
[Chowdhury 1986]. The first comprehensive result of this investigation was
published as a licentiate thesis by Shamsul Chowdhury during the spring 1987.

Current status

The group for statistical information systems has been lead on a part time
basis by Bo Sundgren, who holds a position at Statistics Sweden in Stockholm.
During 1987 Bo Sundgren was awarded an adjunct professorship at the School
of Economics in Stockholm and left our group. Considering the circumstances
we then decided not to continue research in the area, but to concentrate on the
other topics studied in the lab.

Shamsul Chowdhury will continue certain aspects of his work on statistical
expert systems as a graduate student in medical informatics, a group with
which we have close cooperation. The Statistician’s workstation project is
however not carried any further in its current form, although we still regard
research on intelligent front ends as an important topic for studies.

4.4 External cooperation.

ASLAB projects emphasize joint efforts with other groups and industry. The
following are the main current or recent involvements:

1. Department of Medical Informatics. Cooperation in several areas, e.g.
medical expert systems, migration techniques, expert critiquing
applications and knowledge-based training systems (Timpka,
Reshagen).

2. National Bureau of Statistics. Study of the design of statistical
information systems. (Sundgren.)

3. ASEA. Previous cooperation on a consultation system for robot
configuration has been followed by Knowledge Transfer Program
activities (Lozan-Villegas).

4. Philips Elektronikindustrier AB. Cooperation in the Knowledge
Transfer Program with an emphasis on knowledge-based techniques for
supporting routine operators in real-time systems, e.g. in military
applications, including tools for dialogue modelling (Hammar,
Nordmark).

5. Volvo PV, Gothenburg. Joint activities on expert systems is starting in

52 IDA ANNUAL RESEARCH R E PO R T 1987
The Application Systems Laboratory

December 1987 with a special emphasis on systems for fault diagnosis
and technical maintenance.

6. Pharmacia, Uppsala. Cooperation on knowledge-based systems in
support of experiment planning in bio-technology is starting during the
spring, 1988.

During 1987/88 discussions and planning of joint projecfs in the area of
human-computer interaction in intelligent system started with the Defense
Research Institute in Linköping (Hans Marmolin) and with Department of
Psychology, Stockholm University (Yvonne Waern).

4.5 Publications

For a more extensive listing of published papers, including departmental
reports, see appendix E. Below a list of publications since 1986 by lab members
is given for an easy reference.

External publications:

1. Sham sul C h ow dhu ry, et al: Expert System Aid in Statistical Analysis and
Interpretation of Data. In Proc. o f the Society o f Reliability Engineers, Outaniemi,
1986.

2. Sham sul C how dhury: A Survey of Statistical Expert Systems. In P roc. o f the
Conf. on Expert Systems and their Applications, Avignon, 1987.

3. Sham sul C h ow dhu ry, Ove W igertz, Microcomputer Oriented Knowledge-Based
System for Health Care Improvement in the Developing World, in Proc. o f the
IEEE/EMBS 9th Ann. Conf., Boston, 1987.

4. N ils D ahlbäck , Sture H ägglund, Människa och datorsystem i samverkan.
Arbetsmiljöfondens rapporter: MDA-rapport 1987:16. 1987.

5. Sture H ägglund, Kunskapsbaserade expertsystem, rapport 86001, Sv.
Mekanförbund, 1986.

6. Sture H ägglund, Redskap för expertsystem, i Proc. NordDATA -86, och i Nordisk
D A TAnytt, no 8, 1986.

7. Sture H ägglund, Kunskapsbaserade expertsystem i administrativa tillämpningar, i
Nordisk D A T A n ytt , no 6, 1986.

8. Sture H ägglund, Verktyg, arbetsformer och yrkes-orienterade språk, i
Arbejdsform er sat på dagsordenen, SYDPOL Rapport no 1, 1987.

9. Sture H ägglund, Datorstödda Kunskapssystem i framtidens kontor, TELDOK
rapport no 26, Televerket, 1986.

10. Sture H ägglund, Christer Hansson and Tom as Sokoln icki: Knowledge-Based
Training of Case Management Routines and Emergency Procedures. In Proc. o f the
Srd Int. Conf. on Expert Systems, London, 1987.

11. Sture H ägglund, Kunskapsbaserade expertsystem, del II, rapport 87004, Sv.
Mekanförbund, 1987.

12. Sture H ägglund, Emerging Systems for Computer-Based Knowledge Processing in
Office Work. Accepted for publication in Office: Technology and People, 1988.

13. Sture H ägglund, The Linköping Approach to Technology Transfer in Knowledge
Engineering. To appear in The Knowledge Engineering Review vol S, no 3,
Cambridge University Press, 1988.

14. T im Hansen, Diagnosing Multiple Fault Using Knowledge about Malfunctioning
Behaviour, to appear in Proc. o f the 1st Int. Conf. on Industrial and Engineering
Applications o f A I and Expert Systems, Tullahoma, 1988.

15. M in ton , C arbonell, K noblock , Kuokka and N ord in , Improving the

IDA AN NUAL RESEARCH RE PO R T 1987
The Application Systems Laboratory

53

Effectiveness of Explanation-based Learning, in Proc. o f the Workshop on Knowledge
Compilation, Sept. 24-26, Oregon State University, 1986.

16. Henrik N ord in : Using Typical Cases for Knowledge-Based Consultation and
Teaching. In Proc. o f the 3rd Annual Conf. on Applications o f Expert Systems,
Orlando, Fla., 1986.

17. Ivan R ankin , On the Implementation of Hellberg’s Morphology System. P roc. o f
the Fifth M eeting o f Nordic Computational Linguists, Helsinki 1986.

18. R olan d R ehm nert: Programmering som intellektuell process. Erfarenheter av
vidareutbildning av industriverksamma. In Proc N ordD ATA 87, Trondheim, 1987.

19. K evin R yan , et al., Surveying Software Tools for a Method Driven Environment,
Proc IFIP-86, Dublin, 1986.

20. K evin R yan , The Value of Mixed Metaphors in Computer Education, P roc. Nat.
Computer Education Conf., San Diego, 1986.

21. K ristian Sandahl: The Migration of Expert Systems into Production
Environments. P roc. Nord-Info Seminar on Knowledge Engineering, Köpenhamn,
1986.

22. P å l S0rgaard, Evaluating Expert Systems Prototypes. Presented at The 9th Scand.
Sem. on Use and Development o f Information Systems, Båstad 1986.

Licentiate theses
1. Sham sul I. C h ow dhu ry, Statistical Expert Systems - a special application area for

knowledge-based computer methodology, 1987.
2. K ristian Sandahl, Case Studies in Knowledge Acquisition, Migration and User

Acceptance of Expert Systems, 1987.

Additional reports
1. M artin A ndersson : A Prototype of an Automatic Budget Quotation Generator,

Master’s thesis, Linköping University, 1987.
2. T orb jö rn Eriksson, K erstin Johansson: Ett grafiskt gränssnitt för

konsultationssystem inom reparation och underhåll, Master’s thesis, Linköping
University, 1987.

3. E va M olin , A n n -C harlotte W iklund Ett kommenterande expertsystem för
konsultation vid behandling av urinvägssjukdomar, Master’s thesis, Linköping
University, 1987.

4. R olan d N ilsson: A Survey of Planning Techniques for Intelligent Front Ends.
Master’s thesis, Linköping University, 1987.

5. Jonas Löw gren, Applying a Rapid Prototyping System to Control Panel Dialogues.
Report LiTH-IDA-R-87-26.

6. Henrik N ord in : Reuse and Maintenance Techniques in Knowledge-Based Systems.
Report LiTH-IDA-R-87-18.

7. Henrik N ord in , M ike W ientraub: Developing Families of Fault Diagnosis
Systems, report in preparation, 1987.

8. K ristian Sandahl: Creating an Antibody Analysis Advisor as an Exploratory
investigation into Expert System Development. LiTH-IDA-R-85-20

9. Henrik Eriksson: Using CAD Information in Expert Systems, IDA Systems Doc.
32.1, Linköping University, 1987.

ASLAB Memo series 1987-
87-01 R ankin, I, An Orientation Study in How Language is Used.
87-02 L öw gren, J, Användargränssnitt - specifikation och design. Master’s thesis.
87-03 Eriksson, H , Överföring av CAD-information till expertsystem. Master’s thesis.
87-04 Sokoln icki, T , Knowledge-Based Support and Training of Decision Making

Situations. Master’s thesis.
87-05 Rankin, I., H ägglund, S.. M olin , E ., W iklund, A .C . Implementing CRIME - a

Critiquing Commentary System.
87-06 Sandahl, S.: The Migration of Expert Systems into Production Environments.

54 IDA ANNUAL RESEARCH R E P O R T 1987
The Application Systems Laboratory

87-07 H ägglund, S ., Emerging Systems for Computer-Based Knowledge Processing in
Office Work.

87-08 N ord in , H ., W ein traub, M ., Developing Families of Fault Diagnosis Systems.

88-01 L öw gren , J ., Outline of a Portable Display Manager for Direct-Manipulation User
Interfaces to Knowledge-Based Systems.

88-02 H ägglund, S ., R ankin, I., Investigating the Usability of Expert Critiquing in
Knowledge-Based Consultation Systems

88-03 R ankin , I., Towards Effective Text Generation in Critiquing Expert Systems

ID A AN N U AL RESEARCH RE PO R T 198T
The Laboratory for Com puter-Aided Design o f Digital Systems

55

5.

CADLAB
The Laboratory for

Computer-Aided Design of
Digital Systems

Krzysztof Kuchcinski

5.1 Introduction

The laboratory for Computer Aided Design of Digital Systems, CADLAB, is
concerned with the computer aided synthesis and verification of digital
systems, especially those involving very large scale integrated circuits (VLSI).
The major effort of our research work concentrates on the behavioral and
structural aspects of digital system specification, design, simulation,
optimization, partitioning, synthesis and formal verification methods.

CADLAB was formed from Professor Harold Lawson’s Telesystem group when
Telesystem, Datalogi and ADB merged to form IDA in 1983. The first years of
CADLAB were devoted to building competence in the area and establish the
research profile of the group. They formed the basis for our present activity.

During 1987 CADLAB is able to report on some significant progress. This
progress will be highlighted in detail in later sections. In the reported time
CADLAB was broadly concerned with several aspects of the hardware design
problem, especially the process of translating a behavioral description of a
digital system into VLSI implementations. Such a transformation should be
carried out so as to preserve semantics of the algorithm and at the same time
meeting certain cost/performance constraints. Therefore it is a quite complex
problem and in practice exhaustive searching for optimal implementation is
impossible. To address the complexity problem, several methods are proposed.
First, the design space can be cut if we assume a given class of system

The work in CADLAB is mainly supported by STU, The Swedish Board for Technical
Development.

56 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Computer-Aided Design o f Digital Systems

architectures. Second, the intermediate representation of the design can be
introduced to form a base for different optimization strategies. And finally, the
stepwise refinement method can be utilized.

Our research activities concentrate mainly on different methodologies and
computer-aided design tools which constitute a complete hardware design
environment. The main field of interest include synthesis and verification
problems. As a result of this work, we have also implemented, among others,
the ASL language and the CAMAD system.

5.2 Current Work

CADLAB is currently engaged in a set of research projects, collectively called
the ASAP-project (An Architectural Strategy for Asynchronous Processing),
which is an attempt to provide an architectural basis for a new generation of
sophisticated CAD tools. Specifically, we are interested in exploring the
implications of asynchronous design and distributed control. This assumption
has an evident implication on the CAD tools. First, the tools should allow the
designer to explore the design space starting from the architectural level rather
than a lower level like the logic level. This provides a possibility to choose a
better design at an early stage of the design process. Second, it supports the
design of special purpose systems which are embedded in a wide variety of
products (sometimes called ASIC, i.e., Application Specific Integrated Circuits)
such as telecommunication systems, electronic and biological instruments,
robots and automatic control systems. For embedded, or special purpose
systems, the structure of the application is well defined. In such environments,
we are faced with only a small number of programs and the payoff in being
able to specialize the system is potentially quite high. In the next section we
now identify the major premises of the project.

5.3 Asynchronous Architectures

In the project we argue strongly for the asynchronous architecture
implementation of embedded (special purpose) systems. The facts that support
our assumption are as follows:

- Today, VLSI technology ensures a high performance of digital circuits.
Unfortunately, while gate delays scale linearly, the RC-line delay for
communications between gates does not scale, thus leading to a situation
where the chip speed is limited by the interconnections. Even with today’s
technology ” it takes about as long for a signal to cross a chip of side 0.5 mm
as it does to go along a coaxial cable 75 cm long.”

- There are problems to implement a single, global clock for large synchronous
systems (for example, two-dimensional systolic arrays). However, within
regions of a VLSI circuit, called isochronous or equipotential, the system
may be considered synchronous at the maximum clock rate permitted by the
circuit technology. To synchronize independent isochronous regions we can

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

57

use a self-timed discipline which leads us to asynchronous systems.

- Embedded systems are inherently parallel. Typical tasks to be performed in
embedded systems are data capture, processing, control signal generation,
display maintenance and possibly statistics gathering. They are usually
described as a set of heterogeneous tasks which are called processes. The
process can be view as an independent program which communicates with
other processes and the external environment to perform some system
activities. To implement the process abstraction, we map processes into the
set of processors. This also leads to the asynchronous architecture with the
communication protocol between processors.

- The asynchronous architecture approach forms a background for a ” flexible”
design style. This implies that a system may be easily extended using well
defined components. One can think also about specialization of the system
components (e.g. processors) to obtain an efficient realization, well suited for
the problem. Trade-offs to obtain a balance between performance and
cost-effective implementation are also possible.

- This approach, where timing is handled by the asynchronous strategy,
provides a basis to design systems rather than single chips. In order to find
” optimal” system solution, we need also CAD tools capable of making
hardware-software trade-offs. These CAD tools must provide various forms
of synthesis algorithms and support the evaluation of the designs in order to
compare the performance. This helps a designer to explore the design space
so as to reach an optimized solution.

We have now identified the major advantages of using asynchronous
architecture approach at different levels starting at the technology level with
assumptions about delays and clocks and ending at the system level with
assumption of design style. To fully utilize the proposed architecture benefits
there must exist, however, a CAD system to support this approach. The CAD
system must conveniently provide many different tools that utilize an efficient
graphical man-machine interface as well as a design database which possess a
knowledge about various design views. Typically it should contain tools like
synthesizers, simulators, verifiers as well as other specialized programs for test
pattern generator, rule checkers and enforcer, etc.

5.4 Ongoing C AD LAB Projects

The following concrete project areas have been identified and are being actively
pursued by members of CADLAB.

System Specification and Verification

To support architectural specification, synthesis and analysis, a specification
language has been proposed in a licentiate thesis by Tony Larsson. The
language supports synthesis, analysis and simulation tools. A set of calculus
and algebraic manipulation rules related to ASL descriptions are investigated.

58 IDA ANNUAL RE SEARCH R E P O R T 1987
The Laboratory for Computer-Aided Design o f Digital Systems

These include rules for abstraction, binding, and event reduction and they are
intended to form a framework for the design of higher level verification and
synthesis tools. Enabling semantic preserving syntactic transformations, the
rules support algebraic verification methods; however, exhaustive verification
methods (based on simulation) is also supported and can be made more
tractable (by improved simulation speed) if abstraction and binding rules are
used to prune a design description.

This work continues with extended studies of the semantic base for the
algebraic manipulations, e.g including a boolean ring structure that provides
the framework for propositional and predicate logic reasoning. Other directions
studied includes arithmetic and temporal reasoning.

Schematic Entry System

An attempt to study and evaluate a schematic entry system was made as
examination work by an undergraduate student, Mats Larsson. The reason for
this was twofold, first to analyze the extent to which such a system could be
integrated with tools developed at CADLAB and second, to develop a tool
consisting of the schematic entry system and a simulator, Adapt, developed by
Tony Larsson to be used in teaching undergraduate students.

Synthesis from Behavioral Descriptions

The hardware synthesis project aims at the development of a formal design
methodology and an integrated set of automatic as well as computer aided
design tools for the synthesis problem. We are particularly interested in the
synthesis of VLSI systems from their high level behavioral descriptions. Four
major tasks of the synthesis process have been treated in this research: first the
automatic transformation of a high level behavioral description which specifies
only what the system should be able to do into a structural description which
specifies the physical components and their connections; second the
partitioning of a structural description into a set of modules so that each
module can be implemented independently and operated asynchronously; third
the optimization of the system implementation in terms of cost and
performance; finally, the automatic generation of microprograms to implement
the control structures of VLSI circuits.

To address these four synthesis problems, a formal design representation
model, the extended timed Petri net (ETPN), has been developed by Zebo
Peng. This design representation consists of separate but related models of
control and data path. It can be used to capture both the structures and
behaviors of VLSI systems as well as the intermediate results of the synthesis
process. As such, the synthesis tasks can be carried out by a sequence of small
step transformations. The selection of these transformations is guided by an
optimization algorithm which makes design decisions concerning operation
scheduling, data path allocation, and control allocation simultaneously. This

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

59

integrated approach results in a better chance to reach the globally optimal
solution.

Besides the four basic synthesis problems, several related issues of VLSI system
design have also been studied in this project. The architectural considerations
for the implementation structure is concerned with the selection of the target
architectures for the VLSI implementations. Automatic extraction of
parallelism from a sequential program deals with the problem of how to extract
parallelism from PASCAL programs. Finally, the problem of integrating a
design verification scheme into the synthesis process is also investigated. These
issues have been studied by Zebo Peng and Krzysztof Kuchcinski.

Synthesis of Pipeline Structures

Pipelining is a fundamental technique in computer design, but since it is today
usually a manual process, it is prone to design errors. This project, conducted
by Björn Fjellborg, aims at finding a way to describe systems so that
extraction and synthesis of ” pipelinable” parts can be done automatically.
” Extraction” is taken to be different from synthesis in that it only aims at
determining whether pipelining is at all feasible. If so, a complete synthesis
procedure follows. However, as the extraction requires an evaluation of
potential pipeline structures in the design, it is in fact a partial synthesis. An
important question is exactly what parts of the synthesis must be performed to
obtain enough results for an evaluation. The criteria that has to be tested
include not only static information (can the system be described as a sequence
of elementary operations), but also the dynamics of the system, i.e., to what
extent a pipeline will be used.

A pipeline can be described in terms of processes and processors, yielding two
fundamental views:

1. The computation stages are processes, exchanging data.
2. The computations are processes, moving over the stages/processors.

The first view facilitates description of communication between stages. Both
capture the state of the pipeline; the second view in particular connects each
piece of state to the associated computation. The second view can also be seen
as higher-level description of the system that is independent of particular
implementations. Those are then described by the first view. Formalisms for
process definition in this context need be developed, as processes may interact
and spawn into subprocesses.

This project tries to combine these features into a single view, by using a
formalism that describes each excitation of the pipeline as a separate process,
and letting these processes be interrelated by the constraints given by the data
path (pipeline stages). This way, one can achieve a description that allows
expression of scheduling constraints as well as error handling, and thus can be
used as the basis for a CAD tool for designing pipelined systems.

60 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Computer-Aided Design o f Digital Systems

In the ASAP context, synthesizing pipelines can be interpreted as the dynamic
run-time interconnection (by virtual circuits) of a given set of function modules
into temporary pipeline configurations. Parallelisms can be drawn between this
” dynamic pipelining” and the more conventional ” static pipelining” , but now
the cost for run-time extraction/synthesis must be included.

Embedded Architectures

During the present research year, Mikael Patel has been investigating
embedding higher level processing elements into the proposed asynchronous
architecture, ASAP. Previous examples, simulations, and models of
computation within ASAP have mainly utilized fine-grain parallelism such as
multiple parallel executing arithmetical units.

To allow the interconnected processing elements to be programmable and
flexible we are interested in processor structures which allow a high level of
flexibility and performance to a low level of microprogramming. This has
initiated a study of architecture concepts developed within the Reduced
Instruction Set Computer (RISC) research community.

The choice of a reduced instruction set and application specific function
support contributes to a higher level of flexibility. The asynchronous port
mechanism as proposed within the ASAP project combined with high-level
computation, i.e. processes, reduces the high overhead associated with
asynchronous communication and achieve yet a possible level of parallelism
into the overall architecture. Processing and communication may thus better
be balanced.

The choice of programmable processing elements within the ASAP architecture
is also motivated by 1) the reduction of data paths and the possibility of
communication, i.e., parallel or serial, between functional units, and 2) the
overall architecture may be tailored of an application area instead of a specific
application and allow evolution of the embedded computer system.

Design Database

A group of students under the supervision of CADLAB have defined and
implemented an object oriented database to allow a common core for data
representation and manipulation within a computer aided design environment.

Data within the experimental design database is modeled as persistent
associations between objects and values. The overall idea behind the database
is to represent data as simple object-attribute-value-triples. All manipulation of
data is performed on these triples through a library of access functions. The
database closely corresponds to a fine-grain segmented virtual memory.

During the summer of 1987 Göran Rydquist evaluated and redesigned the

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

61

design database as part of his Master Thesis. The experimental database access
library is currently implemented in C and runs on a SUN-3 under UNIX.

Now that we have considered the general course of research activities, let us
highlight the progress made during 1987.

5.5 Progress During 1987

The CADLAB group has made several important advances during 1987. This
has resulted in the completion of one Ph.D. dissertation and the publication of
several papers in international journals and international conference
proceedings.

We feel that we have made progress in all of the ongoing projects mentioned in
the previous section. In particular, based upon the published papers and the
Ph.D. dissertation, we can identify the following specific progress.

In the area of automated hardware synthesis, the definition and
implementation of a CAD system, called CAMAD (Computer Aided Modelling,
Analysis, and Design of VLSI Systems), has been presented in Zebo Peng’s
Ph.D. dissertation. The dissertation proposes a formal model for VLSI design
representation and a set of optimization, partitioning and synthesis algorithms.
Additionally this work has been described in many papers published in
different journals and international conferences proceedings. The highlights of
this work are presented in section 5.6.

The work on specification and verification of digital systems showed also a
significant progress during 1987. Based on the language for a specification of
asynchronous architectures the symbolic manipulation set of hardware oriented
rules forms a basis for the research in the field of hardware verification and
synthesis. The highlights of this work are presented in section 5.7.

5.6 Automated Synthesis of VLSI Systems

Zebo Peng’s dissertation describes the development of a VLSI automated
synthesis system. The input to the synthesis system is high level behavioral
descriptions of VLSI systems and the output is their implementation structures
at the register transfer level.

The major contribution of this dissertation is the development of a formal
design methodology and a set of design algorithms for the automated synthesis
of VLSI systems which includes the following components:

A formal design representation model, the extended timed Petri net
(ETPN), which can be used to represent a design with various degrees
of abstraction during the synthesis process.

62 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Computer-Aided Design o f Digital Systems

The formal notation of semantics and semantic equivalence of the ETPN
design representation, which leads to the formal verification that the
implementation produced by the synthesis algorithm satisfies the
behavioral specification of the designed system.

A set of transformation rules for the ETPN model and an optimization
strategy which selects the transformation rules and applies them to a
particular design. The transformation of behavioral description into
structural description is formulated as a optimization problem and a
horizontal optimization algorithm is developed.

A procedure for translating a PASCAL program into the ETPN design
representation. Extraction of parallelism from the algorithms in terms of
PASCAL programs is performed during this procedure.

A partitioning algorithm which transforms an ETPN design into several
modules such that each can be later implemented independently and
operated asynchronously.

A microprogram generation algorithm which generates microprograms to
implement VLSI control structures represented as timed Petri nets. The
algorithm also analyzes some properties of the given Petri net and
performs microprogram reduction and optimization.

An algorithm for translating the ETPN design representation into a
register transfer level implementation with some physical parameters
which can later be used to drive a layout generation tool.

One of the basic issues of a synthesis system is the design representation model
used to represent the design during the synthesis process. The ETPN model we
have developed is a unified design representation which can be used to
represent the design with several levels of detail. That is, it allows the
designers to specify the abstract information of the systems being designed so
as to give the designer freedom in the implementation phase to make
trade-offs, or to make use of some automatic tools, to reach an optimized
solution. At the same time, it also provides the capability for the designers to
predefine lower level details when the designer feels it is necessary to freeze
some implementation decision in order to cut down the design search space or
to make use of some standard components stored in a module library.

The ETPN design representation consists of separate but related models of
control and data path. The data path of the design representation is
represented as a directed graph with nodes and arcs. The nodes are used to
capture data manipulation units, which prescribe behaviors of the data
manipulation units as mappings from a set of inputs to a set of outputs
without giving the details of how the system performs the mappings. The arcs
represent the connections of the nodes. The control part of the design
representation, on the other hand, is captured as a timed Petri net with
restricted transition firing rules. These two parts are related by the control
signals coming from the control part to the data path and the conditional
signal traveling in the opposite direction. One small example of the ETPN

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

63

design representation is illustrated in Figure 5.1.

As Petri nets are inherently concurrent, the ETPN design representation can
deal with the design of distributed control for multiple processes executing
concurrently. In a Petri net model, there can exist more than one event at a
time as indicated by several S-elements holding tokens simultaneously. More
importantly, the progression of these events may occur independently; there is
no need to synchronize these events unless it is required. When synchronization

Figure 5.1 A n example of the E T P N design representation

is needed, it is also very easy to model it. Another advantage of a Petri net is
its asynchronous property. There is no inherent implication of a clock
mechanism for the firing operations. Only the partial ordering of the
occurrence of events is specified.

The main feature of the ETPN design representation is its ability to capture
the intermediate result of a design explicitly so as to allow the design
algorithm to make accurate design decisions. For example, given an
intermediate result represented in the ETPN form, an algorithm can be used to
calculate its implementation cost, check whether that satisfies the design
constraints, and automatically choose a transformation to apply to the design
which produces another intermediate result with improved cost.

The formulation of the unified design representation model also provides a
framework to incorporate a set of different design methodologies and tools in a
coherent way. In our approach, different design tools all interact with the
ETPN design representation which functions as a centralized design data base.
Therefore they can freely communicate with each other and the effect of one
design algorithm can immediately be visible to the others.

With the formulation of such a formal design representation, it is also possible

64 IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Computer-Aided Design of Digital Systems

to perform verification of digital hardware at different levels, i.e. to prove that
two designs which may be at different levels are equivalent to each other in
respects to some axioms.

We have also formalized the process of transforming a behavioral description
into structure description as an optimization problem. An optimization
strategy is then developed to guide the transformation process so as to reach
an optimal design. The basic idea is that the ETPN description model allows
us to view a behavioral description as a primitive structural description which
is of course very crude, i.e., if we implement it directly, we get a very
expensive design. But once we have a structural description, we can make
improvements on it to produce a better one; moreover these improvements can
be done step by step until a satisfactory result is reached.

The synthesis process starts with a PASCAL description of the designed
system. The first step of the synthesis process is to translate the PASCAL
program into its equivalent ETPN description which then serves as the
intermediate representation of the design. The second step is to perform
operation scheduling, data path allocation, and control allocation integratively.
The third step is to partition the design into a set of asynchronous modules.
The final step is to translate the ETPN design representation into the register
transfer level design with control implementation.

The formalization of the ETPN design representation model and the synthesis
process have led to the efficient use of CAD and automatic tools in the
synthesis process. An integrated design environment, the CAMAD design aid
system, has been developed based on the ETPN model and the proposed
synthesis methodology. The overview of the CAMAD design aid system is
illustrated in Figure 5.2. CAMAD is written in PASCAL and runs on a VAX
11/780 machine under the VMS operating system.

Fig. 5.2 Overview of the CAMAD design aid system

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

65

5.7 Specification and Verification of VLSI Systems

In this project a method for specification and verification of hardware systems,
based on a language called ASL (Action Specification Language), is studied by
Tony Larsson. The work concentrates on conceptual and semantic issues
related to the specification and verification of hardware systems behavior and
corresponding structural implementation. Behavior includes both actional
behavior aspects, time independent functional aspects, and data type aspects.
Actional behavior includes interface issues, synchronous and asynchronous
timing strategies, as well as other timing properties. ASL supports specification
of hardware systems including their actional behavior, functional
transformations, and structural decomposition. It is an open language in the
sense that it can be adapted to a library of functions, actions, and module
primitives. This will support reusability of functions, interfaces
(communication actions related to ports) as well as complete modules. A
simple LISP like syntax is used to provide a symbolism for the semantic
definition and conceptual ideas. A set of (action) calculus and reduction rules
are intended to be used as a framework for a set of verification tools.

An important distinction is made between actional behavior and time
independent functional transformations. The aim is to support reusability of
functions as well as interfaces. An interface is defined as a composition of
(temporal) actions involving a set of ports. In contrast to actions, the
evaluation of functions is assumed to be performed without direct temporal
effect. Functions, primitive or composed, may in this sense be thought of as a
tool for temporal abstraction. Function abstractions can either be primitives
inherited from a library or be defined in a purely functional style. Later on, in
the implementation phase, a function abstraction may be partitioned and
described as a structure of data driven modules.

The semantics of ASL is defined by help of a semantic relation. A calculus
(semantic preserving syntactic transformation rules), event and port reduction
rules, and partial evaluation (binding) rules are proposed. These rules are
intended to support semantic preserving syntactic transformations which
enable verification of equality of a design specification and its implementation.
Port binding and partial evaluation may also be used to prune a design
specification and/or implementation (in order to reduce combinatorial and
sequential complexity) so that both deductive (symbolic) and exhaustive
verification techniques are made tractable.

Currently the symbolic manipulation of logic and arithmetic expressions
embedded in ASL descriptions are studied. The symbolic manipulation is to a
large extent based on well known algebraic systems such as the boolean ring
structure for logic expressions and integer rings and fields for arithmetic
expressions. Further the coupling of these systems with conditional and
temporal expressions are studied. The research issue includes how the
knowledge base represented by these algebraic systems can be combined and
used in hardware verification applications. These applications includes a wide
spectrum of circuits at transistor-, gate-, register-, and architecture- levels.

66 IDA ANNUAL RESEARCH R E PO R T 1987
Tlie Laboratory for Computer-Aided Design o f Digital Systems

5.8 Related Activities

CADLAB is involved in the graduate course program of IDA. During the
autumn of 1987 the course ” Introduction to Petri Nets” was given by K.
Kuchcinski together with J. Maluszynski (LOGPRO). Additionally, a series of
research seminaries on digital systems design automation are given every week
by members of CADLAB.

During 1987 the work of the group was presented on the following
international conferences:

The 8th International Conference on Computer Hardware Description
Languages and their Applications, Amsterdam, April, 1987.

The 13th EUROMICRO Symposium on Microprocessing and
Microprogramming, Portsmouth, September 1987.

We have contacts with other groups working in the area of digital systems
design automation. During his visit in CADLAB in November 1987, Dr. Hristo
N. Djidjev form Bulgarian Academy of Science expressed his interest in further
contacts with our group in the subject of design automation of systolic arrays.
We are also planning to keep closer contacts with Dr. Peter Marwedel’s group
at Kiel University, West Germany. Dr. Marwedel visited CADLAB in
December 1987 as the opponent of Zebo’s Ph.D. dissertation.

5.9 Personnel

Krzysztof Kuchcinski, Ph.D.
Prof. Harold W. Lawson Jr., Ph.D. (on leave from CADLAB)
Britt-Marie Ahlenback, secr.
Mikhail Ferapontous, Ph.D. (guest researcher from Sept. 1987)
Björn Fjellborg, MSE
Tony Larsson, Tech.Lic
Fredrik Lindström, MSE (from July 1987)
Mikael Patel, Tech.Lic.
Zebo Peng, Ph.D.

Professor Harold W. Lawson Jr. is on leave from the university due to his work
on organizing the Swedish International University. During this time Dr.
Krzysztof Kuchcinski acts as a laboratory leader.

5.10 Licentiate Theses

Vojin Plavsic, Interleaved Processing of Non-Numerical Data Stored on a
Cyclic Memory.

Arne Jönsson and Mikael Patel, An Interactive Flowcharting Technique for

IDA AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Com puter-Aided Design o f Digital Systems

67

Communicating and Realizing Algorithms.

Zebo Peng, Steps Towards the Formalization of Designing VLSI Systems.

Johan Fagerström, Simulation and Evaluation of an Architecture based on
Asynchronous Processes.

Tony Larsson, On the Specification and Verification of VLSI Systems.

5.11 Ph.D . Theses

Zebo Peng, A Formal Methodology for Automated Synthesis of VLSI Systems.

Piotr Siemienski, Specialized Database for Computer-Aided Design of VLSI
Integrated Circuits. (In Polish.)

The major part of Siemienski’s thesis work was done at CADLAB during
1983-85. However, the thesis was defended in the Institute of Electron
Technology CEMI, Warsaw, Poland.

5.12 References

The following are the CADLAB publications for the year 1987 that are
referenced in the text. For the full list of publications, please refer to the
appendix.

1. K. Kuchcinski and Z. Peng, Microprogramming Implementation of Timed
Petri Nets, INTEGRATION, the VLSI journal 5 (1987), pp. 133-144.

2. K.Kuchcinski and Z. Peng, Parallelism Extraction from Sequential
Programs for VLSI Applications, Report LiTH-IDA-R-87-20, also to
appear in Microprocessing and Microprogramming, the Euromicro Journal

3. T. Larsson, Specification and Verification of VLSI Systems Actional
Behavior, The 8th International Conference on Computer Hardware
Description Languages and their Applications, Amsterdam, April, 1987.

4. T. Larsson, Semantics of a Hardware Specification Language and Related
Transformation Rules, INTEGRATION, the VLSI journal 5 (1987), pp.
145-158.

5. Z. Peng, A Horizontal Optimization Algorithm for Data Path/Control
Synthesis, to appear in Proc. of the IEEE International Symposium on
Circuits and Systems, Espoo, Finland

68 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Computer-Aided Design o f Digital Systems

ID A AN N U AL RESEARCH RE PO R T 1987
The Library and Information Science Laboratory

69

6 .

LIBLAB

The Library and Information Science
Research Laboratory

Roland Hjerppe

6.1 Introduction

LIBLAB, a joint project of the Department of Computer and Information
Science and the University Library has been funded by the Delegation for
Scientific and Technical Information (DFI) since it started in 1983. In the first
research program for LIBLAB of 1982 two major research themes are specified:
Document Description and Representation, and Users and (Library) Systems.
For each of them there are also two subthemes defined. One minor theme,
Networking, is also specified.

1983-1985 research efforts were concentrated mainly on the first theme:
Document description and representation. The ” Anglo-American Cataloging
Rules. Second Edition.” (AACR2) was studied by building a a number of small
knowledge based systems with the cataloging rules as a knowledge domain.
During 1985 the HYPERCATalog-project emerged as a project that relates to
all the themes. This project has been the main focus of LIBLAB since then.

Research activities in the HYPERCATalog project have focused on
HYPERKITtens, i e implementations of hypertext software for use in
bibliographic systems.

In early 1987 it was decided in Parliament that DFI should cease existence as
of July 1, 1988. As a consequence of this decision the future direction of
LIBLAB has been reconsidered and discussed throughout the year. Much effort

The work in LIBLAB has been mainly supported by DFI, The Swedish Delegation for
Scientific and Technical Information.

TO IDA ANNUAL RESEARCH R E P O R T 198T
The Library and Information Science Laboratory

has been used in planning sessions, attempts to find new sources of funding,
and a critical assessment of our own work.

At the instigation of DFI an assessment of LIBLAB and its work has been
carried out by Dr Philip Bryant at the Centre for Catalogue Research,
University of Bath, England, one of the leading experts in the field of
bibliographic research. This assessment was thoroughly reviewed by the
members of LIBLAB. One result of this was a new research program for
LIBLAB.

6.1.1 Assessment of LIBLAB

LIBLAB spent two days in an internal workshop in October discussing the
present situation and the future. The LIBLAB research program and the
assessment by Philip Bryant were reviewed by the lab members. The workshop
resulted in a plan to rewrite the research program in order to reflect the
present research orientation as well as taking heed of comments and advice
from Philip Bryant’s report.

In his assessment Bryant concludes that:

the potential value of LIBLAB’s work is considerable;

IDA provides a base for library research that is unique in Europe if not
in the world;

too wide a variety of research interests has hampered progress;

LIBLAB enjoys a much higher profile overseas than in Sweden -
dissemination of results and ideas to the Swedish library community
should be improved.

6.2 A new research program for LIBLAB

One result of the internal and external assessments of LIBLAB was that the
necessity of a new research program became clear. All of the laboratory
participated in formulating the new program during the last quarter of the
year.

The new program outlines two major themes:

1. Users and information systems, especially bibliographic systems

2. Document description and representation

IDA AN N U AL RESEARCH RE PO R T 1987
The Library and Information Science Laboratory

71

These themes are mainly the same as before. Differences appear in the
subthemes:

1.1 User participation and user behavior.
Active participation by the users in the conceptual modelling of the
system is encouraged. The conceptual model will be the basis for the
user interface. Individual user profiles are necessary for the adaption of
the system to the users’ needs.

1.2 Orientation in the database: Maps and other tools.
The user should be able to browse and navigate in the database. In
order to do this guides, maps and other tools for orientation are
required.

2.1 Description and representation of collections and elements.
Which modes of representation are adequate for the structures of
knowledge organization in bibliographic databases?

2.2 Structures of collections, literatures and domains.
There are three different types of structures in document collections.
Generating the structures and their relationships is the focus of this
subtheme.

2.3 Hypertext and hypermedia.
Hypertext and hypermedia are of general interest for LIBLAB.

The HYPERCAT project is still the main project that brings together
experiences and knowledge gained in the different projects pursued within the
research themes.

6.3 Project H YPER CATalog

The HYPERCATalog project was described in the previous Annual Research
Report and fuller descriptions are available in LIBLAB’s report series. The
goal is to build and implement a library catalog that differs in most ways from
today’s catalogs. The most important desirable features are:

The catalog as a hypertext structure, implying navigation and
browsing as the primary modes of use.

Maps and graphic illustrations of structures as tools for visualization of

72 IDA ANNUAL RESEARCH R E P O R T 1987
The Library and Information Science Laboratory

database structure, which mirrors conceptual structures.

Integration of text and structure editor with other functions.

The database grows with use, enabling capitalization of the use made
of it.

Multiple views of the database and its structure.

Private, modifiable versions of the database and the collective views.

Different interaction modes, user models and customization needed to
accomodate a wide range of users.

In 1987 the HYPERCATalog project has focused on model construction, where
the models have been given the name HYPERKITtens.

6.3.1 HYPERKITtens

HYPERKITtens are small prototypes - incomplete hypercatalogs - based on
existing hypertext software. By creating HYPERKITtens it is possible to test
preliminary ideas of the HYPERCATalog and get suggestions for modifications
and improvements. Presently LIBLAB has access to hypertext software for
Macintosh computers such as Guide, Storyspace, and HyperCard, in addition
to Notecards, which is designed for Xerox workstations.

The work on HYPERKITtens is carried out with the same database
implemented on the various systems in order to make possible comparisons
between them. Furthermore, different applications are used in each system in
order to take advantage of the specific features of the software.

HYPERLIB is a project assignment carried out by Kerstin Andreasson, a
systems analysis student. The project has produced two HYPERKITtens, one
based on Guide and the other on HyperCard, demonstrating the use of
geographical maps and floor plans for orientation and navigation in the library
and its collections.

HYPERCLASS is a project that demonstrates the use of hypertext softwares
for presentation of classification structures. In this system the classification
scheme (SAB) serves as the main access point to the library, whereas
HYPERLIB offers access by physical location. Three HYPERKITtens, one
based on Guide, one on HyperCard and one on Storyspace are being developed.

HYPERREF is a system where some 200 bibliographic references have been
linked using the Guide software. References and links make up trails. A
sequence of links forms a path, and with a set of paths and trails it is possible
to navigate in the collection or parts of it. The same database is being used in

ID A AN N U AL RESEARCH RE PO R T 1987
The Library and Information Science Laboratory

73

another HYPERKITten based on Notecards.

The HYPERKITtens described here could be amalgamated into a fuller
HYPERCATalog prototype demonstrating many of the desired features listed
above.

6.4 Other projects and activities

Preparatory work on combinations of hypertext and formal bibliographic
description, using ideas and formalism from SGML, Standard Generalized
Markup Languages and other structure editors has also been done.

Two doctoral projects are being carried out within the research theme Users
and (information) systems:

The project ” Cognitive systems models and user interface construction” focuses
on conceptual design, user interface construction, and user participation in
system design.

The project ” Personal information management in computer science” is a series
of case studies of computer scientists with the purpose of identifying
characteristics of personal bibliographic information management in a research
environment.

Manny Jägerfeld has been engaged by the WHO and the Center for Medical
Technology Assessment in Linköping to build a database for a European
clearinghouse on assessment of health technology.

Birgitta Olander has been engaged by UHA in the work on a national strategy
for information services for higher education and research.

In December LIBLAB hosted a seminar called ” Swedish Research in Library
Science after DFF’ , with invited speakers from Inforsk (Umeå. Univ.), the
Center for Library Research (Gothenburg Univ.), and DFI. Over 50 people
from all over the country participated in the seminar.

LIBLAB was also represented at IFLA (Int. Fed. of Library Associations) 53rd
General Conference, August 16-21, in Brighton, England, where Roland
Hjerppe presented two short invited papers.

Roland Hjerppe also attended HYPERTEXT’87, November 13-15, in Chapel
Hill, North Carolina. This was the first conference dedicated to hypertext, and
it attracted some 200 participants.

Arja Vainio-Larsson attended ACM CHI+GI 1987 (Human Factors in
Computing Systems and Graphics Interface), April 5-9, in Toronto, Canada;

74 IDA ANNUAL RESEARCH R E PO R T 1987
The Library and Information Science Laboratory

and Interact’87 (2nd IFIP Conf.), September 1-4, in Stuttgart.

LIBLAB has also participated in a project at the Dept, of Medical Informatics
aimed at building decision support systems for general practitioners in primary
care.

6.5 Laboratory members

Roland Hjerppe, MSc.
Laboratory leader: planning, coordination and administration.
Research areas: the HYPERCATalog project; Hypermedia; SGML and other
structure editors.

Birgitta Olander, BA, MLS.
Research assistant. Doctoral student at the Faculty of Library and
Information Science, Univ. of Toronto, Canada, since 1984.
Research area: Personal information management; the HYPERCAT project.

Arja Vainio-Larsson, MA.
Doctoral student since 1984.
Research area: Cognitive systems models and user interface
construction; the HYPERCAT project.

Lisbeth Björklund, BSc.
Doctoral student since 1985.
Research area: Structures of systems for knowledge organization
and representation; the HYPERCAT project.

Manny Jägerfeld, BA.
Doctoral student since 1985.
Research area: (working on the WHO/LINFO project mentioned above).

Siv Söderlund, BA.
Administrative assistant since 1986.

Associated people:

Toomas Timpka, M.D. Doctoral student, Dept. of Medical
Informatics, principal investigator in the LIMEDS project, a
cooperative venture between LIBLAB and Dept. of Medical
Informatics.

IDA ANNUAL RESEARCH RE PO R T 1987
The Library and Information Science Laboratory

6.6 Publications in 1987

Reports:

LiU-LIBLAB-R-1987:l
Hjerppe, R.: LINS - LIBLAB’s Name Handling System. A knowledge-based
system for authority control of personal names according to AACR2,
Ch.22, Headings for persons. June 1987, 8p.
In: C Bossmeyer, ed. The Library of the Future. Proc. ELAG (European
Library Automation Group) 11th Library Systems Seminar, Frankfurt,
April 1-3 1987. Deutsche Bibliothek, Frankfurt aM. 1987. ISBN:
3-922051-19-7. pp.67-80.

LiTH-IDA-R-87-04
Vainio-Larsson, A.: Datavetenskap : Teknik och Vetenskap. February
1987, 13p.

Working papers:

LiU-LIBLAB-WP:39
Hjerppe, R.: LIBLAB. Plan för verksamheten under första halvåret 1988.
Oktober 1987, 4p.

LiU-LIBLAB-WP:40
Olander, B.: HYPERCAT notes. March 1987, 7p.

External papers:

Papers presented at IFLA 53rd General Conference, August 16-21 1987,
Brighton, England :

Hjerppe, R.: Computer Networks as a Publication Medium? Implications
for Libraries. August 1987, 4p.

Hjerppe, R.: IFLA and Professional Communication. August 1987, 3p.

76 ID A ANNUAL RESEARCH R E P O R T 1987
The Library and Information Science Laboratory

ID A AN N U AL RESEARCH RE PO R T 1987
The Logic Programming Laboratory

77

7.

LOGPRO
The Logic Programming

Laboratory

Jan Maluszynski
Professor of programming theory

7.1 Introduction

The Laboratory for Logic Programming was formally created in spring 1985
though research activities in logic programming at the department started
much earlier. The research concentrates on the foundations of logic
programming systems and on the relation of logic programming to other
computational paradigms.

An important objective of the laboratory is also to contribute to the research
activities of the other laboratories by offering courses and seminars on logic
programming, theory of programming and formal language theory.

The following persons were involved in the activities of the group:

Jan Maluszynski , Ph.D. group leader, acting professor
Douglas Busch, Ph. D. visiting researcher, associate professor
Wlodzimierz Drabent, Ph. D. visiting researcher (left in Jan. 1987)
Staffan Bonnier, graduate student
Simin Nadjm-Tehrani, graduate student
Ulf Nilsson, graduate student
Torbjörn Näslund, graduate student

Some of the research has been carried out in external cooperation with
researchers at INRIA, France, Aiken Computation Lab., Harvard, USA and
Institute of Computer Science of the Polish Academy of Sciences.

The main research activity has been concentrated around the project

The work in the Logic Programming Group is mainly supported by STU, The Swedish Board
for Technical Development and by NFR, the Swedish Natural Science Research Council.

78 IDA ANNUAL RESEARCH RE PO R T 1987
The Logic Programming Laboratory

”Research in Efficiency of Logic Programming” funded by the National
Swedish Board for Technical Development (grants STU-F 85-3166 and STU
86-3372). These grants expired June 1987. In spring 1987 a new project
entitled ” Logic Programming with External Procedures” was proposed. In fall
1987 the Swedish National Board for Technical Development decided to fund
the project during the three years period (grant STU 87-2926).

The present research is partially based on the previous results:
- a study of two-level grammars as a logic programming language [Mal 84]
- a formal comparison of logic programs and attribute grammars [DeMa 85],

The following notions resulted from these comparisons:

7.2 The Objectives of the Present Research

It is often claimed that logic programming has great potential for reducing the
cost of software development. One of the reasons supporting this claim is the
declarative nature of logic programming. Since the control information need
not be specified, the size of the code is often dramatically reduced in
comparison with the size of algorithmic programs. However, the cost of
software development also depends heavily on the possibility of re-using of
existing modules, and on the methodology of programming. Thus, the problem
how to combine logic programs with existing software is of great practical
importance, but unfortunately its ” ad hoc” solution may destroy declarative
reading of programs. This in turn may create serious problems in reasoning
about such programs and decrease their reliability.

The present research has two objectives:
- to develop a theoretical basis for a solution of the problem of re-usability
of existing software in logic programming preserving the declarative nature
of logic programs;
- to contribute to the methodology of development of correct logic programs
with external procedures.

7.3 The Research Topics

7.3.1 Amalgamation of Logic Programs with Functional Procedures

The objective is to develop a systematic approach to writing logic programs
which use external procedures. The motivation for this is twofold:
- to allow for re-using of existing (possibly imperative) software while still
preserving the declarative nature of the top-level logic programs;
- though the Horn clause logic provides a universal computational paradigm it
seems often quite unnatural to express functions in the relational formalism.

In recent years there have been a number of suggestions concerning
combination of functional and logic programming in a single framework (see

IDA ANNUAL RESEARCH REPORT 1987
The Logic Programming Laboratory

79

e.g. [GrLi 86] or [BeLe 86] for a survey).
The approaches can be classified as:

(1) integrating existing programming languages and logic programs
(well-known examples of this type are LOGLISP, QLOG, POPLOG and
APPLOG);
(2) construction of new languages which allow one to define functions and
relations and to combine functional and relational definitions, (well-known
examples are EQLOG, LEAF and FUNLOG).

The main objective within the first approach is often to give access from logic
programs to specific features of the underlying programming language, or
programming environment. This aspect is usually more important than concern
about the declarative semantics of the amalgamation. It may be rather difficult
to give such a semantics if low-level features of the underlying system are
accessible in the resulting language. On the other hand, many of the languages
defined within the second approach have both declarative and operational
semantics and some completeness results are also presented.

Our general perspective is different: we assume that we have given two
arbitrary languages - one (not necessarily functional!) with functional
procedures and the other one being a logic programming language. (As a
matter of fact the suggestion presented below can be also applied to
non-functional procedures if their interface with the environment is properly
defined). It is our belief that a good combination of these two should result in
a language which is as ” conservative” as possible. Old programs (both their
evaluation and meanings) should not change. It will allow us not only to think
in a well established manner about things which have not changed but also to
save a lot of work because we do not have to rewrite old programs in a new
language. On the other hand we want to be able to build new logic programs
employing calls to functional procedures and integrate them with the old ones.
A basis for construction of an interface between the two different systems is
the assumption that terms are their common data structures. A call of a
functional procedure is itself a term. Since its execution is assumed to return a
term we can view the underlying programming system as a term rewriting
system. This permits the use of the theory of logic programming with equality
(see e.g. [JLM 84]) to give a clean declarative semantics of the amalgamated
language, and for application of E-unification in its interpreter. However, since
we are not specific about the language of the functional procedures we have no
access to the rewrite rules used by the system and we cannot use them for
construction of E-unifiers. In [LeMa 86] we suggest a way for overcoming this
difficulty. It is a new unification algorithm, called S-unification, which is a
special incomplete case of E-unification. Let us compare our suggestion with
the two kinds of approaches mentioned above.

The distinction between our work and the first approach is that the underlying
programming system is considered as a black box: low-level features can be
used in the underlying programs but not on the logical level. This makes it
possible to give a relatively simple declarative semantics of the amalgamation.
The difference between our suggestion and the second approach is that we are
primarily interested in re-using functional procedures written in other
languages, regardless of the type of the language (be it a pure functional

80 IDA ANNUAL RESEARCH R E P O R T 1987
The Logic Programming Laboratory

language, or an algorithmic language which admits functional procedures, like
Fortran, Pascal or Ada) in a logic programming environment. In contrast to
the systems of this category we assume existence of the term machine and we
are able to use it in the top-level computational mechanism without being
specific about its construction.

7.4 Methodology of Amalgamated Programming

We are searching for concepts and methods that facilitate development of
correct logic programs including calls to external procedures. This work is
based on existing ideas concerning logic programming.

Correctness of programs is usually defined with respect to some initial formal
specification. Often it is suggested to develop correct programs from this
specification by some formal transformations. In case of logic programs this
approach has been studied in many papers (see for example [HaT 82], [Cla 81],
[Hog 81]). A (pure) logic program is a logic formula and due to its declarative
reading may be sometimes considered a specification of the problem. Therefore
it is sometimes suggested to organize development of logic programs as
construction of a derivation in the first order logic, where the initial formula is
a complete specification of the problem and the final one is a logically
equivalent logic program. However, a general difficulty with complete
specifications is that they often do not properly reflect user’s intuition and
must be subject to changes. Therefore, testing of the program is necessary not
to discover bugs, since the ideal development technique would guarantee
correctness of the program with respect to the specification, but rather to
confront user’s informal understanding of the problem with the formal
specification. The aspect of programmer’s intuition is reflected in Shapiro’s
work on algorithmic debugging [Sha 83]. The debugging process is controlled
by an ” oracle” which answers the questions generated by the debugging
system. These answers are statements concerning properties of the intended
model. They should be satisfied by the program under development.

In our present research attention is focused on assertions which can be used to
describe expected properties of a program being developed. The programmer is
expected to selectively write assertions concerning those properties which she
finds important. These assertions may play role of formalized comments. We
plan also to continue our work [DrMa 87] on formal proof techniques for
assertions. Some of the assertions, like type declarations and annotations may
be used for automatic compile-time consistency checks during development of
the program. For the others a run-time checker can be a useful tool in the
debugging process. It may disclose improper behaviour of the program before
obtaining an answer and it may be used by an algorithmic debugger as (a part
of) an ” oracle” .

Development of a logic program can now be seen as updating of a database of
clauses and assertions. A large number of updates may finally give a
satisfactory resulting program with assertions either describing its ” critical”
properties, or providing a complete specification, if desired. At every step of
this process the clauses should be consistent with the assertions. This will

ID A AN N U AL RESEARCH RE PO R T 1987
The Logic Programming Laboratory

81

improve reliability of the programs by elimination of some bugs. We are
interested in studying formal methods for proving this consistency. These
methods will contribute to everyday practice of informal reasoning and testing
and to development of tools supporting these activities.

According to [DrMa 87] an assertion is viewed as a formula of a first order
language. It specifies a relation on not necessarily ground terms. With each
predicate (i.e. procedure) p of the program two formulas are being associated.
One of them, the precondition characterizes the expected form of the
arguments of p whenever p is called during execution of the program. The
other one, the postcondition describes the expected instantiation of the
arguments upon the success in relation to their form in the call. Thus, the
preconditions are connected with the operational aspect of the program since
they depend on the computation rule and on the search strategy. On the other
hand, the postconditions can be related to both operational semantics and
declarative semantics since they describe properties of the computed answer
substitutions, which in correct implementations are also correct answer
substitutions.

This notion of assertion can be used as a formal framework for investigation of
the concepts of types and annotations appearing in the literature.

7.5 The Results

The following results were published in 1987:

7.5.1 A Restricted Class of Logic Programs [Dr 87]

We defined a class of logic programs which do not employ logical variable,
work on ground terms and have particularly simple data flow. These are called
simple logic programs. The aim of the experiment was to check how often logic
programs belong to the class and to analyze the programming techniques which
result in the programs which are not in the class. For this an analyzing
program has been written which checks whether a given program is in the
class. The sample of analyzed programs includes programs of different size. The
results show that simple programs are used quite often and give insight into
some techniques of using logical variables. Simple programs can be
implemented in a very efficient way. In particular they allow to compile-out
unification. However, this topic was not further developed.

7.5.2 Context-free types in logic programming ([KoMa 87], [Nä 87])

Our previous study of relations between logic programs and two-level
grammars resulted in a notion of type for logic programs. The idea is to use
context-free grammars for specifying data domains of logic programs. This
amounts to considering many-sorted term algebras instead of one-sorted
Herbrand universes. The nonterminals of the context-free grammars play the

82 IDA ANNUAL RESEARCH RE PO R T 1987
The Logic Programming Laboratory

role of the sorts.

In [KoMa 87] we illustrated on example the usefulness of this idea for
development of logic programs.

Logic programs with data-domains specified by context-free grammars can be
seen as a special class of two-level grammars. Using Cornell editor synthesiser
we developed an experimental implementation of two-level grammars as a logic
programming languge [Näs 87]. The system is an incremental compiler of
two-level grammars into Prolog. Its intended use is to support development of
typed logic programs and typed Definite Clause Grammars as well as to
demonstrate the concept of two-level grammar at work.

7.5.3 A method for proving run-time properties of logic programs
[DrMa 87]

Certain properties of logic programs are inexpressible in terms of their
declarative semantics. One example of such properties would be the actual
form of procedure calls and successes which occur during computations of a
program. They are often used by programmers in their informal reasoning.

We introduced and proved sound an inductive assertion method for proving
partial correctness of logic programs. The method formalizes common ways of
reasoning about logic programs and makes it possible to formulate and prove
properties which are inexpressible in terms of the declarative semantics. An
execution mechanism using the Prolog computation rule and arbitrary search
strategy (eg. OR-parallelism or Prolog backtracking) is assumed. The method
may be also used to specify the semantics of some extra-logical built-in
procedures for which the declarative semantics is not applicable.

7.5.4 S-unification: a basis for amalgamated programming [LBM 87]

Following the suggestion of [LeMa 86] an incomplete algorithm of
E-unification, called S-unification was formally defined. It has been proved that
if S-unification succeeds the result is a complete set of E-unifiers of the
arguments (which due to our restrictions is a singleton). S-unification may also
fail or report that it is not able to solve the problem of E-unification for given
arguments. It has been proved that if it fails the actual arguments have no
E-unifier. S-unification is a modification of Robinson’s unification algorithm
which allows the functors in the unified terms to be names of external
procedures. Some unification steps may require reduction of the subterms
which are procedure calls. However, it may happen that the arguments of the
call are not fully instantiated, in which case the algorithm reports that it is not
able to solve the unification problem.

ID A AN N U AL RESEARCH RE PO R T 1987
The Logic Programming Laboratory

83

7.6 References

References to LOGPRO papers

(These are only the papers quoted above, all LOGPRO publications can be
found in the list of IDA publications in the Appendix).

[DeMa 85] P. Deransart and J. Maluszynski, Logic programs and attribute
grammars, J. Logic Programming 2 (1985) 119-155.

[Dra 87] W.Drabent, Do Logic Programs Resemble Programs in Conventional
Languages, LiTH-IDA-R-87-01, 1987, also in Proc. of IEEE SLP’87, San
Francisco, September 1987.

[DrMa 87] W.Drabent and J. Maluszynski , Proving runtime properties of logic
programs, Proc. of TAPSOFT’87, Pisa 1987, LNCS 250, 167-181.

[KoMa 87] J.Komorowski, J.Maluszynski , Logic programming and rapid
prototyping, Science of Computer Programming 9 (1987), 179-205

[LBM 87] J. Leszczylowski, S.Bonnier, J.Maluszynski, Logic programming
with external procedures: Introducing S-Unification, Revised Version,
Information Processing Letters (to appear)

[LeMa 86] J. Leszczylowski, J.Maluszynski, Logic programming with external
procedures: Introducing S-Unification, Rep. TR-86-21, Dept, of Computer
Sc., Iowa State University, Ames 1986

[Mal 84] Maluszynski,J., Towards a programming language based on the notion
of two-level grammar, Theoretical Computer Science 28 (1984), 13-43;

[Näs 87] T. Näslund, An experimental implementation of a compiler
for two-level grammars, Proc. Int. Symposium on Methodologies for
Intelligent Systems, Charlotte, NC Oct. 1987, North-Holland 1987.

Other References

[BeLe 86] M. Bellia, G. Levi, The Relation between Logic and Functional
Languages: A Survey, J.Logic Programming, 1986:3:217-236

[Cla 81] K.L.Clark, The Synthesis and Verification of Logic Programs,
Research Report 81-36, Dept, of Computing, Imperial College, London
1981.

[GrLi 86] Logic programming, functions, relations and equations, DeGroot D.
Lindström G., Eds. Prentice-Hall, 1986.

[HaT 82] A. Hansson and S.-A. Tärnlund Program transformation by data
structure mapping,

in: K.L. Clark and S.-Å. Tärnlund Logic Programming (Academic Press,
London, 1982) 117-122.

[Hog 81] C.J. Hogger, Derivation of Logic Programs, JACM 28, 2, 372-392.
[JLM 84] J.Jaffar, J.L.Lassez, M.J.Maher, A theory of complete logic programs

with equality, J.Logic Programming 1984:3:211-223
[Sha 83] E.Y. Shapiro, Algorithmic Program Debugging, MIT Press , 1983.

84 IDA ANNUAL RESEARCH R E P O R T 1987
The Logic Programming Laboratory

ID A AN N U AL RESEARCH RE PO R T 198T
The Laboratory for Natural Language Processing

85

8 .

NLPLAB
The Laboratory for

Natural Language Processing

Lars Ahrenberg

8.1 Introduction

The interests of NLPLAB cover most aspects of the fields of Natural Language
Processing and Computational Linguistics. Our theoretical research interests
are primarily in the following areas: (i) parsing techniques for constraint-based
formalisms, (ii) knowledge representation, including discourse representation,
for natural language understanding, and (iii) the characteristics of
man-machine interaction in natural language. One application area is presently
of special interest to us, namely the construction and use of natural language
interfaces (NLIs) to computer software. Research in this area is carried out
within the project ” Analysis and Generation of Natural Language Texts” ,
financed by STU. The goal of this project is to develop a general-purpose NLI
with ability to communicate in Swedish and English.

8.2 N LPLAB Personnel

Lars Ahrenberg, Ph.D., lab leader
Britt-Marie Ahlenbäck, secretary
Nils Dahlbäck, B.A.
Arne Jönsson, Tech.Lic., B.A.
Magnus Merkel, B.A.
Bernt Nilsson, research engineer
Mats Wirén, M.Sc., B.A.

The work in the Laboratory for Natural Language Processing is mainly supported by STU,
The Swedish Board for Technical Development.

86 IDA ANNUAL RESEARCH R E PO R T 1987
The Laboratory for Natural Language Processing

8.3 A Short Overview of Current Research

8.3.1 Parsing techniques for constraint-based gram m ars

An absolute requirement on a general-purpose NLI is that it can handle a
fairly large number of the grammatical constructions of the languages that it
communicates in. Ideally, the constructions that have been used in the
construction of users’ inputs should be recognizable in real time. For this to be
possible we require a grammatical formalism which is both powerful enough to
express the complexity of natural language constructions, yet sufficiently
restricted so as to allow recognition and parsing by fast algorithms. Our
strategy is to use declarative grammar formalisms, such as Lexical-Functional
Grammar and P A T R and find flexible and efficient parsers for such
formalisms.

Figure 1: Interface to a chart parser with open-ended control structure.

Mats Wirén has studied the effects of utilizing open-ended control structures,
where different choices in the control-strategy space can be tested (see fig. 1).
In the first part of this work (reported in Wirén, 1987) different rule-invocation
strategies in chart parsing were surveyed and tested, the conclusion being that
significant gains in efficiency can be obtained by fine-tuning this strategy.

Further continuation and generalization of this work includes an implemented
control-strategy independent PATR system (Wirén, 1988a), and an application
of the PATR system to on-line parsing, a type of application which seems to
profit significantly from an open-ended control structure (Wirén, 1988b).

ID A AN N U AL RESEARCH REPORT 1987
The Laboratory for Natural Language Processing

87

8.3.2 LINLIN — architecture for a natural language interface

The Linköping Natural Language Interface (LINLIN) is being designed so as to
be able to participate in a restricted dialogue with the user, not merely to
interpret questions. The knowledge required to engage in a dialogue is varied
and complex. It does not only comprise linguistic knowledge in a narrow sense
(morphology, syntax, semantics) but also knowledge of the world (the domain
of the background system), knowledge about how to participate in a: dialogue,
e.g. about how to refer to an object depending on its saliency in the discourse,
or about what kinds of response are possible after a certain type of initiative
from another dialogue participant. Moreover, these latter tasks presuppose that
the agent is familiar with what may be termed the current discourse state, i.e.
the objects that are talked about or otherwise salient and the current goals and
direction of the dialogue. It is a difficult issue, not only to track down and give
appropriate representation of this knowledge, but even more so to integrate it
and make optimal use of it in a working system.

Our approach to this problem is to rely on a uniform representation format for
object descriptions (both linguistic objects and domain objects), to use simple
and general rule formalisms such as context free grammars with constraints to
express linguistic knowledge and to employ constraint-propagation as the main
processing formula.

In the pilot version of LINLIN, called FALIN, we are running an LFG chart
parser in conjunction with a semantic network and a simple module for
identifying and classifying objects on the basis of intrinsic properties as well as
properties concerning their discourse status. While FALIN itself was not
running during 1987, the major components (dictionary, morphological
processor, grammar, parser, semantic network) have been completed. The
system is expected to run in the spring of 1988.

The output of FALIN is a pair of a grammatical description (functional
structure) and a content description. These two structures have the same
format but contain different kinds of information. The functional structure
describes the input utterance and its constituents as syntactic objects
employing attributes for grammatical relations and morphosyntactic features.
The content structure describes the utterance as a message with attributes
representing basic object types, inherent properties, relations between objects
in the domain as well as ” discourse relations” between linguistic and
non-linguistic objects (such as being the speaker, or the topic, of an utterance)
(cf. Ahrenberg, 1987b).

The descriptors of the content structure are determined on the basis of (a)
linguistic information, (b) semantic information (encoded in definitions for
object types and attributes) and (c) pragmatic information encoded in the
current dialogue state, which is treated as an object on a par with other
objects.

88 ID A ANNUAL RESEARCH R E PO R T 1987
The Laboratory for Natural Language Processing

8.3.3 Discourse representation

Discourse representation has a double interest to us. On the one hand we are
interested in the computational modeling of a discourse state as explained in
the previous section. Work in that direction has only just begun, however. On
the other hand we have an interest in cognitive models of discourse.

The notion of discourse representation has come more and more into focus in
cognitive science research on text understanding. There exist many approaches
to the problem of discourse representation, and a number of theoretical notions
such as frame, script, context space, focus space, discourse model have been
put forward.

Nils Dahlbäck, in his thesis work, starts out from Johnson-Laird‘s theory of
mental models and evaluates it as a theory of discourse representation both
theoretically and empirically. The empirical studies comprise two experiments.
The first experiment had subjects reading texts with referential discontinuities
and investigated the role of background information in interpreting such texts.
An interesting phenomenon showed up, namely that there seemed to be
individual differences in cognitive strategies between subjects. These two
strategies can be described as propositional vs. spatial. Background knowledge
seemed more available for subjects using a spatial strategy. A second
experiment was then designed to further investigate these individual
differences. The data analysis for this experiment has just started.

The theory of mental models is also the starting point for an analysis of the
concepts of ’symbol’ and ’knowledge’ as used in AI and cognitve psychology. It
is argued that the word ’symbol’ is used in two different senses, and that the
confusions arising from this is one of the causes for the controversy on the
symbolic nature of the mind and of the possible limitations of AI-systems
(Newell, Dreyfus, Winograd).

8.3.4 The study of dialogues between human users and NLIs

A natural language dialogue between a computer and a human user by means
of a natural language interface differs in important respects from human
dialogues, spoken as well as written. To some extent these differences are
known, but there is a need for empirical studies aiming at uncovering the
similarities and differences between these types of dialogues. Among the
questions we want answers to are: (i) What linguistic coverage do we need in a
natural language interface? (ii) How much of the language is specific for
different domains? (iii) What restrictions and limitations can we impose on the
dialogue without it causing problems for the user?

To perform such studies we have developed tools for the simulation of NLIs as

IDA ANNUAL RESEARCH REPORT 1987
The Laboratory for Natural Language Processing

89

well as for the analysis of dialogue. The simulation NLI (Dahlbäck &: Jönsson,
1986) has been used in experiments to collect an initial set of 20 dialogues
where the subjects were given different tasks to solve by means of a system
which they believed were a database or advice system equipped with an NLI.
Preliminary results of these experiments indicate that anaphora and ellipsis are
common phenomena, that the linguistic variation is limited but that individual
differences in style are important (Dahlbäck & Jönsson, 1988a, b).

For the analysis of the dialogues we have designed an interactive tagging
system called DagTag (Ahrenberg & Jönsson, 1987). DagTag uses descriptors
(attribute-value pairs) as tag units and is more general than most existing
tagging systems in its ability to deal with constituents above (and between)
word and sentence level. The different kinds of constituents recognized by
DagTag are Dialogue, Sequence, Utterance, Clause/Move and Phrasal
constituent. The relation between units on different levels is one of
constituency, i.e. the system assumes that a Dialogue can be analyzed into a
sequence of Sequences, which in turn can be analyzed into a sequence of
Utterances, and so on. The category of Phrasal constituent is recursive. Thus,
a tree structure is imposed on the dialogue during the analysis.

The system can be used for finding out quite subtle information from the
analyzed dialogue, e.g. correlations between grammatical and functional
properties. A set of dialogues can be searched by means of a model dag, a
structure combining any kind of information on any set of the five structural
levels of the system, and create statistics as well as concordances from the
search.

Our future plans for DagTag include its extension into a semi-automatic
system by the incorporation of a parser (presently, all tagging is done by the
use of menues), and into a learning system whereby the analyses inputted
manually are used by the system to extend its grammar and lexicon.

Figure 2: Sample interpretations from ClockWise.

90 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Natural Language Processing

8.3.5 CLO CK W ISE — a system that interprets temporal
expressions

The language of an NLI naturally differs from one domain to another. But
certain sublanguages, such as the language of times and temporal relations,
recur from one application to another.

In natural language temporal information is expressed in a number of different
ways. To refer to a particular day, for instance, one might provide information
about a date, month and year, such as January 1st, 1987. This piece of
information could be given in other forms: the first of January, 1988,
0 1 /0 1 /1 9 8 8 , 1988 -01 -01 , the first day of 1988. Provided that speakers use the
same calendar the above expressions will pick out the intended time point
regardless of when the expression is uttered. Other expressions, such as next
week or tomorrow, pick out different time points depending upon the time of
speech, that is, the time referred to is determined by speech-time and the
expression. These expressions are said to be deictic or indexical. Speakers also
exploit background and contextual knowledge to a large extent. A phrase like
in D ecem ber will refer to a particular December of a certain year although a
year is not specified in the same utterance. A detailed account of the structure
of temporal adverbials is given in Merkel (1987).

We have constructed a system, ClockWise, that is capable of mapping
temporal expressions in natural language into an absolute time location on a
time axis. When ClockWise is fed with an expression such as next week on
Friday morning at six o ’clock the output would be a frame where values have
been specified for periods such as year, month, day and hour. The values for
the first three of these are calculated from the expression tom orrow starting
from speech time which is taken from the computer’s internal clock. ClockWise
will also deduce what day of week the expression refers to and what week this
day belongs to, though this is not part of the explicit information in the
expression itself.

The syntactic variation for temporal expressions is large, which is indicated by
the following examples:

On M onday next week at six o ’clock.
Next week on M onday at six o ’clock.
On M onday at six o ’clock next week.
A t six o ’clock on Monday next week.
Next week at six o ’clock on Monday.
A t six o ’clock next week on Monday.

ClockWise interprets all of these expressions as having the same temporal
reference.

ID A AN N U AL RESEARCH REPORT 1987
The Laboratory for Natural Language Processing

91

Figure 3: The transition net used in ClockWise.

The first version of ClockWise consists of a parser, based on a finite-state
machinery, and a temporal expert which exploit its knowledge about temporal
entities and relations and infers implicit temporal information. During the
parsing process temporal data is stored in a notepad. When the notepad is
filled the temporal expert will evaluate the data and output an absolute time.

A second version of ClockWise is under construction. This is based on an
LFG-type grammar to allow for more compact expression and integration in a
larger grammar.

8.4 External contacts and major events of 1987

NLPLAB likes to maintain contacts both with the research community of our
field and with interested parties in other academic fields as well as in industry
and society at large. We regularly participate in the meetings of SAIS (The
Swedish AI Society), OFTI (The Area Group for Resaerch into Speech and
Interaction) and the Nordic meetings of Computational Linguistics (” Nordiska
datalingvistikdagarna”).

92 ID A ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Natural Language Processing

In March IDA and NLPLAB hosted a symposium on Text and Courses of
Events sponsored by the Humanistisk-Samhällsvetenskapliga Forskningsrådet
(HSFR). The symposium was part of the planning phase of a new HSFR
research programme, Språk, Kommunikation och Teknologi (SKOT) and
focused on the various relations between textual structure and event structure.
Invited speakers were Jerry Hobbs, Stanford, Robin Cooper, Edinburgh and
Bonnie Webber, Philadelphia.

In August we took part in the symposium on ” Effektiv Människa-Dator
Interaktion” (Efficient Human-Computer Interaction) in Linköping with
participants from Swedish industry and authorities where Arne Jönsson gave
the speech on natural language interfaces.

Nils Dahlbäck and Sture Hägglund of ASLAB in cooperation have written a
report for the MDA (Humans, Computers and Working Life) research program
(Dahlbäck & Hägglund 1987).

In February Lars Ahrenberg defended his doctoral dissertation (Ahrenberg,
1987a). This happy event took place in Uppsala.

8.5 List of publications

The following are the publications referenced in the text above. For a full set
of NLPLAB publications, please see the appendix at the end of the annual
report.

Ahrenberg, Lars (1987a). Interrogative Structures o f Swedish. Aspects of the
Relation between Grammar and Speech Acts. Doctoral dissertation, Reports
from Uppsala University department of Linguistics 15, Uppsala 1987.

Ahrenberg, Lars (1987b). Parsing into discourse object descriptions. In
Proceedings o f the 3rd Conference of the European Chapter of the Association
of Computational Linguistics, Copenhagen April 1-3 1987, pp. 140-47.

Ahrenberg, Lars and Jönsson, Arne (1987): An interactive system for tagging
dialogues. Paper presented at the 14th international conference of the
association for literary and linguistic computing, Gothenburg, June 1-5, 1987.
Also as Research Report LiTH-IDA-R-87-22, Inst f datavetenskap, Linköpings
universitet.

Dahlbäck, Nils & Hägglund, Sture (1987). Människa datorsystem i samverkan:
Probleminventering och förslag till forskningsinsatser. Rapport framtagen för
forskningsprogrammet Människa-Dator-Arbetsliv (MDA).

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory for Natural Language Processing

93

Dahlbäck, Nils & Jönsson, Arne, (1986). A system for studying human
computer dialogues in natural language, Research Report, LiTH-IDA-R-86-42,
1986.

Dahlbäck, Nils & Jönsson, Arne (1988a). Talking to a computer is not like
talking to your best friend. To be presented at The first Scandinivian
Conference on Artificial Intelligence, Tromsö, Norway, March 9-11, 1988.

Dahlbäck, Nils & Jönsson, Arne (1988b). Analyzing human-computer dialogues
in natural language. To be presented at The 3rd IFAC/IFIP/IEA/IFORS
Conference on Man-Machine Systems, Analysis, Design and Evaluation. Oulu,
Finland. June 14-16 1988.

Merkel, Magnus (1987). The Interpretation o f Swedish Temporal
Frame-Adverbial Phrases. Paper presented at the 11th Scandinavian
Conference on Linguistics, Bergen 10-13 June 1987 and to appear in the
proceedings.

Wirén, Mats (1987). A Comparison of Rule-Invocation Strategies in
Context-Free Chart Parsing. Proceedings of The Third Conference o f the
European Chapter of the Association for Computational Linguistics,
Copenhagen, Denmark. Also as research report LiTH-IDA-R-87-13,
Department of Computer and Information Science, Linköping University,
Linköping, Sweden.

Wirén, Mats (1988a). A Control-Strategy-Independent Implementation of
PATR. Paper accepted for presentation at The First Scandinavian Conference
on Artificial Intelligence, Tromsö, Norway.

Wirén, Mats (1988b). On-Line Parsing with a Control-Strategy-Independent
PATR System. Paper submitted to The 12th International Conference on
Computational Linguistics, Budapest 22-27 August 1988.

94 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory for Natural Language Processing

ID A AN N U AL RESEARCH RE PO R T 1987
The Programming Environments Laboratory

95

9.

PELAB
The Programming Environments

Laboratory

Bengt Lennartsson

The research in PELAB is currently concentrated on two areas:

support for handling distributed software, and

program transformations in the context of very high level languages

In this chapter we first give a general introduction to Programming
Environments e ls a research area. Then there is a list of the current members of
the PELAB group. After that we describe our general model, overlapping
kernel projects, for the organization of our research. Finally there are
presentations of the activities in three such kernel projects: a summary of a
completed kernel project, DICE, Distributed Incremental Compiling Environ­
ment, a more exhaustive presentation of PEPSy, Programming Environments
for Parallel Systems, in the middle of its lifetime, and finally some of the ideas
behind MLSA, Multi-Level Software Architectures to be born. A reader who is
mainly interested in our results during 1987 can skip to Section 11.3.

Programming Environments is a research area aiming at better understanding
of and support for the software specialist’s work on system design and
implementation. In the academic environment new ideas are being tested, and
new methods and tools are developed. A number of the research results have
been used in production quality tools and systems now available on the
market. For instance, the development of integrated incremental environments
in the research community is the basis for commercial products like the Ada
environment from Rational, Inc.

The work in PELAB is mainly supported by STU, The Swedish Board for Technical
Development.

96 IDA ANNUAL RESEARCH R E P O R T 1987
The Programming Environments Laboratory

Programming environment research covers a wide spectrum of aspects, each
needing its own research method:

development of new incremental algorithms for program analysis,
synthesis and transformation

development of an appropriate representation of software systems and
their components including representation of dependency relations
among objects of different versions

experimental development of the overall structure and architecture of
integrated programming support environments

experimental development of user interfaces including selection of
functions that really support the software specialist and increase
software quality and productivity

Development of efficient algorithms is done primarily through formal
theoretical work. Design of an object management system has to be based on
sound formal concepts, but also on experiences from tool integration and
interaction in actual environments. The same applies to the overall structure
and to the architecture of programming environments. The last aspect, the
selection of functionality and the design of user interface, however, has to be
investigated mainly experimentally. Prototypes have to be implemented,
sufficiently robust and complete for evaluation.

The evaluation of prototype implementations, however, generally need to be on
a small scale for two reasons. Firstly, in the academic environment we don’t
have very big systems and projects to play with. It is not realistic to organize
projects with hundreds of people producing hundreds of thousands lines of code
just for tool and method evaluation. Secondly, response time is a very essential
parameter for user satisfaction in general and also for the tuning of
functionality and of dialogue design. The optimal border line between what
should be done by the system and what should be done by its user is a
trade-off depending on performance of both parties. Programming environment
research is aiming at investigating and developing methods, tools, and systems
appropriate for industrial use several years ahead in the future. At that time
the computers used for industrial software development will be some order of
magnitude more powerful than what is available in the academic environment
today. Hence, to have realistic response times in the evaluation of academic
prototype environments, the size of the application has, in general, to be of
moderate size.

The rapidly decreasing price/performance ratio for hardware, processing power
as well as memory, continuously moves the border-line between what is
possible and impossible. This applies both to the experimental components of
programming environment research and to the industrial software development
environments.

ID A AN N U AL RESEARCH REPORT 1987
The Programming Environments Laboratory

97

9.1 PELAB Personnel 1987

The members of PELAB share their time between undergraduate education
and research. The research part is 20 to 80 per cent of full time. It varies from
person to person, and also from one year to the other.

Bengt Lennartsson, PhD 1974, lab. leader
Gunilla Lingenhult, secretary

Supervisors:

Peter Fritzson, PhD 1984
Anders Haraldsson, PhD 1977

Employed graduate students:

Rober Bilos, licentiate 1987
Johan Fagerström, licentiate 1986
Bengt Karlstrand, BSc
Mariam Kamkar, licentiate 1987
Yngve Larsson, MSE
Nahid Shahmehri, licentiate 1987
Lars Strömberg, MSE
Ola Strömfors, licentiate 1986

Associated persons:

Ulf Cederling, University of Växjö
Pär Emanuelson, Epitec AB
Kristina Ernstsson, lecturer IDA
Azadeh Ghaemi, Programsystem AB
Tommy Olsson, lecturer IDA
Kjell Post, undergraduate student
Tom Rindborg, Softlab AB
Dick Schefström, TeleLogic AB
Dan Strömberg, Swedish Defence Research Institute
Jerker Wilander, Softlab AB

9.2 Overlapping Kernel Projects

In programming environment research we have to change our focus of
attention as hardware development rapidly moves the border between what is
possible and not. In PELAB we do this, not continuously, but stepwise every
three to five years. Our organization is based on kernel projects. The
philosophy behind kernel projects is to let the students work on individual but
related problems, and that their work should be based upon and contribute to
the accumulated knowledge and experience in the group.

Before we start a new kernel project we spend a considerable time on defining
it in terms of an appropriate area for research, a set of problems or aspects we
consider relevant. The lifetime of a kernel project is about five years. In the

98 IDA ANNUAL RESEARCH REPORT 1987
The Programming Environments Laboratory

first phase, two to three years, emphasis is on developing concepts and models,
often by a sequence of iterations where some of the ideas are tested in
prototype implementations. However, in this early phase it is typically a job
only for one or two persons, frequently discussing with the rest of the group.

In the PELAB history there have been two successfully completed kernel
projects, REDFUN and DICE initiated by Anders Haraldsson and Peter
Fritzson, respectively. There is one in progress, Programming Environments for
Parallel Systems, PEPSy, in the transition from its first to its second phase.
There is also a new one to be started, currently labeled MLSA for Multilevel
Software Architectures. It is instructive to look at the kernel projects and to
study when they have resulted in publications.

Overlapping Kernel Projects

In the early phase of each kernel project external publications have occurred
sparsely. After a solid basis, in the form of a PhD thesis work, however, it has
turned out to be easy for others to join, to do interesting work, and to publish
results. Anders Haraldsson’s work on partial evaluation in the REDFUN
project inspired Pär Emanuelson and Jan Komorowski to apply partial
evaluation and the REDFUN implementation to pattern matching and to logic
programming, respectively. In the same way Peter Fritzson’s work on the
Distributed Incremental Compiling Environment, the DICE project, generated
thesis work for Johnny Eckerland on retargeting the incremental code
generator, for Rober Bilos on token-based program representation, and for
Mariam Kamkar and Nahid Shahmehri on program flow analysis. PEPSy has
just now after two years evolved to a state where the ideas and experiences can
be presented at international conferences.

We have found that in a group of the size of PELAB, it is convenient to have
overlapping kernel projects. In order to be able to annually show results to our
sponsors and to smoothly accept new graduate students, it seems to be optimal

ID A AN N U AL RESEARCH RE PO R T 1987
The Programming Environments Laboratory

99

to set up a new kernel project when the current one starts to generate
publications.

We present the idea of overlapping kernel projects not only to explain the work
in PELAB but also as a possible more general model for combined
experimental and theoretical research in rapidly evolving areas.

9.3 Research Projects

The role of the kernel project is mainly to form a conceptual and social
environment for the researchers and graduate students. Ideas and experiences
are inherited and propagated across project borders. For instance, results in
program manipulation in the REDFUN project, 1975-1981, will be highly
relevant for the MLSA project we are planning to start.

9.3.1 The DICE Project (Peter Fritzson et. al.)

One goal in the DICE project (Distributed Incremental Compiling
Environment) was to design and implement an appropriate architecture for a
full scale integrated environment supporting the development of programs
coded in block-structured languages and executing on a separate connected
target.

The main results are:

- the flexibility normally available in an interpreting system can be achieved in a
compiling system

- the functionality o f a high level target debugger can be obtained via the
incremental compiler without any target code instrumentation, and without a
target resident debugger at all.

The design and implementation of the DICE system was done during
1980-1984. Some related problems have been studied and reported since then.

During 1987 Rober Bilos completed his work on token-based program
representation. A primary goal with this work has been to investigate the
consequences of token-based program and document representation. It was
found that a program or a document represented as a token sequence saves on
the average 50% memory space compared with a textual representation.
Furthermore, program representations such as trees or graphs must in general
be linearized in order to be processed by current delta algorithms. The token
sequence is an alternative linear representation, and trees, for instance, can be
recreated very quickly by the use of very fast LR parsing methods. Another
advantage, compared to textual representation, is that deltas between program
versions stored in source code control systems become insensitive to changes in
whitespace or formatting style.

100 IDA ANNUAL RESEARCH R E P O R T 1987
The Programming Environments Laboratory

In 1987 Mariam Kamkar and Nahid Shahmehri completed their work on
program flow analysis as a basis for interactive queries of programs. It has
been found that data flow problems appropriate for query applications often
need to keep track of paths associated with data flows. By contrast, flow
analysis in conventional compiler optimization applications tend to collect just
summary flow information.

Ola Strömfors’ work on program editors has been quite independent of the
DICE project, but on related problems. During 1987 he has been employed
part time by Programsystem AB. He has worked together with Dick
Schefström at TeleLogic, and his powerful editor, ED3, is now an integrated
part of the next generation of the Ada environment, ARCS, from TeleSoft-
TeleLogic.

Dan Strömberg completed his licentiate thesis during 1987. Part of his work
was done in the framework of DICE when he was a PELAB member some
years ago. In his thesis he also presents results from his current research at
FOA, the Swedish Defence Research Institute.

Recent DICE-related publications:

Rober Bilos: Incremental Scanning and Token-based Editing. Licentiate Thesis
No 108. Linköping Studies in Science and Technology. Linköping 1987.

Rober Bilos, Peter Fritzson: Experience from a Token Sequence Representation
of Programs, Documents, and their Deltas. Proceedings o f the International
Workshop on Software Version and Configuration Control. Grassau, FRG. Jan.
1988.

Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis
Applied to Queries of Programs. Licentiate Thesis No 118. Linköping Studies
in Science and Technology. Linköping 1987.

Mariam Kamkar, Nahid Shahmehri, Peter Fritzson: Affect-Chaining and
Dependency Oriented Flow Analysis Applied to Queries of Programs. To
appear in the Proceedings of the A C M Symposium on Personal and Small
Computers. Cannes, France. May, 1988.

Sven Moen: Drawing Dynamic Trees. Master Thesis. Department of Computer
and Information Science, Linköping University. October 1987.

Kjell Post: DIESEL - Lab Course in Compiler Construction. Master Thesis.
Department of Computer and Information Science, Linköping University.
November 1987.

Dan Strömberg: Transfer and Distribution of Application Programs. Licentiate
Thesis No 126. Linköping Studies in Science and Technology. Linköping 1987.

Dick Schefström, TeleLogic: The System-Oriented Editor - A Tool for
Managing Large Software Systems. Using Ada: A C M SIGAda International
Conference Proceedings. Boston, MA. Dec. 1987.

ID A AN N U AL RESEARCH REPORT 1987
The Programming Environments Laboratory

101

9.3.2 The P E P S y P roject (Johan Fagerström et.al.)

The general goal of the PEPSy project is to develop methods and tools for the
design and implementation of software for parallel and distributed systems.

The PEPSy paradigm is based on the following characteristics of distributed
software systems:

Large size. Distributed systems often consist of a large (dynamically
changing) set of modules. Keeping track of these modules is difficult
both for the developer and for the support system.

Changing environment. Changing a system often destroys structures
designed into it. It also tends to make documentation out-of-date.

Natural and introduced non-determinism. Varying time-delays and
user-introduced guarded expressions lead to non-deterministic
behavior.

Time-dependent behavior. A debugger will slow down some parts of the
system. Modules depending on time (e.g., a time-out) will be affected
even if not debugged.

The work so far has concentrated on the first two problem areas. In the
following we present a paradigm and a programming environment in which
testing is done using problem-oriented terms. Complexity is controlled using an
abstraction mechanism. The paradigm supports inter-process debugging using
’borders’ axound objects similar to [Smith 81]. His system-defined borders have
been extended with user-defined borders around sets of objects.

Complexity in distributed systems is also tackled by insisting on (and
enforcing) a hierarchical object-oriented design with well-defined interfaces
between components. The paradigm also introduces so called ’control units’
which support structured and localized changes in designs. The approach is
similar to [LeBlanc 85]. However, we have concentrated on integrating the
paradigm with a programming environment.

Our paradigm is based on processes which are combined into so called software
ICs. The nature of the processes is language dependent, but our paradigm is
independent of any particular programming language. The processes have an
interface and they communicate via logical channels. These channels are
uni-directional. A software IC is a set of communicating processes encapsulated
into a black box by means of a so called control unit. The control unit is
responsible for linking and un-linking logical channels inside the software IC. It
is also used to construct well-defined states locally inside the software IC, so
called clean points.

A complete description of the model and its implementation and integration
with a programming environment will be presented in Fagerström’s PhD thesis
1988.

102 IDA ANNUAL RESEARCH R E P O R T 1987
The Programming Environments Laboratory

A Software IC

Traditional tools like editors, compilers, interpreters, linkers, and loaders play
important roles in program development. They must be re-evaluated in the
distributed case. For example, the optimizing pass of a compiler might try to
add code to increase parallelism and thus performance [Hibbard 82]. ’Objects’
provide an appropriate component for editing, compiling, and distributing.
Incrementality can be provided at varying granularities. In the DICE project it
was on the statement level. In PEPSy it is on larger objects, processes, of
varying sizes. We have two editors, one at the process level, language
dependent, and one language independent configuration editor used to create
software ICs.

Editor for Software ICs

When entered, the configuration editor automatically creates a sub-class of the
class control unit, an external interface, and various control channels to the
external world. The programmer can then use the editor to record (by pointing
and by using menus) the appropriate configuration code executed by the
control unit when it is started. Commands include creating and deleting
sub-objects, and linking and un-linking channels between interfaces. The code
for this, the configuration code, is generated and stored in the control unit. In
the same way code for tracing, conditional or unconditional, and for demons
can be generated and installed from the editor on ports, interfaces and
channels. Probes and interface testers are other tools in our model.

A prototype of the PEPSy model has been implemented in Smalltalk-80.
Present and future work includes refinement of the model and the tools. Future
implementations will build on CONIC [Sloman 85] on a network of SUN work
stations.

ID A AN N U AL RESEARCH RE PO R T 1987
The Programming Environments Laboratory

103

Recent PEPSy publications:

Johan Fagerström: Design and Test of Distributed Applications. Proceedings
of the 10th International Conference on Software Engineering. Raffles City,
Singapore. April 11-15. 1988.

Johan Fagerström, Lars Strömberg: A Paradigm and System for Design and
Test of Distributed Applications. Proceedings of IE E E Com pcon Spring’88.
San Francisco, CA. Feb. 1988.

Johan Fagerström: A Paradigm and System for Design o f Distributed System s.
Forthcoming PhD Thesis. Linköping Studies in Science and Technology.
Dissertations. 1988.

Johan Fagerström: Enabling Structured Debugging of Distributed Systems. To
appear in the Proceedings of the Workshop on Parallel and Distributed
Debugging. Madison, WI. May. 1988.

Yngve Larsson: A Testbed Environment for Debugging Distributed Systems.
To appear in the Proceedings of the Workshop on Parallel and Distributed
Debugging. Madison, WI. May. 1988.

References:

Hibbard 82] P.G. Hibbard, T.L. Rodeheffer: Optimizing for a Multiprocessor:
Balancing Synchronization Cost against Parallelism. Proceedings of the 5th
International Symposium on Programming. Torino, Italy. 1982.

[LeBlanc 85] T.J. LeBlanc, S.A. Friedberg: Hierarchical Process Composition
in Distributed Operating System. Computer Science Department, University of
Rochester.

[Sloman 85] M. Sloman, J. Kramer, J. Magee: The CONIC Toolkit for
Building Distributed Systems. Proceedings of the 6th IF A C Distributed
Control System Workshop. Monterey, CA. May. 1985.

9.3.3 Next Kernel Project

We have not yet definitely decided about the kernel project to follow PEPSy.
What we are considering is some kind of amalgamation of what is often called
the transformational approach and very-high-level-languages. Currently we are
collecting material and investigating different ideas. The working title of the
new activity is Multi-Level Software Architectures, MLSA.

The background is that we imagine that software specialists designing systems
in the future will define their own notions and operations tuned to the specific
problem or application domain, rather than implementing very large systems in
a standardized general purpose programming language. In our vision there are
” languages” on several levels, and the software specialist designs and
implements these languages and bidirectional translators for transferring
information about data structures, operations, and current state, between the
different levels. We are aiming at a software architecture where the topmost

104 IDA ANNUAL RESEARCH R E P O R T 1987
The Programming Environments Laboratory

level, closest to the application, will be expressed in application oriented
concepts; that the application domain expert will be able to take care of most
of the tuning and maintenance himself.

We have started some experiments to find out whether the Refine system from
Reasoning Systems, Inc. is an appropriate research vehicle for further work.
The Refine language may be appropriate for executable high level specifications
of language semantics as well as of tools.

One possible experiment is to generate incremental symbol processing modules
of compilers from high-level specifications, using the transformational
approach. Another idea discussed tentatively is to construct more powerful
partial evaluators, using transformational techniques combined with results
from flow analysis.

References:

Douglas Smith, Gordon Kotik, Stephen Westfold: Research on Knowledge-
Based Software Environments at Kestrel Institute. IE E E Trans, on Software
Engineering. Vol SE-11, No 11. Nov. 1985.

Reasoning Systems: Refine 2 .0 Users Guide. Reasoning Systems Inc. 1801 Page
Mill Road, Palo Alto, CA 94304. Sept. 1987.

Peter Fritzson: Incremental Symbol Processing. Research report in preparation.
Submitted to IEEE Software.

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory For Representation o f Knowledge in Logic

105

10.

RKLLAB

The Laboratory for
Representation of Knowledge in Logic

Erik Sandewall
Professor of computer science

The area of interest for RKLLAB is theoretical aspects of knowledge based
systems. The activity of ” knowledge engineering” , or the design of expert
systems and other knowledge based systems, is often a rather ad hoc activity.
Logic (and discrete mathematics) with suitable extensions, may be applied to
strengthening the theoretical basis for knowledge engineering. It is the
objective of RKLLAB to contribute in that respect.

10.1 Researchers and Projects.

10.1.1 Activities

The activities of RKLLAB during 1987 have been in the following, overlapping
and interacting areas:

Non-standard logics and their implementations, in particular:
- non-monotonic logic and reason maintenance
- logic of uncertainty
- constraint programming systems

The work in RKLLAB is mainly supported by STU, The Swedish Board for Technical
Development.

106 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory For Representation o f Knowledge in Logic

Professional knowledge and information management system s
- the LINCKS project

Representation o f knowledge about machinery and processes, in particular:
- theoretical analysis of action structures
- introductory studies of plan guided vehicles
- plan guided manufacturing systems

10.1.2 Laboratory members.

The following researchers have been members of RKLLAB during 1987 (or a
part of the year):

Laboratory leader:
Erik Sandewall

Project leaders and senior graduate students:
Dimiter Driankov
Jim Goodwin
Jalal Maleki
Lin Padgham
Michael Reinfrank
Ralph Rönnquist

Graduate students and masters thesis students:
Christer Bäckström
Patrick Doherty
Christer Hansson
Peter Haneklou
Johan Hultman
Arne Stahre
Ulf Söderman
Peter Åberg

10.1.3 Main current achievements.

The following degrees were awarded to RKLLAB members during 1987:

- Jim Goodwin completed his Ph.D. The title of the thesis was: ” A Theory and
System for Non-Monotonic Reasoning”

- Jalal Maleki finished his licentiate degree. The title of the thesis was:
” ICONStraint, A Dependency Directed Constraint Maintenance System”

- Ralph Rönnquist finished his licentiate degree. The title of the thesis was:
” Network and Lattice Based Approaches to the Representation of Knowledge” .

ID A AN N U AL RESEARCH REPORT 1987
The Laboratory For Representation o f Knowledge in Logic

107

In addition there has been the following major achievements in terms of
finished research results during 1987:

a) work on reasoning under uncertainty, described in more detail below
(Driankov)

b) extension of the theory of action-plans, making it possible to characterize
parallel, interacting actions (Bäckström)

c) development of a theory of semantic states (Sandewall)

d) completion of the LINCKS hyperobject database system (Padgham,
Rönnquist, Stahre, Åberg)

Results which were described in the annual research report for 1986, but with a
reference only to a departmental report or manuscript, have reached
international publication during 1987. This applies to the departmental reports
86-02 (by Rönnquist), 87-05 (by Bäckström), 87-06 (by Hultman), and to the
manuscript by Sandewall mentioned there.

A total of 12 papers by RKLLAB members were published in international
journals or conferences during 1987, as listed in the appendix E.

In this chapter we shall first give a brief overview of the different activities
during 1987, including not only finished results but also ongoing projects, and
then give a detailed account of one project namely Driankov’s work on
reasoning under uncertainty.

10.2 Focal point of research: Plan-Guided Systems.

During 1987 the lab’s research projects and researchers have given special
attention to the special topic of Plan-Guided Systems (” Planstyrda system”).
From a research perspective, this term can be understood as including:

- the A.I. topic of knowledge based planning
- the topic of autonomous agents as understood in A.I.
- interactions with the field of automatic control
- interactions with the research on multi-sensor data fusion
- software engineering aspects of intelligent robots

From the application point of view, we define a plan-guided system as a system
(for example an unmanned vehicle, or an ” intelligent” automatic
manufacturing cell) which is able to accept an assignment or request, make a
plan for how to carry out the assignment, execute the plan, recognize problems
which may impede the plan execution, revise the plan if necessary, and report
success or failure.

It is clear that A.I. and knowledge engineering techniques are only one part of
what is needed for designing plan guided systems. Automatic control, sensor

108 IDA ANNUAL RESEARCH R E P O R T 1987
The Laboratory For Representation o f Knowledge in Logic

technology including sensor data fusion and often computer vision are also
needed. Our point is however that the successful design of PGS requires a tight
connection of results from these various fields. It is not sufficient to let the
specialists in the various fields build each their part of the total system. In
particular during 1987 we have opened a dialogue with our university’s division
of automatic control, headed by professor Lennart Ljung who is a world-class
authority in his field. It is too early to report any results from these contacts,
but it seems already that there are significant research topics of great common
interest.

The research on plan guided systems also builds of course on our own work
during earlier years. Knowledge based planning is one essential aspect of PGS,
and relates to reasoning about time and action, and therefore also to
non-monotonic reasoning. More about this research follows below.

The logic of uncertainty is also of great potential importance for plan-guided
systems, since they have to deal with uncertain information about the
environment they inhabit. This combination has not been pursued yet,
awaiting that Dimiter Driankov will finish his thesis, but may become
important in the future.

10.3 Non-standard logics and their implementations.

The term ” non-standard logic” is popularly used for ” everything except first
order predicate logic” . In a more positive vein, we are interested in two kinds
of extensions over the ” standard” :

- special semantics, such as ” fuzzy” semantics and ” multiple worlds”
semantics;

- special reasoning mechanisms, such as default reasoning (where conclusions
are drawn from the absence of certain knowledge), and reason maintenance
mechanisms (where inference steps are stored in a data base, in such a way
that the property of being a theorem can be turned on and off as logical
support arises and is lost).

There is ample evidence that such extensions are necessary for the further
development of knowledge based systems.

10.3.1 Non-monotonic logic and reason maintenance.

Work in this area has been done by Erik Sandewall and Michael Reinfrank
during the year. We refer to the publication list, and foresee a more extensive
account in a later annual report.

Michael Reinfrank has held a course on Reason Maintenance and prepared a
set of lecture notes for the course.

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory For Representation o f Knowledge in Logic

109

10.3.2 Logic of uncertainty.

Dimiter Driankov has continued his research in this area during the year, and
aims at finishing his Ph.D. during 1988. See the special ” feature” at the end of
the RKLLAB chapter, for a detailed presentation.

10.3.3 Constraint programming systems.

Jalal Maleki presented his licentiate thesis during 1987. (The licentiate is
intermediate between M.Sc. and Ph.D.) Afterwards, he has studied the
possibilities of applying constraint programming techniques to temporal
reasoning.

10.4 Professional knowledge and information
management systems

- the LINCKS project.

This activity has previously been listed as ” Office systems” . We change the
term in order to signal an increasing involvement with specific professions
using the systems. During 1987 such contacts were established with medical
users; other contact areas may be forthcoming.

The class of applications addressed by this research is profession specific tools
for management of information and knowledge. Such tools should not only be
able to handle fully structured knowledge, as used in knowledge-based systems,
but also knowledge represented as free text, pictures, or hypertext. The core
issue for this research is therefore the appropriate representations for data and
knowledge, such that it can both be communicated to the human user, and
” understood” (= processed) by the computing system. This topic includes all
of the following aspects:

- the ” local” information that the user formulates and uses himself or
herself;
- the encyclopaedic information (textbooks, etc.) that the user needs to
access and annotate in the course of his work;
- communication with colleagues, clients, and others. Convenient access to
” local” information for inclusion in messages; convenient administration of
incoming information;
- convenient access to numerical computation and other computer based
services for processing the information.

We wish to explore the possibility of local autonomy in professional knowledge
management systems, meaning that the system would perform certain routine
actions by itself although within the guidelines and policies formulated by the
user. This would result in one type of plan guided system, operating in a world
of information rather than a mechanical world.

110 ID A ANNUAL RESEARCH R E P O R T 1987
The Laboratory For Representation o f Knowledge in Logic

During 1987, the LINCKS group has concentrated, on completing the shared
LINCKS ’hyperobject’ repository. Hyperobjects are data base objects similar to
what one finds e.g. in the Notecard system from Xerox and the HyperCard
system from Apple. Thus a hyperobject may have attributes (strings,
numerical values, etc.), pointers or links to other hyperobjects, and also a text
content whose length is typically one or a few paragraphs. A longer text is
constructed as a set of hyperobjects, which are connected in the obvious ways.

The LINCKS hyperobject repository is a server system which runs on a SUN
computer, and can be accessed from multiple workstations over the Ethernet.
Each hyperobject may exist in several versions, reflecting different generations
of update. Generations do not have to be linearly ordered: if several
workstations fetch a hyperobject to their local workspaces, work at them
independently, and later put back modified versions of the same hyperobject,
then they will be represented as parallel and independent updates.

Several end-user systems that communicate with the repository have been
implemented, namely:
— an Interlisp based system running on a Xerox 1186 workstation
-- a Forth based system running on a Data General portable computer
— an extended Forth based system running on a Macintosh computer
— a system in ’C ’ running on the same SUN computer as the repository itself,
supporting ” dumb” terminals.

The hyperobject repository is a robust and reliable implementation, and has
also been used by a spin-off company, Programsystem AB, in a project
developed for a customer. The present end-user systems however should be
seen as experimental. They will be succeeded by more definite, profession
specific implementations during 1988.

10.5 Representation of knowledge about machinery and
processes

10.5.1 Reasoning about time and action.

During previous years, Erik Sandewall and Ralph Rönnquist have done
research on action structures, i.e. plans where actions may occur both in
sequence and in parallel. The key idea is that each action is characterized in
three ways: by its precondition, post-condition, and prevail condition. The first
two are standard devices; the prevail condition expresses what must hold
constantly while the action is executed. Each of the three conditions is seen as
a partial interpretation.

For purely sequential action, the prevail condition is insignificant since it does
not matter what happens between the beginning and the end of each action.
With prevail conditions, we were able to characterize processes where actions

ID A AN N U AL RESEARCH RE PO R T 1987
The Laboratory For Representation o f Knowledge in Logic

111

are allowed to occur in parallel (because they do not disturb each other), while
not being required to occur in parallel.

The previous results were however not able to characterize processes where
several actions are required to occur in parallel. For example, in order to open
a closed door, we must pull (or push) the door open while depressing the
handle (European type of handle assumed). Only pulling the door, or only
depressing the handle, will usually not cause the door to open.

During 1987, Christer Bäckström has extended the previous theory so that it
also accounts for such interdependent actions. He achieves this by introducing
a fourth condition, called a keep condition, besides the precondition,
post-condition, and prevail condition.

Also during 1987, Erik Sandewall has rewritten the previous results, with some
extensions, as a set of lecture notes. Peter Struss, visiting from Siemens AG,
has prepared a set of lecture notes for his course on qualitative reasoning.
Patrick Doherty has prepared a survey paper of earlier work on temporal logic,
as a basis for his continued work in the area.

10.5.2 Introductory studies of plan guided vehicles.

Several of the younger graduate students in the lab have participated in
introductory studies of plan guided vehicles. Major parts of these studies have
been done in the context of the A.I. branch of the pan-European Prometheus
program, a program for research cooperation between European automobile
manufacturers. Other parts have been done in cooperation with groups in the
Linköping branch of the Research Institute of National Defense (FOA).

10.5.3 Plan guided manufacturing systems.

Johan Hultman has continued the work on the COPPS system, a prototype
software system for controlling machinery. This system was also described in
last year’s report. The design of COPPS is directly based on the action
structure theory described under 10.5.1. The implementation consists of two
parts, a lower layer which does the actual control, and an upper layer which
handles planning, dialogue, etc. The lower layer has been finished and was
reported during 1987; work during the year concentrated on the upper layer.

10.6 International activities.

RKLLAB has taken part in the COST 13 collaborative project number 21, on
” Advanced issues in knowledge representation” , together with Brussels, Pisa,
and Rome. In the context of this project, we are organizing a ” Second
international workshop on non-monotonic reasoning” , to be held in Munich on
13-15 June, 1988. The workshop is co-sponsored by COST 13, AAAI, and

112 ID A ANNUAL RESEARCH R E PO R T 1987
The Laboratory For Representation o f Knowledge in Logic

Siemens AG. Michael Reinfrank is in charge of the arrangements.

Michael Reinfrank also organized a ” Summer course on non-monotonic
reasoning” on June 1-4, 1987, with 23 participants.

RKLLAB organizes a one week summer course on ” The modelling of
uncertainty in expert systems” on May 30 - June 3, 1988. The course is
sponsored by Nordisk Ministerråd. Dimiter Driankov is in charge of the
arrangements.

The following researchers visited RKLLAB during 1987: Allan Brown (General
Electric), Peter Gärdenfors (University of Lund), Kurt Konolige (SRI
International), Dag Prawitz (University of Stockholm).

10.7 Special feature. Reasoning under uncertainty:
Towards a many-valued logic of belief

Dimiter Driankov

The rest of this section consists of a special feature paper by Dimiter Driankov
on resoning under uncertainty.

IDA AN NUAL RESEARCH REPORT 1987
RK LLAB special feature 1987: A Many-Valued Logic o f Belief

113

R E A S O N IN G U N D E R U N C E R T A I N T Y :
T O W A R D S A M A N Y -V A L U E D L O G I C O F B E L IE F

1. S ta te O f T h e A r t In R e a so n in g U n d er U n ce rta in ty .

The existing approaches in reasoning under uncertainty can be divided in two major
classes: num erica l and sym bolic. The num erical approaches impose harsh restrictions upon the
type and structure o f the data on which inferences are based: it is usually required that the
data should form a measurable-space so that an additive or non-additive set-theoretic
measures of uncertainty can be defined. On the other hand, they all represent uncertainty as
a precise quantity (scalar or interval) on a given scale, thus requiring p rec ise yet consisten t
numerical assessments of the uncertainty associated with the validity o f only atom ic sentences
and of their relations. Given the difficulty in consistently eliciting such numerical values, it
has become clear that these approaches require an unrealistic level o f precision that does not
actually represent a real assessment o f uncertainty. Am ong these approaches, one can
distinguish three distinct types: the one-valued, the tw o-valued, and the fuzzy-valued
approach. The one-valued approaches include some o f the more traditional techniques: B ayes
R ule, M odified B a yes Rule and C onfirm ation Theory. A more recent trend is exemplified by
the tw o-valued approaches: D em pster-S hafer T heory, E vidential R eason in g, P robability
B ounds and E vidence Space. Finally, the Fuzzy-valued approaches include: N ecessity and
P ossib ility T heory and The L inguistic Variable A pproach . Within all these approaches it is
possible to define a calculus that provides the mechanism for propagating the uncertainty in
the data through the reasoning process. Similarly, the use of aggregation operators provides a
summary of the information, which can then be ranked against other summaries for
performing rational decisions. However, none of these can provide a clear explanation of the
rea son s that led to a given conclusion.

Formal approaches based on sym bolic representations, are designed to handle a very
specific type o f uncertainty that derives from the in com p leten ess of information. They have a
corresponding logic theory that determines the mechanism by which inferences (theorems) can
be proven or believed to be true. Thus, they concentrate on the set o f tentative conclusions
that might be drawn from a less then compelling evidence, as well as the inference rules that
are able to produce such conclusions. Furthermore, when certain tentative conclusion used in
the deductive process is found to be false, mechanisms built into a so-called
tru th -m ain tenance system are used to keep the integrity o f the data-base o f sentences. These
formal sym bolic representations go under the name of n on -m on oton ic log ics and a number of
distinct approaches have emerged, namely: N M L-I, D efault R eason in g, A u toep istem ic
R eason in g, and C ircum scription . However, as it has been recognized, these approaches lack
any facilities for computing degrees o f belief, which ” ...may be necessary for summarizing the
structure o f large sets o f admissible extensions as well as for quantifying confidence levels” . In
contrast to the n u m erical approaches, the sym bolic ones are more suitable for providing a
trace from the sources o f the uncertain information through the various inference paths to the
final conclusion.

Bonissone, has proposed a list o f requirements that should be satisfied by the ideal
formalism for representing uncertainty and making inference with uncertain information.
These are as follows:

R ep resen ta tion L evel

1. There should be an explicit representation o f the am ount o f evidence for supporting
and for refuting any given sentence, or in other words, an explicit measure of the
amount o f belief and disbelief in the validity of a sentence;

2. There should be an explicit representation o f the information about the evidence, i.e,
m eta -in form a tion , such as evidence source, the reasons for supporting and for refuting
a given sentence, etc. This m eta -in form ation will be used by the con tro l level to
remove conflicting assertions provided by different sources;

3. There should be no global requirement that the measures o f b e lief and disbelief have
to be com p lem en ta ry , i.e., the fact that the evidence available supports a belief to a
degree x should not mean that it does support a disbelief to a degree 1-x.

4. There representation should allow for describing the uncertainty o f the information
at the available level o f detail, i.e., allowing h eterogen eou s in form a tion granularity.

114 IDA ANNUAL RESEARCH R E PO R T 1987
RKLLAB special feature 1987: A Many-Valued Logic of Belief

5. There should be explicit representation of consistency. Some measure of compatibility
should be available to detect trends of potential conflicts, and to identify essential
contributing factors in the conflict.

6. There should be an explicit representation of ignorance to allow for making
non-comm itting statements ,i.e., to express the lack of conviction about the certainty
o f any available choices or events. Some measure of ignorance, should be available to
guide the gathering o f discriminant information.

7. The representation should allow also for non truth-functional assessments of
uncertainty, i.e , one should be able to determine the uncertainty o f compound
statements not only on the basis of the individual uncertainty o f each of its
constituting atomic sentences, but knowing the uncertainty o f a compound statement
should lead to imposing certain restrictions on the Im certainty of the atomic
statements as well.

8. The representation must be, or at least must appear natural to the user to enable
him to describe uncertain input and to interpret uncertain output. The representation
must also be natural to the user to enable him to elicit consistent weights
representing the strength of the implication of each rule.

Inference Level

9. The rules that combine the uncertainty estimates for the validity o f atomic
sentences, in order to obtain a uncertainty estimate for compound sentences should
not be based on global assumptions of evidence independence.

10. The com bination rules should not assume the exhaustiveness and the mutual
exclusiveness o f the elements of the subset o f sentences that serve as hypotheses.

11. The com bination rules should maintain the closure o f the syntax and semantics of
the representation o f uncertainty.

12. Any function used to summarise and propagate uncertainty should have clear
semantics. This is needed to maintain the semantic closure of the representation and
to allow the control level to select the most appropriate combining rules.

13. The reasoning process should not collapse when inconsistency is violated thus,
inflecting the whole system; violations of consistency should result in local
disturbances, not global.

Control Level

14. There should be a clear distinction between a conflict in the information, i.e.,
violation o f consistency, and ignorance.

15. There should be a second order measure of uncertainty. It is important to measure
the uncertainty of the information, as well as the uncertainty o f the measure itself.

16. Making pairwise comparisons of uncertainty should be feasible, since the induced
ordinal or cardinal ranking is needed for performing any kind o f decision-making
activities.

17. The traceability o f the aggregation and propagation of uncertainty through the
reasoning process must be available to resolve conflicts or contradictions, to explain
the support for conclusions and to perform meta-reasoning for control.

Now the following table summarizes the comparison among the approaches mentioned:

Representations Criteria Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Bayesian N N N N N N N Y N N Y N N N N Y N
Confirmation N N Y N N Y N N N Y N N N N N Y N
Dem pster-Shafer Y N Y Y Y Y N Y N N Y N N Y Y Y N
Evidential Reasoning Y N Y Y Y Y N Y N N Y N N Y Y Y N
Probability Bounds Y N Y Y Y Y N Y Y Y Y N N Y Y Y N
Fuzzy Approaches Y N Y Y Y Y N Y Y Y Y N N Y Y Y N
Evidence space Y Y Y N Y Y N Y Y Y Y N N Y Y Y N
Symbolic approaches N Y N N Y N N Y Y Y Y Y Y N N N Y

ID A AN NUAL RESEARCH REPORT 1987
RKLLAB special feature 1987: A Many-Valued Logic of Belief

115

Counting the number o f N o ’s we can see that P robability B ou n d s , the F uzzy A pproaches
and E vidence Space satisfy the same maximal number of criteria. On the other hand, the
criteria which these approaches fail to satisfy, namely criteria 12 and 17, is due to the absence
o f a logic-like process for making inferences. Notice that the Sym bolic A p p roa ch es do satisfy
these two criteria. These observations open a possibility: W hat about a many-valued logic
which uses fu zzy estimates of low er probabilities (or measures o f belief) and upper probabilities
(or implicit measures o f disbelief), as graded versions o f the classical true and fa lse, and also
employes the com bination rules used by these two approaches for defining extended versions
o f the standard logical connectives. However, even such a many-valued logic will fail to satisfy
criterion 7, if it is truth-functional. Furthermore, it will fail in the context of criterion 13
because it will exhibit one of the so-called paradoxes o f im plication, i.e., A and not A im plies
B, saying that anything can be inferred from a contradiction, this leading to global
disturbances, instead o f local.

2. T o w a r d s A M a n y -V a lu e d L og ic o f B e lie f

The type o f logic we have in mind is shaped after the circumstances under which a
hypothetical reasoning machine obtains its input-data. In the first place, we consider the case
when the input-data on which the inferences are based, come from multiple sources. The
crucial point is, that all sources are considered to be equally trustworthy on the whole, but
none of them is assumed to be the ultimate truth-teller. In this context contradictions
threaten ,e.g., a source tells us to expect a sharp decrease in oil prices while another one,
equally trustworthy, predicts that the prices will remain at their present level. If the logic
guiding our reasoning machine was the classical two-valued logic, then it must give up
altogether talking about anything to anybody or, equivalently, it must say everything to
everybody because it is guided by the principle that anything can be inferred from a
contradiction. This is in a striking contrast to the usual informal reasoning, in which the
presence o f contradictory assertions does not cause any great unpleasantness for the latter:
the source of contradictions is usually quickly identified, the contradictory assertions are
detected and dealt with in an appropriate way. Thus, the least we may require from our
reasoning machine is, that it should be able to accept contradictory reports and also indicate
the presence o f contradictions when such are encountered otherwise, we have no way of
knowing that its data-base contains contradictory information. A more radical approach,
which we intend to take, will be to formulate operations on both inconsistent and consistent
assertions and see what their effect on the consistent ones are.

In the second place, instead of being only true or fa lse the input-data carry a credential
regarding the belief in their validity. This credential takes the form o f a quantification of the
amount o f belief in the validity of data in question. In this context the logic should allow for
explicit representation of ” truth-values” in terms of quantified assessments of the amount of
belief hold with respect tö the validity o f propositions. Furthermore, since we want to be able
to represent contradictory assessments o f belief, a ”truth-value” must allow for an integrated
representation o f two items of information: a report on how strongly the validity of a
proposition is believed, and a report on how strongly its validity is disbelieved, i.e., how
strongly the negation of this same proposition is believed. This will very much differentiate
the logic guiding our reasoning machine from the classical two-valued logic with its binary
true/false scheme for assessment o f the validity o f data. On the other hand, we have to
provide for such logical operators which will be able to manipulate in some sensible way not
only ” truth-values” , representing quantified belief and /or disbelief, but also the classical true
and fa lse assessments o f validity meant to express firm belief and /or disbelief in the validity
o f propositions.

In the third place, we consider the case of independent as well as depen dent assessments
o f belief in the validity o f the input-data. In the first case, quantified assessments o f belief
and /or disbelief, provided by a source, are established independently from assessments
supplied by other sources. When a source takes into account belief and /or disbelief
assessments provided by other sources, in order to determine the am ount o f belief and /or
disbelief in the validity of its own reports, then we have the case o f depen dent assessments of
belief. This again will differentiate the logic guiding our reasoning machine from the classical
logic, since when using the latter we can reason only about facts where the validity o f each
fact has been established independently from the validity of all other facts in the data-base.

2 .1 R e p r e se n t in g U n ce r ta in ty A s B e l ie f /D is b e l ie f P a irs

116 IDA ANNUAL RESEARCH RE PO R T 1987
RKLLAB special feature 1987: A Many-Valued Logic o f Belief

The notion o f a verbally defined belief/disbelief pair / A / o f an atom ic proposition A is
introduced in the following manner [1]:

/ A / = [s(A), p(A)]

where, s (A) is a linguistic estimate indicating how likely it is that A may turn out as true;
p (A) is a linguistic estimate indicating how likely it is to fail to refute the validity of A and is
determined from the knowledge about how likely it is that not A , denoted as ­ A , may turn
out as true:

p (A) = Eg - s (­ A)

Furthermore, a set-up is defined in terms of a table assigning one particular
belief/disbelief pair, from a given set o f belief/disbelief pairs, to each atomic formula. Such a
table is in fact a mapping from atomic formulas into the set I , that is, a collection of verbally
defined belief/disbelief pairs that are distributed in six belief-states as follows:

A contradictory (C) belief-state is present when there is a meaningful enough belief in the
validity o f A as well as in the validity of its negation ­ A . In terms o f the degrees o f belief of
A and ­ A this would mean that the likelihood o f A to turn out as true and this o f ­ A
turning true are both at least meaningful.

A belief-state believed to a degree (B), would mean that it seems meaningful to believe in
the validity o f A while it does not seem meaningful at all to believe its falsity (or the validity
o f ­ A) .

A belief-state rather believed than disbelieved (RB) corresponds to the case when it is
meaningful to believe in the validity of A while it also makes sense to hold a belief in its
falsity, though a much lesser such.

A belief-state disbelieved to a degree (D) would mean that it does not seem meaningful at
all to believe in the validity of A while it seems meaningful to assert its falsity (or the validity
of ­ A) .

A belief-state, namely rather disbelieved than believed corresponds to the case when it is
meaningful to believe the falsity o f A while it also makes sense to hold a belief in its validity,
though a much lesser such.

An explicit representation of ignorance, i.e., the case when it is not meaningful to believe
either the validity or the falsity of A , would mean that the likelihood o f A to turn out as true
as well as this o f ­ A turning true are both of such a dimension so that very little is known to
allow us to classify / A / in one of the already discussed belief-states. W e call this belief-state
the unknown (U).

T o be able to avoid the problems of the granularity of the representation, the semantics
o f each linguistic estimate E i is provided by a fuzzy number N. on the interval [0, l] ; N. is
characterized by a parametric membership-function m. (x), x6[0, 1] and this parametric
representation is achieved by the 4-tuple (a. , b. , α. , β .). We use a verbal scale consisting of
nine linguistic estimates for the likelihood of the validity o f a proposition: impossible,
extremely unlikely, very low chance, small chance, it may, meaningful chance, most likely,
extremely likely, certain. Thus the likelihood o f A to turn out as true is being used as a
measure o f our degree o f belief in the validity of A , while the likelihood o f ­ A to turn true is
a measure of the degree o f disbelief in the validity of A (or the degree of belief in the validity
of ­ A) . A very important feature of the linguistic estimates proposed is that each one of them
,say E i , has its mirror-image En+1-i (n is the index o f the linguistic estimate o f maximum
likelihood) about it may.

2.2 The Logical Lattice

The partial order ≤ (less-or-equally believed to be true than) on belief/disbelief pairs is
such that, for every two belief/disbelief pairs / A / = [s(A), p (A)] and / B / = [s(B), p (B)] we
say that,

/ A / ≤ / B / iff s (A) ≤ s(B) and p (A) ≤ p (B)

Furthermore, a belief-state X is above, in the sense of ≤ another belief-state Y (or Y is
below X) if and only if for at least one any /A/ ϵ 6 X there is at least one / B / ϵ Y such that

IDA AN NUAL RESEARCH REPORT 1987
RKLLAB special feature 1987: A Many-Valued Logic o f Belief

117

/B/ < /A/, and there is no such /A/ ϵ X and / B / ϵ Y so that /A/ ≤ /B/. W e say also that
X and Y can not be ordered in the sense of ≤ if and only if for any / A / ϵ X and any / B / ϵ
Y these can not be ordered with respect to ≤ . Here /A/ and /B/ stay for the belief/disbelief
pairs o f any proposition, atomic or compound. Then we showed that the belief-state believed
to a degree is above any other belief-state; rather believed than disbelieved is below believed to
a degree, but above any one o f the remaining belief-states; contradictory and unknown can not
be ordered, but are below rather believed than disbelieved and above rather disbelieved than
believed and disbelieved to a degree; rather disbelieved than believed is below both
contradictory and unknown, but above disbelieved to a degree which itself is at the bottom of
all belief-states.

It was shown [1], that the elements of I form a lattice, called the logical lattice, under the
partial order from above. Particular l.u.b. and g.l.b. operations were introduced and used to
define and and or logical connectives, as well as negation. Furthermore we used these logical
operations to induce a semantics for a language involving them in just the usual way: given
an arbitrary set-up, a mapping from atomic formulas into the set o f belief/disbelief pairs, we
extended it to a mapping o f all formulas into this set o f belief/disbelief pairs. Finally,
entailment, as introduced in [1], relied on this same logical lattice - given any formulas A and
B that might be com pounded by the use of the and and or and negation logical connectives,
we said that A entails B whenever one of the following cases is present:

(I) The case when / B/ and / A / belong to the same belief-state.

(II) The case when belief-state of / B / is above (in the sense o f ≤) the belief-state of /A/.

Finally, we introduced a number of semantically valid, and taken together, semantically
com plete set o f principles for the reasoning machine to use in making its inferences. These
turned out to be exactly the so-called tautological entailments o f relevance logic. Some
important observations in connection with this result are the following:

The ” truth-values” represented as belief/disbelief pairs are definitely not supposed to be
used for determining which formulas count as the so-called logical truths, i.e., as tautologies.
In fact no formula takes always a belief/disbelief pair belonging to the belief-state believed to
a degree so, that property surely will not do as semantic account of logical truth.

Not derivable from our set o f inference principles and not semantically valid, are the
paradoxes o f implication: /A ˄ ­ A/ → / B / and /A/ → / B ˅ ­ B/. The failure of the first o f
them means that just because we have that the validity o f A is believed and that it is
disbelieved we cannot conclude everything. Indeed we may know nothing about the belief in
the validity of B, or just that it is not believed. The failure of the second paradox is equally
evident: From the fact that there is belief in the validity of A , we can not conclude that we
know something about the belief in the validity o f B. For / B ˅ ­ B/ to belong to the
belief-state B is either /B/ to belong to B or / B / to belong to D ; and it may be neither of the
two. These inferences are not wanted in a logic that is designed not to break down in the
presence o f contradictions so, their absence is justified.

The generality o f our approach does not suffer at all because o f the use o f the particular
scale which elements describe the different amounts o f believe and /or disbelieve in the
validity o f propositions. Any scale, its elements being fuzzy or crisp numbers, or intervals, will
suffuce as long as it is possible to compute its closure under each logical operator and its
elements exhibit the mirror-image property.

3. N o n T r u th -F u n c t io n a l A s p e c ts

3.1 T h e In fo r m a t io n L a ttice

Another type o f partial order ⊆ (conveys less-than-or-equal amount o f information) on
belief/disbelief pairs can be defined as,

/A/⊆ /B/ iff s (A)≤ s(B) and p (A)≥ p (B)

so that the set I o f all belief/disbelief pairs is a partially ordered set with respect to ⊆ .
Furthermore, in [2] we defined a specific g.l.b (∩), and l.u .b .(∪) operators which were:
idempotent, commutative associative, distributive, monotone, and strictly increasing in both
arguments. As to the ordering between belief-states in the sense of ⊆ we say that a
belief-state X is above another belief-state Y (or Y is below X), if and only if for at least one

118 IDA ANNUAL RESEARCH R E PO R T 1987
RKLLAB special feature 1987: A Many-Valued Logic o f Belief

/A/ ϵ X there is at least one / B / ϵ Y such that /B/ ⊆ /A/ and /B/ ≠ / A / , and there is no
such /A/ ϵ X and no such and /B/ ϵ Y so that /A/ ⊆ / B j. We also say that X and Y can
not be ordered if and only if any / B / ϵ Y and any / A / ϵ X can not be ordered with respect
to ⊆ . Then it can be shown that the belief-state contradictory is above any other belief-state;
rather believed than disbelieved and rather disbelieved than believed are below contradictory,
and can not be ordered; believed to a degree and disbelieved to a degree can not be ordered
and are below rather believed than disbelieved and rather disbelieved than believed respectively;
both o f believed to a degree and disbelieved to a degree are above unknown, which in turn is at
the bottom o f all belief-states.

3 .2 R e p r e se n t in g N o n T r u th -F u n ct io n a l B eliefs

Suppose we are told that Taxes will be raised or deficit will be high. Let this complex
formula F be assigned a belief/disbelief pair belonging to B, but no belief/disbelief pairs are
assigned to the atomic formulas A = Taxes will be raised and B = D eficit will be high. In this
case a single set-up can not represent the epistemic state in which we should be if told that
/F / ϵ B, but are told nothing about /A / and /B /. For any single set-up in which A or B is
assigned a belief/disbelief pair belonging to B is, a set-up in which either A or B is assigned a
belief/disbelief pair belonging to B and therefore has too much information. Such a set-up
would cause an affirmative answer either to the question Will taxes be raised? or to the
question Will deficit be high? We should not be able to answer either questions since we have
been told only that / F/ ϵ B, but not that either /A / or /B / belong to the same belief-state.

The solution to this problem is to use a collection o f set-ups to represent this epistemic
state. W hen we are told that /F/ ϵ B, we will represent this information by building two
set-ups: one in which / A / ϵ B and / B / ϵ U , and the other in which / A / ϵ U and / B / ϵ B.
Later, when asked Will taxes be raised? we will answer that we do not know, i.e., a
belief/disbelief pair belonging to U will be assigned to A since this atom ic formula does not
have a belief/disbelief pair belonging to B in every set-up. We will also give the same answer
to the question Will deficit be high?. But when asked Will taxes be raised or deficit will be
high? we will produce an affirmative answer, i.e., / F/ will belong to B, since in both set-ups

Let us then define the epistemic state, E, o f the reasoning machine as a collection of
set-ups. In the context of E, the belief/disbelief pair of the complex formula F, is denoted by
E(/F/), and is determined by taking the meet of all belief/disbelief pairs that can be assigned
to F in the separate set-ups o f E:

E (/F/) = ∩ { s (F /) : sϵ E }

W hy this particular definition for the value o f F in E ? It was already noted that set-ups,
when considered separately, tend to convey more information than there actually is about a
formula. This in terms o f the information lattice, would mean that:

E (/F/) ⊆ s (/ F/) for each sϵ E

So, it seems natural to define E(/F/) as maximal while retaining the relationship from
above. In other words, the belief/disbelief pair to be assigned to the com plex formula F in the
epistemic state E, that is E (/F/), is to be defined as the g.l.b o f all s (/F/) for s ϵ E.

T o sum up, we will stress upon the following two cases: First, let the epistem ic sta te E be
given as a collection o f set-ups { s i } , where set-up consists o f a number o f atomic formulas
A j with s i (/ A j /) being their belief/disbelief pairs in the set-up s i . Now one is ready to
answer questions concerning the belief/disbelief pair to be assigned to an arbitrary complex
formula F, a logical com bination of particular A j ’s, in the epistemic state E. Using the logical
operators we can determine s i (/F/) for each i. Then to com pute the belief/disbelief pair of F
in E we have to find the g.l.b. o f all (/F/) by using ∩ .

Secondly, let a com plex formula F together with / F/ be supplied to us. The question is:
how do we represent this knowledge so, that we can not only answer questions regarding the
belief in the validity of F, but also questions concerning the belief in the validity o f the atomic
formulas that constitute F ? The solution is as follows: Represent / F/ as an epistemic state E,
i.e , a collection o f set-ups s i , each set-up consisting o f the atomic formulas A j that are in F.

IDA ANNUAL RESEARCH REPORT 1987
RKLLAB special feature 1987: A Mauy-Valued Logic o f Belief

119

Then to each A j in a set-up s i assign s i (/ A j /) such that the g.l.b. o f all s. (/A j /) belongs
to U, while the g.l.b of all s i [/F/] is equal to the belief/disbelief pair with which F was
initially supplied.

It is to be stressed here that there are certain cases when once a com plex formula 7 is
assigned a belief/disbelief pair / F/ , the belief/disbelief pairs o f its constituents become
uniquely determined and they are far from belonging to U. In [2] we consider all cases when a
two-place conjunction and disjunction which constituents are atom ic propositions, is assigned
a belief/disbelief pair belonging to a particular belief-state. Then we find out for which one of
the six belief-states it is possible to construct a representation in terms o f a collection of
set-ups, so that the g.l.b. of the set-ups involved provides U for each of the constituent atomic
formulas while keeping intact the belief/disbelief pair that was already assigned to the
conjunction or disjunction in question. Once this is established for two-place conjunctions and
disjunctions it can be readily used for representing the epistem ic state o f any complex
formula. It is also proposed how to represent non truth-functional beliefs in the case of
formulas with exclusive or.

3.3 F o r m u la s A s In p u ts

Let us first introduce the notion of a partial ordering ⊆ (contains less-or-equal amount of
information) between set-ups:

s ⊆ s* iff for at least one atomic formula A i either s (/ A i /) ⊆ s * (/A i /) , or they
can not be ordered, but s * (/A i /) belongs to a belief-state that is above the
belief-state of s (/ A i /) , while all other s (/ A k /) and s * (/A k /) (k≠ i) belong to the
same belief-state and can not be ordered.

It can be easily shown that the set-ups constitute a lattice with respect to ⊆ , with ∪ and ∩ being a l.u.b. and g.l.b. operations. Moving to epistemic states we can also talk about one
epistemic slate containing less-or-equal amount o f information than another one. Formally
speaking,

E ⊆ E* iff ∀ s* ϵ E*, ∃ s ϵ E such that s ⊆ s*

It should be stressed here that the ordering ⊆ on epistemic states that are collections of
set-ups does not yield a lattice because anti-symmetry fails.

Consider now atom ic formulas only and try to answer the following question: What to do
with the present epistemic state E when an atomic formula A , already represented in E by a
/ A / , is at some new point in time affirmed or denied ? W e say that A is affirmed if / A / ϵ B
or RB, and denied if / A / ϵ D or RD. Furthermore, we represent the affirmation of A by
generating a set-up A t in which / A / ϵ B or RB and all other atomic formulas belong U. In a
similar way, denying A generates a set-up A f in which / A / ϵ D or RD, and all other atomic

formulas belong to U. Let us also associate with A two functions: a function f+ (E)
representing the transformation of the present epistemic state E into a new epistem ic state E*
when A is affirmed, and f- (E) when A is denied. T o define what we want E* to be, we
assume that we always use an input to increase the information about the beliefs in the
validity of the formulas, or at least we never use input to throw away information. In terms of
the partial ordering between epistemic states this condition can be expressed as,

E ⊆ f+ (E)

Secondly, we assume that f+ (E) should say no less than the affirmation of A , this being
expressed as:

A t ⊆ f+ (E)

Lastly, we want f+ (E) to be the minimum mutilation o f E which causes / A / to belong
at least to either B or RB, namely we want the least o f those epistem ic states satisfying the
above two requirements. This means that we should define f+ (E) and f- (E) in the following
way:

120 IDA ANNUAL RESEARCH RE PO R T 1987
RK LLAB special feature 1987: A Many-Valued Logic of Belief

f+ (E) = { s∪ A t : sϵ E } f- (E) = { s∪ A f : sϵ E }

Thus, when / A / ϵ B, we make a run through each set-up of E and perform ∪ : this will
make / A / ϵ B if / A / belonged to U before, it will leave / A / the same if it already belonged
to B or C, and will make it belong to C if it already belonged to D. The case o f a complex
formula being an input and the corresponding transformation o f the present epistem ic state
into a new one, are considered in a similar way (for details see [2]).

3 .4 F u r th e r D e v e lo p m e n ts : In fe ren ce R u les A s In p u t

W e have in the previous section found the way of giving meaning to a formula as an
input: the reasoning machine is to improve its present epistem ic sta te in the minimum
possible way so as to make the formula belong to B or R B. So, we can look forward to
treating A → B as signifying a mapping from one epistem ic sta te to another such that A → B
belongs to B or R B in the latter. To be able to pursue this line we need the answers to the
following three questions:

1. W hat is it for A → B to be valid in a set-u p ;

2. W hat is it for A → B to be valid in an epistem ic sta te;

3. How to define A → B as a mapping from E to E* so that it represents the minimum
mutilation of E yielding the validity o f A → B in E *.

W e have given answers [3] to all three questions for rules o f inference that are different
from the tau tological entailm ents of relevance logic. These are a special class of IF A TH EN B
rules to be used in cases when:

1. it is firm ly believed that belief and /or disbeliefin the validity o f B follows from belief
a nd /or disbelief in the validity o f A ;

2. it is believed, but only to a degree, that belief and /or disbelief in the validity o f B
follows from belief and /or disbelief in the validity of A.

Furthermore we consider also inference rules that are augmented with the so-called excep tion
condition, that is rules o f the form, IF A TH E N B UNLESS C [4]. Here the IF - TH E N part
o f the rule expresses the major relationship between A and B , i.e., it is believed (firmly or to
a degree) that belief and /or disbelief in the validity of B follows from belief and /or disbelief in
the validity o f A . Then the UNLESS part acts as a switch that transforms the belief/disbelief
pair o f B from one expressing belief in its validity to one indicating belief in the validity of
­ B (or disbelief in the validity of B), whenever there is a meaningful enough belief in the
validity o f the exception condition C. On the other hand, whenever there is a meaningful
enough belief in the validity o f ­ C (or a meaningful enough disbelief in the validity of C), or
there is an absence o f both belief and disbelief in the validity o f C , then the belief and/or
disbelief in the validity o f B depends only upon the corresponding belief and /or disbelief in
the validity o f A.

The results obtained in [3] and [4] can be easily extended so as to provide for the
treatment o f tau tological entailm ents as mappings between epistem ic states.

R e fe re n ce s

1. D. Driankov, A m any-valued logic fo r belief-in tervals: The logical la ttice , in Preprints
o f the 2nd IFSA Congress, July 20-25, 1987, Tokyo, Japan, pp.426-430.

2. D. Driankov, A m any-valued logic fo r belief/disbelief p airs , in Z .W . ras and M.
Zem ankowa(eds.): M eth odologies fo r Intelligent S ystem s, North-H olland, 1987,
p p .2 5 -3 3 .

S. D. D riankov, Towards a m any-valued logic o f belief: D etach m en t operators,
unpublished paper, 1987.

4. D. Driankov, Towards a m any-valued logic o f belief: D etach m en t op era tors with an
excep tion cond ition , unpublished paper, 1987.

ID A AN N U AL RESEARCH RE PO R T 1987
The Administrative Data Processing Group

121

11.
ADP

Administrative
Data Processing

Göran Goldkuhl

11.1 Administrative data processing

Including management information systems analysis and
information systems analysis and design.

The subject area covered by this group deals mainly with social aspects of
design and use of software for administrative applications in private companies
and public services. Essential problems are the transition from natural to
formal languages and vice versa together with prerequisites for, constraints on,
and effects of computerized support for activities where teamwork, personal
judgement and experience traditionally have been, and are expected to be, of
great importance. This topic comprises systems development and tools for
analysis of information requirements and tools for prototyping, the drawing up
of technical requirements specifications and other kinds of user-oriented
documentation and evaluation of effects caused by the use of computerized
systems. It does also contain - from a general point of view - social
methodology for describing administrative professional activities, for
implementation, maintenance and evaluation of user-oriented computerized
support.

The undergraduate study programme for Systems Analysis takes the main part
of the group’s teaching efforts. Beyond that we give separate single-subject
courses to the level of postgraduate studies as well as courses in other study
programmes.

122 IDA ANNUAL RESEARCH R E P O R T 1987
The Administrative Data Processing Group

11.2 Research activities.

Post-graduate and research activities related to the ADP undergraduate
programs cover the following areas:

Change analysis, i.e. the decision concerning computerization and/or
other change actions in organizations.

Information requirements analysis and the development of professional
languages of different user groups.

Knowledge development during information systems development with
a special emphasis on critical analysis, creativity and authentic
communication.

Utilization of information systems and end users’ language use and
knowledge formation.

Information systems and quality of working life.

Qualitative research methods and humanistic foundations for
information systems science.

There is currently no formal subject-oriented research organization within the
humanities and social sciences faculty (research is organized into
interdisciplinary ” themes”). This explains the present comparatively small size
of research activities within the ADP group.

1.1.3 Personnel during the year:

Göran Goldkuhl, PhD, senior lecturer
Lise-Lotte Raunio, MSc, lecturer, director of undergraduate studies
Carina Björkman, secretary
Carita Lilja, secretary
Siv Söderlund, secretary

Pia Arendell, BSc, lecturer
Johan Eltes, undergraduate assistant
Hans-Olov Ganning, undergraduate assistant
Hans Holmgren, MScEng, lecturer
Rolf Nilsson, BSc, lecturer
Anders Knutsson, undergraduate assistant
Dan Michaeli, undergraduate assistant
Torbjörn Näslund, postgraduate assistant
Annie Röstlinger, BSc , lecturer
Eva-Chris Svensson, MSc, lecturer
Roger Zollner, lecturer
Elisabeth Zsiga, undergraduate assistant
Per Övernäs, BSc, lecturer

ID A AN N U AL RESEARCH RE PO R T 1987
Administrative organization

123

Appendix A

Administrative organization

The Department of Computer and Information Science (IDA) at Linköping
University covers three teaching subjects (computer science, telecommunication
and computer systems, and administrative data processing). The Department
was formed in 1983, bringing together groups previously in the Mathematics
and the Electrical Engineering departments. A considerable flexibility was
allowed when the internal organization and routines were to be decided. The
basic idea was to build research within the department upon vital,
autonomous, and cooperating research groups, each with a distinct leader and
about five to ten more teachers, researchers, and employed graduate students.
From the beginning there were four such groups or laboratories. Today there
are ten.

The lab leader is responsible for supervision and guidance of the work in his
group, and also for writing grant proposals and reports to funders. Each lab
also takes responsibility for maintaining competence in its area of research and
some related areas, and to make it available to the rest of IDA in graduate
courses and seminars, as well as in the undergraduate course program. The set
of labs is designed to provide a sufficiently wide basis for a vital computer
science department and also to give the necessary spectrum required for the
undergraduate courses given by the department. At the same time it is
important that research is sufficiently focused and that a group can achieve
critical size in its area of specialization.

Important and general issues regarding research or undergraduate studies are
treated by the research committee or the committee for undergraduate
education respectively. The research committee, headed by Erik Sandewall and
with Lillemor Wallgren as secretary, handles research activities and graduate
education. This committee suggests the annual budget for each lab, based on
grant situation, and can also modify the lab structure by merging, splitting,
creating, or deleting labs and appointing lab leaders. Admission of doctorate
students has to be confirmed by the research committee. The committee also
discusses and takes appropriate actions on research and equipment strategy in
general, and coordinates the lab-based activities. The philosophy, however, is
to support and assist rather than to control and supervise the labs.

The Committee for Undergraduate Education, headed by Anders Haraldsson
with Carina Björkman as secretary, is responsible for the organization of
undergraduate courses and continuing education for industry. Most of the

124 IDA ANNUAL RESEARCH R E PO R T 1987
Administrative organization

Department of Computer

and Information Science

Organization:

Research Laboratories and Groups

Figure A .I . Administrative organization of the department.
teachers and lecturers are also members of the research labs and the decision
about teaching load for each individual, in terms of percentage, is taken
annually in conjunction with the budget negotiation process. The executive
responsibility for undergraduate studies are taken by the directors of studies,
with Anders Haraldsson responsible for the study programs within the School
of Engineering and Lise-Lotte Raunio for those in the School of Arts and
Science.

ID A AN N U AL RESEARCH RE PO R T 1987
Administrative organization

125

Formally all significant administrative decisions, such els the annual budget are
taken by the Department Board, which is prescribed to exist. The board is
chaired by Bengt Lennartsson, with Inger Emanuelson as secretary. Annually
the board delegates to the two committees all issues about research and
graduate studies, and about undergraduate education, respectively. The board
also handles items related to both committees, normally by approving their
coordinated proposals.

Running economy and personnel issues are handled by Inger Emanuelson, who
is also the leader for the group providing administrative services. The system
support group under Anders Aleryd and Mats S Andersson is responsible for
computer systems and services, as well as for other kinds of equipment at the
department. Computer resources and other equipment are normally not
reserved for a specific group or project, but shared as far as possible and
supported at the department level. This allows a good economy for support
costs and effective use of the facilities, although projects needing exclusive
access to a particular equipment of course can be granted that right for a
specific period of time.

The department budget for the fiscal year 1987/88 balances at 29.6 MSEK.
(One MSEK is at present approximately 0.15 USD.) Of this sum, the resources
for undergraduate education supplied by the university amount to 13.2 MSEK,
and corresponding resources for research and graduate education are 4.0
MSEK. The research activities are thus heavily dependent on external sources,
where the Swedish Board for Technical Development, STU, is the main
contributor (87/88: 6.8 MSEK). Additional funds are provided by the
Delegation for Technical and Scientific Information Supply, DFI, (87/88: 1.0
MSEK) and the Natural Science Research Council, NFR, (87/88: 0.1 MSEK).
Occasional sources, such as contributions from companies participating in the
knowledge transfer programme and shorter projects supported by e.g. Sveriges
Mekanförbund, are in the order of 2.6 MSEK. Commissioned education
programmes for industry are budgeted at about 2 MSEK 1987/88. Costs for
office space and investment in equipment are not included in the above figures.

Department leadership:

Bengt Lennartsson, department chairman

Erik Sandewall, research committee chairman
Anders Haraldsson, undergraduate education committee chairman

Administrative office:

Inger Emanuelson, administrative manager
Carina Björkman, general educational secretary
Lillemor Wallgren, general research secretary

Britt-Marie Ahlenbäck, secretary
Anne-Marie Jacobson, secretary
Barbara Ekman, secretary

126 IDA ANNUAL RESEARCH R E P O R T 1987
Administrative organization

Carita Lilja, secretary
Lisbeth Linge, secretary
Gunilla Lingenhult, secretary
Bodil Mattsson Kihlström, secretary
Siv Söderlund, secretary
Lena Wigh, office assistant

Technical services:

Anders Aleryd, managing engineer
Mats S Andersson, senior research engineer

Leif Finmo, research engineer
Dimitrios Fotiadis, research engineer
Ulf Dahlén, research engineer
Arne Fäldt, senior research engineer
Björn Nilsson, senior research engineer
Peter J. Nilsson, research engineer
Katarina Sunnerud, research engineer

ID A AN N U AL RESEARCH REPORT 1987
Graduate Study Program.

127

Appendix B

Graduate Study Program.

Figure B .l below indicates the levels of degrees in the Institutes of Technology
(i.e. schools of engineering) in the Swedish university system. The figures
indicate the nominal numbers of years for the studies in each step.

Fig B .1. Levels of degrees

The graduate study program provides the studies from the level of master of
engineering, to the licentiate and/or PhD degrees. The courses given by our
department for the undergraduate education, up to the master’s degree level,
are described in appendix C.

Graduate studies in the department of Computer and Information Science are
organized as a program consisting of courses and project participation. The
course program is organized at the department level and consists of basic
courses, each of which is given every third year (if possible), and occasional
courses which depend on the profile and interests of current faculty and
visiting scientists. Thesis projects are always done within or in association with
the laboratories or research groups. Admission to graduate studies is nominally
free for students with the appropriate qualifications, but it is not realistic nor

128 IDA ANNUAL RESEARCH R E P O R T 1987
Graduate Study Program.

recommended to start studies without being admitted as a member of one of
the research groups.

Faculty presently engaged in graduate study program.

Ahrenberg, Lars, BA. PhD, Uppsala 1987.
Assistant professor (högskolelektor),
computational linguistics. Group leader,
NLPLAB. Previous affiliation Uppsala and
Göteborg.

Natural language processing, computational
linguistics, user interfaces.

Douglas Busch, PhD, Rockefeller 1973.
Assistant professor (högskolelektor) of logic and
theoretical computer science. Previous affiliation
Mcquarie University, Sydney, Australia.

Application of theories from formal logic to
problems in theoretical computer science and
artificial intelligence; algebraic specification
theory, intuitionistic type theory non-monotonic
logic; philosophical questions in artificial
intelligence.

Peter Fritzson, PhD, Linköping 1984. Assistant
professor (högskolelektor), computer science.
Thesis supervision in PELAB.

Tool generation, incremental tools, programming
environments.

IDA ANNUAL RESEARCH REPORT 1987
Graduate Study Program.

129

Göran Goldkuhl, PhD, Stockholm 1980.
Associate professor (docent, högskolelektor),
administrative data processing. Group leader in
ADP research. Previous affiliation Göteborg.

Information requirement analysis, behavioral
aspects of information systems, research
methodologies, information systems and quality of
working life.

Anders Haraldsson, PhD, Linköping 1977.
Associate professor (högskolelektor), computer
science. Director of undergraduate studies in
computer science. Previous affiliation Uppsala.
Thesis supervision in PELAB.

Programming languages and systems, pro­
gramming methodology, program manipulation.

Roland Hjerppe. Researcher. Group leader,
LIBLAB. Previous affiliation KTH, DFI and
expert mission Tanzania.

Library science and systems, citation analysis and
bibliometrics, fact representation and information
retrieval, hypertext, human-computer interaction
and personal computing.

Sture Hägglund, PhD, Linköping 1980. Acting
professor of knowledge-based systems. Group
leader, ASLAB. Previous affiliation Uppsala.

Expert systems and artificial intelligence
applications, database technology, human-
computer interaction.

130 IDA ANNUAL RESEARCH REPORT 1987
Graduate Study Program.

Rolf Karlsson, PhD, Waterloo 1984. Assistant
professor (högskolelektor), theoretical computer
science. Previous affiliation Lund.

Data structures, algorithm analysis,
computational complexity, computational
geometry.

Krzysztof Kuchcinski, PhD, Gdansk 1984.
Assistant professor (gästforskare), computer
science. On leave from Institute of Computer
Science, Politechnika Gdanska. Group leader,
CADLAB.
Computer architecture, CAD, real-time operating
systems, system testing.

Harold W. Lawson J r., PhD, Stockholm 1983.
Professor of telecommunication and computer
systems. Several previous affiliations, also in
industry. On leave for Swedish International
University 1987-88.
Computer architecture, VLSI, Computer-aided
design, methodology of computer-related
education and training.

Bengt Lennartsson, PhD, Göteborg 1974.
Associate professor (högskolelektor), software
engineering. Previous affiliation Luleå. Group
leader, PELAB.
Programming environments, real-time
applications, distributed systems.

IDA ANNUAL RESEARCH REPORT 1987
Graduate Study Program.

131

Christos Levcopoulos, PhD, Linköping 1987.
Assistant professor (forskarassistent), theoretical
computer science.

Computational geometry, analysis of algorithms,
data structures.

Andrzej Lingas, PhD, Linköping 1983.
Associate professor (docent, högskolelektor),
theoretical computer science. Previous affiliation
Warszawa and MIT. Group leader in ACTLAB.

Complexity theory, analysis of algorithms,
geometric complexity, graph algorithms, logic
programming, VLSI theory.

Jan Maluszynski, PhD, Warszawa 1973.
Professor of programming theory. Several
previous affiliations. Group leader in theoretical
computer science.

Logic programming, software specification
methods.

Zebo Peng, PhD, Linköping 1987. Assistant
professor (högskolelektor), computer architecture.
Automated synthesis of digital systems, formal
description of hardware, VLSI, computer-aided
design, computer architecture.

132 ID A ANNUAL RESEARCH R E P O R T 1987
Graduate Study Program.

Erik Sandewall, PhD, Uppsala 1969. Professor
of computer science. Group leader in RKLLAB.
Several previous affiliations.

Representation of knowledge with logic, theory of
information management systems, office
information systems, autonomous expert systems.

Erik Tengvald, PhD, Linköping 1984. Assistant
professor (högskolelektor), computer science.
Group leader, AIELAB.

Artificial intelligence, knowledge representation,
planning and problem solving, expert systems.

ID A AN N U AL RESEARCH RE PO R T 1987
Graduate Study Program.

133

Graduate Study Course Program 1986-87

Basic and Occasional Graduate Courses:

Communicating Sequential Processes and Calculus o f Communicating
System s (Johan Fagerström, Jan Maluszynski).

N on-M onotonic Reasoning: Theories, System s, and Applications
(Michael Reinfrank)

Informationssystem i Organisationer - seminarieserie (Göran Goldkuhl)

Principles of Database Systems (Sture Hägglund, Bo Sundgren)

Attribute Grammars and Logic Programs (Jan Maluszynski)

Analysis and Complexity of Parallel Algorithms (Andrzej Lingas)

Computational Geom etry (Christos Levcopoulos, Andrzej Lingas)

Algorithm Analysis and Design (Andrzej Lingas)

Program Transformation (Anders Haraldsson, Jan Maluszynski)

Constructive Mathematics and Specification Languages (Douglas R
Busch)

Semantiska Modeller för Naturligt Språk - Seminarieserie (Lars
Ahrenberg)

Lower Bound Techniques (Rolf Karlsson)

Am ortized Computational Complexity (Rolf Karlsson)

Machine Learning (Jalal Maleki)

Research-Related Courses and Seminars:

Kunskapsomgivningar på parallella maskiner (Erik Tengvald)

Informationssystem i organisationer - Seminarieserie (Göran Goldkuhl)

A I and Software Engineering (Sture Hägglund)

134 ID A ANNUAL RESEARCH R E P O R T 1987
Graduate Study Program.

Statistiska informationssystem (Bo Sundgren)

H YP E R C ATalog-projektet (Roland Hjerppe)

Kunskapsorganisation - teknik och metoder (Roland Hjerppe)

Logikprogrammering - seminarieserie (Jan Maluszynski)

X E R O X Development Environment - studiecirkel (Bengt Lennartsson)

Smalltalk -8 0 - studiecirkel (Lars Strömberg)

Temporal logic - studiecirkel (Patrick Doherty, Dimiter Driankov)

Special Courses for the Knowledge Transfer Program

Introduction to Epitool (Roland Rehmnert)

Issues in A I and Expert Systems (Video lectures, supplemented by
seminars.)

Knowledge engineer training program, fall 1986:

Introduction to A I and expert systems (Arne Jönsson, Sture Hägglund)

Discrete mathematics (Karl-Johan Bäckström, dept, of math.)

Mathematical Logic (Erik Sandewall)

Knowledge engineer training program, spring 1987:

A I programming systems (Anders Haraldsson et al.)

A I - cognitive processes (Arne Jönsson)

A I - knowledge representation (Douglas Busch)

Expert system s (Sture Hägglund)

ID A AN N U AL RESEARCH REPORT 1987
Graduate Study Program.

135

Graduate Study Course Program 1987-88

Basic and Occasional Graduate Courses:

Lower Bound Techniques (Rolf Karlsson)

Analysis and Complexity of Parallel Algorithms (Andrzej Lingas)

Algorithm Analysis and Complexity Theory (Andrzej Lingas)

Computational Geom etry (Christos Levcopoulos, Andrzej Lingas)

Office Information System s - OIS (Roland Hjerppe)

Advanced Computer Architectures (Krzysztof Kuchcinski, Mikael Patel)

Negation in Logic Programming (Maurizio Martelli, Jan Maluszynski)

Logic Survey (Douglas Busch)

Advanced Course in Compiler Construction, especially Incremental
Compilation (Peter Fritzson and invited lectures).

Reason Maintenance Systems (Michael Reinfrank)

Qualitative Reasoning (Peter Struss)

Introduction to Petri Nets (Krzysztof Kuchinski, Jan Maluszynski)

Human-Com puter Interaction (Lars Ahrenberg, Sture Hägglund, Arja
Vainio-Larsson)

Research-Related Courses and Seminars:

Förändringsanalys (Göran Goldkuhl)

Systemvärdering - seminarieserie (Göran Goldkuhl)

Systemutvecklingsmetoder - en jämförande analys (Göran Goldkuhl,
Birger Rapp, IP E)

Kunskapsomgivningar på parallella maskiner (Erik Tengvald)

136 IDA ANNUAL RESEARCH R E P O R T 1987
Graduate Study Program.

Conceptual Structures and Knowledge Base Management Systems (Sture
Hägglund)

HYPERCATalog-projektet (Roland Hjerppe)

Logikprogrammering - seminarieserie (Jan Maluszynski)

Planstyrda system (Erik Sandewall)

Software Reliability (Bo Bergman, IKP)

A Selection of Seminars 1987

General seminars spring 1987

9/1 Peter Struss, Siemens AG, Muenchen. Problems on Qualitative Reasoning.

9 /1 Peter Struss, Siemens AG, Muenchen. Representing Structure and Function in
ATMS-Based Problem Solvers.

22/1 Gerd Brewka, GMD, Bonn. BABYLON, a hybrid expert system development too).

22/1 Gerd Brewka. Circumscription and the Semantics of Frames (replacing his talk on a
non-monotonic logic theorem prover).

3/2 Ferenc Belik, Lunds Universitet. En graf-modell och dess applikation till distribuerade
resursallokeringssystem.

23/2 Hartmut Freitag, SIEMENS AG, Muenchen. An extension of the RETE-pattern
matching algorithm to non-monotonic rules and dependency-networks.

25/2 David McLeman, SEQUENT EUROPE, och Jonny Svensson, Macrotek. SEQUENT
datorerna och parallel programming.

3/3 Staffan Truve, Chalmers Tekniska Högskola. Towards a specification language for
physical objects.

6/3 Michael Reinfrank, IDA. Problems in non-monotonic reasoning.

10/3 Bonnie Lynn Webber, University of Pennsylvania. Questions, Answers, Responses:
Multi-functional Interactions.

12/3 Jerry Hobbs, Artificial Intelligence Center. Local pragmatics and common sense
knowledge.

27/3 Peter Gärdenfors, Lund. Modeller för kunskapens dynamik.

1/4 Torbjörn Näslund, IDA. An experimental implementation of a compiler for two-level
grammars.

ID A AN N U AL RESEARCH RE PO R T 1987
Graduate Study Program.

137

8/4 Kurt Koonolige, SRI International och CSLI. On the relation between default
Theories and Autoepistemic Logic.

18/5 Dag Westerståhl, filosofiska institutionen i Göteborg. Kvantifiering i naturligt språk.

19/5 Kurt Nörmark, Aalborgs Universitetscenter. MUIR - A Language Development
Environment.

22/5 Masataka Sassa. Attributed Grammars and the RIE System.

25/5 Dino Pedreschi, Pisa. A Functional Meta Level for Logic Programming.

26/5 Allan Brown, General Electric. Truth Maintenance.

26/5 Fosca Gianotti, Pisa. Incremental Constraint Solving with Logic Programming.

26/5 Carl Gustaf Jansson, Inst för ADB, Stockholms Universitet. Taxonomic
representation.

26/5 Mike Kamrad. Honeywell S&RC. Distributed ADA.

2/6 Hilding Elmqvist, Satt Control, Lund. Anamation and Information Zooming in a
System for Monitoring Industrial Process Control.

2/6 C Tully. A presentation of the information systems Factory project.

16/6 Mike Weintraub, Ohio State University. Survey of Knowledge Systems Research at
Ohio State University.

General seminars fall 1987

18/8 Jörg Sack, Carleton University. A motion problem in the plane: separability.

21/9 Lars Hallnäs, SICS, Stockholm. Generalized horn clauses.

28/10 Robert A Greenes, Boston. Hypermedia applications in medical education and
clinics.

3/11 Bo Bergman, Bengt Lennartsson. Diskussionseminarium om programvaru-
tillförlitlighet.

17/11 H.N. Djidjev, Bulgarian Academy of Science. VLSI algorithms.

20/11 Dag Prawitz, Universitetet i Stockholm. Naturliga och Normala Bevis.

25/11 Jörgen Fischer Nilsson, University of Denmark. Translating Higher-order Prolog
into Prolog.

25/11 Jörgen Fischer Nilsson, University of Denmark. W-order Knowledge Bases.

27/11 Gunn Johansson, Psykologiska institutionen, Universitetet i Stockholm.
Abstraktisering, överbelastning, underbelastning och andra mänskliga begränsningar.

27/11 Kevin Poulter, GEC Research, UK. The Knowledge-Based Programmer’s Assistant.

138 IDA ANNUAL RESEARCH REPORT 1987
Graduate Study Program.

29/11 Joseph Wiezenbaum, MIT. On the Status of Knowledge in the Information Society.

4/12 Peter Marwedel, University of Kiel. Digital Hardware Design Automation

17/12 Jan Komorowski, Harvard University. Exploration of Medical Knowledge in a
Semantic Network.

ID A AN N U AL RESEARCH REPORT 1987
Undergraduate Education

139

Appendix C

Undergraduate Education.

1. Undergraduate teaching in the School of Engineering

The group for undergraduate teaching (the UDD-group) is responsible for
courses in the two subjects Computer Science and Telecommunication and
Computer System s given in the undergraduate study programs in School of
Engineering, Linköping University. These study programs, and number of
students accepted annually, are:

Computer Science (C) for 30 students
Computer Science and Technology (D) for 120 students
Industrial and Management Engineering (I) for 180 students
Mechanical Engineering (M) for 120 students
Applied Physics and Electrical Engineering (Y) for 180 students

These study programs run over 4 - 4.5 years and lead to a Master of
Engineering or (for the C-program) a Master of Science degree.

There are also single-subject courses given as part-time and evening courses,
and external courses given directly to companies and organizations. A program
for ” continuing education” in computer science has also started. This program
has been developed by IDA in cooperation with Oktogonen, a Swedish
engineering industry group. There are also programs in artificial intelligence
and expert systems.

Courses. During 87/88 IDA will give a total of approx 75 different courses.In
the engineering study programs IDA gives 51 courses with a total of 3300
students, 10 single-subject courses, and about 14 external courses for industry
with about 500

participants. Due to the reorganization of the engineering programs to run over
4.5 years, a number of courses are postponed to the next year. All engineering
programs have at least one introductory course in computer science and
programming.

In the C- and D-programs and in the variants towards computer science in the
M- and Y-programs (which students can choose after the second year) there
are courses in

140 ID A ANNUAL RESEARCH R E P O R T 1987
Undergraduate Education

- programming methodology
- assembly programming
- data structures
- data bases
- compiling techniques
- principles of programming languages
- concurrent programming
- operating systems
- artificial intelligence
- computer networks
- computer architecture
- computer aided design of electronics
- discrete simulation

The C-and D-programs include two software projects. One done individually
during the first year and one in a group during the third. In the projects both
oral presentations and written reports are required.

In the C-program a number of human-oriented courses are given:

- linguistics, introductory course
- computational linguistics
- psychology, introductory course
- psychology of communication
- interactive systems

There are also courses in theoretical computer science;

- logic, introductory course
- formal languages and automata theory
- programming theory
- logic programming

and courses in artificial intelligence:

- introduction to AI
- A I programming
- knowledge representation
- natural language processing

Computer facilities. A variety of computer systems are available to our
students. Most courses use a DEC-20 computer running the TOPS-20
operating system and supporting about 60 terminals.

There are two UNIX computers (one PDP-11/70 and one Gould PN6000) for
teaching purposes with totally 25 terminals, two PC laboratories with

ID A AN N U AL RESEARCH RE PO R T 1987
Undergraduate Education

141

Macintoshes and Ericsson PC’s, and one laboratory with eight Xerox LISP
machines and one with eight SUN workstations.

There are 11 terminal rooms (8-9 terminals per room) and a network for
connecting terminals to the various computer systems available for educational
purposes.

Staff. The teaching is done by full or half time employed lecturers, by other
persons with research appointment, by graduate students having teaching
assistantships, and by the students themselves as part-time course assistants.

During 87/88 the staff consists of

6 full time and 1 half time senior lecturers (associate professors)
7 full time and 2 half time lecturers (assistant professors)
9 other persons, professors and research assistants
about 40 postgraduate students with 25% - 50% teaching assistantships
c. 5 teachers from other subjects and from industry
c. 35 part-time course assistants

Personnel.

Anders Haraldsson, PhD, associate professor in computer science,
director of undergraduate studies

Barbara Ekman, secretary

The following persons from IDA are teaching one or more courses:

Lars Ahrenberg, PhD
Pia Arendell, BSc
Rober Bilos, MSc
Douglas Busch, PhD
Nils Dahlbäck, B.A.
Patrick Doherty, BSc
Johan Fagerström, MSc
Björn Fjellborg, MSc
Christian Gnosspelius
Anders Haraldsson, PhD
Sture Hägglund, PhD
Arne Jönsson, MSc
Rolf Karlsson, PhD
Bengt Karlstrand, MSc
Christian Krysander, MSc
Tony Larsson, MSc
Bengt Lennartsson, PhD
Fredrik Lindström, MSc
Jalal Maleki, MSc
Jan Maluszynski, PhD

142 IDA ANNUAL RESEARCH R E PO R T 1987
Undergraduate Education

Magnus Merkel, B.A.
Rolf Nilsson, BSc
Kerstin Olsson, MSc
Tommy Olsson, MSc
Mikael Patel, MSc
Zebo Peng, MSc
Ola Petersson, BSc
Ivan Rankin, BSc
Roland Rehmnert, MSc
Erik Sandewall, PhD
Nahid Shahmehri, MSc
Ola Strömfors, MSc
Katarina Sunnerud, MSc
Eva-Chris Svensson, BSc
Olle Willén, BSc
Mats Wiren, MSc

Listing of Undergraduate Course Program 1987/88

Course (in Swedish) Teacher

Databaser (D3, I4) Christian Krysander
Databaser (C3, Y3, Y4, Md4) Christian Krysander
Programmeringsspråk (C4, D4) Tommy Olsson
Orientering datateknik och datorutrustning (Cl, D l) Christian Gnosspelius
Programmering i Ada(C4, D4) Tommy Olsson
Programmeringsmiljöer (C4, D4) Bengt Lennartsson
Systemutveckling, teori och tillämpning (C4, D4) Pia Arendell
Al-programmering (C4) Jalal Maleki
Logik, grundkurs (C1, D4) Erik Sandewall
Psykologi grundkurs (C2) Nils Dahlbäck
Databehandling av naturligt språk (C4) Mats Wiren
Operativsystem (D3tk, D4, Y4, I4) Ola Strömfors
Konstruktion och analys av algoritmer (C4) Rolf Karlsson
Programmering Y, grundkurs (Y2) Christian Gnosspelius
Programmering Y, fortsättningskurs (Y3, Y4) Tommy Olsson
Kompilatorer och interpretatorer (Y4, I4) Nahid Shahmehri
Programmeringsteori II (C4) Douglas Busch
Logikprogrammering (C3, D4) Jan Maluszynski
Programmeringsteori (C3) Nahid Shahmehri
Processprogrammering (D3pv, D4, Md4, Y4, I4) Fredrik Lindström
Operativsystemteori (C3, D3pv, M4d) Bengt Karlstrand
Programmering och projektarbete i Pascal (C l, D1) Kerstin Olsson
Lagringssstrukturer (C2, D2, Md3) Ola Petersson
Programutvecklingsmetodik och programmeringsprojekt D (D3) Christian Krysander
Programutvecklingsmetodik M (Md3) Olle Willén
Programutvecklingsmetodik och programmeringsprojekt C (C3) Bengt Karlstrand
Data och programstrukturer D (D3) Anders Haraldsson
Data och programstrukturer C (C2) Roland Rehmnert
Expertsystem - metodik och verktyg (C4, D4) Sture Hägglund
Distribuerad problemlösning (D4, C4) Johan Fagerström
Datorer och datorutrustning (I1) Christian Gnosspelius
Beräkningsbarhet och komplexitet (C4) Rolf Karlsson

ID A AN N U AL RESEARCH RE PO R T 1987
Undergraduate Education

143

Datorspråk (C3, D3, I4) Rober Bilos
Artificiell intelligens C (C3) Arne Jönsson
Artificiell intelligens D (D4) Arne Jönsson
Programutveckling (II) Olle Willén
Datastrukturer och programutvecklingsmetodik (I2) Christian Gnosspelius
Datalingvistik (C2) Lars Ahrenberg
Programmering i inkrementellt system (C1) Anders Haraldsson
Programmering i inkrementellt system (D1) Patrick Doherty
Interaktiva system (C 1, D3pv, D3tk) Sture Hägglund
Lingvistik grundkurs (C 1) Magnus Merkel
Formella språk och automatateori (C2) Douglas Busch
Kommunikationspsykologi (C3) Nils Dahlbäck

Diskret simuleringsteknik (D3, Y3) Zebo Peng
Datornät (D4, Y4, I4, Md4) Björn Fjellborg
Datorarkitektur (D4, Y4) Mikael Patel
Datorstödd elektronikkonstruktion (D4, Y4, I4) Tony Larsson

Datalogi 1 - baskurs (enstaka kurs Norrköping) Rolf Nilsson
Datalogi 3 (enstaka kurs Linköping) Christian Krysander
Programmering i Ada (enstaka kurs Linköping) Olle Willén

Continuing education 1987
Datalogi, 20p, Ericsson, 20 deltagare 86/87
Datateknik, 20p, Ericsson Information Systems, 20 deltagare, 1987
AI/Expertsystem, 25p, 8 deltagare, 86/87
Datornät, Foa, 25 deltagare, maj 87
Datorsystem och programutveckling, 15p, Ericsson, 22 deltagare

(ingår i Dator- och teleteknik, 60p) ht 87
Programmering Y, Saab-Scania, 12 deltagare (ingår i högre elektroteknisk kurs)
Processprogrammering/operativsystem, 5p, Ellemtel, 21 deltagare, ht 87
LISP/Prolog/AI, 10p, Ericsson, 21 deltagare, 87
AI/Expertsystem, 28p, ASEA, 20 deltagare, började hösten 87
Programutveckling, 2p, Ericsson, 22 deltagare, (ingår i Dator- och teleteknik, 60p)
Datornät, Ellemtel, 25 deltagare, kurs på Kreta, september 87
Kurs i ADA, Ericsson Radio Systems, 10 deltagare, oktober 87
Introduktion till AI och expertsystem, ASEA, 33 deltagare, november 87

2. Undergraduate teaching in the School of Arts and
Science

The group for administrative data processing (the ADB-group) is responsible
for the courses given by IDA in the undergraduate Systems analysis study
program in the School of Arts and Science, Linköping University.

The program for systems analysis ranges over three years of fulltime studies. It
aims at professional activities of design, evaluation and implementation of
computer-based information systems. ADP-systems analysis dominates the
program but nevertheless great importance has been attached to other subjects
in order to give the program the necessary breadth and also to ensure that the

144 IDA ANNUAL RESEARCH R E P O R T 1987
Undergraduate Education

students will become aware of the complexity of the community where
computers can be used.

The first two years of the program constitute a common core of basic studies
for all students. Within the subject of ADP-systems analysis there are courses
in systems development and systems theory as well as courses in programming
and computer science. The courses about systems development and systems
theory deal with formal methods and prototyping. For the programming
courses Pascal has been chosen as the main language but, other languages are
taught as well. Within the field of computer science the students take courses
in database design, development of interactive systems, communication,
evaluation of computer systems, programming methodology, etc. Other
subjects given within the common core of basic studies are:

- business economics and management, to get basic knowledge about the
organization of corporations and public services and their
” commonday” routines.

- human factors, industrial and social psychology, including ergonomics,
work environment, co-determination and participative management,
group dynamics etc.

There are also courses in practical Swedish language for professional use, social
science, matematics and statistics. The second year ends with about five
months of on the job training.

During the last year the students can choose one of the following three
specializations:

Methods for data analysis (data analysis), aimed at statistical
methodology and statistical analysis methods. This specialization
includes documentation and presentation of projects where storage and
retrieval of data are crucial.

 Development of computer programs and program systems (program
development) aimed at program development, methodology and
technology. This specialization contains courses about operating
systems, compilers, interpreters etc.

Development of information systems (systemeering), aimed at
methodology for design and evaluation of information systems. The
program includes in-depth studies of budgeting and accounting and
their relation to project management and systems budgeting.

All three specialisations end with a term-paper reporting the development and
implementation of an individual project.

ID A AN N U AL RESEARCH RE PO R T 1987
Com puter Facilities

145

Appendix D

Computer Facilities.

The department has a policy of giving high priority to the supply of
appropriate computing resources for research and education. We have also
during the years been able to modernize and keep in pace with the rapid
development in the area, e.g. regarding the emergence of powerful workstations
with high-resolution graphics and high-performance CPU. Our orientation
towards experimental computer science makes such a policy especially
important and we believe that adequate computer equipment is essential for
the quality of research and education.

Our main computer resources for research are a DECsystem-2060 (there are
additional systems for undergraduate education), a VAX 780 (which is shared
with the Physics department), a Xerox Ethernet with 32 1108/1109/1186 Lisp
Machines, file servers and laser printers, and 15 SUN-3 workstations with file
servers.

In addition there are lots of smaller computers (MicroVax, PD P-ll:s,
Macintoshes and other PC:s of various kinds.) There is also special purpose
equipment, especially for text processing or for specific research projects.

For research on architecture-related problems, the department also has
acquired a number of transputers and a shared NCUBE parallel computer.

Part of the work station equipment was made available through the Xerox
Corporation / Rank Xerox University Grants Programme. Our department
was awarded 18 Xerox 1186 AI work stations, together with additional
services, such as printers and file servers. The application included 6 projects,
ranging from knowledge-based application systems to programming
environments and use in undergraduate courses. The Linköping Grant was the
largest awarded in Europe.

The schematic picture on the next page shows the local network and the
accessible computer systems.

N e t w o r k v i s ib le f r o m ID A LiU 8 8 0 2 0 2
146

IDA
ANNUAL

RESEARCH
REPORT

1987
Com

puter
Facilities

ID A AN N U AL RESEARCH RE PO R T 1987
Publications.

147

Appendix E

Publications

D ISSE R TA TIO N S:

(Linköping Studies in Science and Technology. Dissertations.)

No 14 Anders Haraldsson: A Program Manipulation System Based on Partial
Evaluation, 1977.

No 17 Bengt Magnhagen: Probability Based Verification of Time Margins in Digital
Designs, 1977.

No 18 M ats Cedwall: Semantisk analys av processbeskrivningar i naturligt språk, 1977.

No 22 Jaak Urmi: A Machine Independent LISP Compiler and its Implications for Ideal
Hardware, 1978.

No 33 Tore Risch: Compilation of Multiple File Queries in a Meta-Database System,
1978.

No 51 Erland Jungert: Synthesizing Database Structures from a User Oriented Data
Model, 1980.

No 54 Sture Hägglund: Contributions to the Development of Methods and Tools for
Interactive Design of Applications Software, 1980.

No 55 Pär Emanuelson: Performance Enhancement in a Well-Structured Pattern
Matcher through Partial Evaluation, 1980.

No 58 Bengt Johnsson, Bertil Andersson: The Human-Computer Interface in
Commercial Systems, 1981.

No 69 H. Jan Komorowski: A Specification of an Abstract Prolog Machine and its
Application to Partial Evaluation, 1981.

No 71 René Reboh: Knowledge Engineering Techniques and Tools for Expert Systems,
1981.

No 77 Osten Oskarsson: Mechanisms of Modifiability in Large Software Systems, 1982.

No 94 Hans Lunell: Code Generator Writing Systems, 1983.

No 97 Andrzej Lingas: Advances in Minimum Weight Triangulation, 1983.

No 109 Peter Fritzson: Towards a Distributed Programming Environment based on
Incremental Compilation, 1984.

No 111 Erik Tengvald: The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning, 1984.

No 155 Christos Levcopoulos: Heuristics for Minimum Decompositions of Polygons,
1987.

No 165 James W . G oodw in : A Theory and System for Non-Monotonic Reasoning, 1987.
No 170 Zebo Peng: A Formal Methodology for Automated Synthesis of VLSI Systems,

1987.

148 IDA ANNUAL RESEARCH R E PO R T 1987
Publications.

(Dissertation by ID A member published elsewhere.)

Lars A hrenberg: Interrogative Structures of Swedish: Aspects of the Relation
between Grammar and Speech Acts. (Reports from Uppsala University Department
of Linguistics No. 15, 1987).

LIC E N TIA TE THESES:

(Linköping Studies in Science and Technology. Theses.)

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic
Memory. 1983.

No 28 Arne Jönsson, Mikael Patel: An Interactive Technique for Communicating and
Realizing Algorithms. 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator. 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation
and Teaching. 1985.

No 52 Zebo Peng: Steps towards the Formalization of VLSI Design Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of an Architecture based on
Asynchronous Processes. 1986.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems. 1986.

No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance
System. 1987.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs. 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behaviour of the
Greedy Triangulation. 1986.

No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a special application area
for knowledge-based computer methodology. 1987.

No 108 Rober Bilos: Incremental Scanning and Token-based Editing. 1987.

No 111 Hans Block: Sport Sort - Sorting algorithms and sport tournaments. 1987.

No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation
of Knowledge. 1987.

No 118 Mariam Kamkar and Nahid Shahmehri: Affect-Chaining in Program Flow
Analysis Applied to Queries of Programs. 1987.

No 126 Dan Strömberg: Transfer and Distribution of Application Programs. 1987.

No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and Use
Acceptance of Expert Systems. 1987.

ID A AN N U AL RESEARCH REPORT 1987
Publications.

149

E X T E R N A L PU BLICATIO N S SINCE 1985

(Papers published in books, journals or international conference proceedings.)

1. Lars A hrenberg: Lexikalisk-Funktionell Grammatik på svenska. In Papers from the
5th Scandinavian Conf. o f Computational Linguistics, University of Helsinki, Dept of
General Linguistics pp. 1-12, 1986.

2. Lars A hrenberg: Parsing into Discourse Object Description. In P roc. o f the 3rd
Conf. o f the European Chapter o f the Association fo r Computational Linguistics in
Copenhagen, April 1-3, 1987.

3. Lars A hrenberg , A rne Jönsson: An Interactive System for Tagging Dialogues.
X IV A L L C Conf. in Göteborg, June 1-5, 1987.

4. Lars A hrenberg : Functional Constraints in Knowledge-Based Natural Language
Understanding. In the 12th International Conf. on Computational Linguistics in
Budapest, August 22-26, 1988.

5. R ob er B ilos: A Token-Based Syntax Sensitive Editor. In Proc o f the Workshop on
Programming Environments - Programming Paradigms. Roskilde, 1986.

6. R ob er B ilos, P eter Fritzson: Experience from a token sequence representation of
programs, documents, and their deltas, to appear in International Workshop on
Software Version and Configuration Control, Grassau, FRG, January 27-29, 1988.

7. H ans B lock :, SPORT-SORT - Sorting Algorithms and Sport Tournaments. In Proc.
o f the 25th Annual Allerton Conf. on Communication, Control, and Computing,
University of Illinois at Urbana-Champaign, 1987.

8. C hrister B äckström : A Representation of Coordinated Actions. P roc. o f the 1st
Scandinavian Conf. on Artificial Intelligence, Tromsö, Norway, March 9-11, 1988.

9. C hrister B äckström : Logical Modelling of Simplified Geometrical Objects and
Mechanical Assembly Processes. In Proc. o f the Workshop on Spatial Reasoning and
M ulti-Sensor Fusion, St. Charles, 111., USA, 1987. Extended version to appear in the
Advances in Spatial Reasoning book series, ABLEX, 1989.

10. Sham sul C how dhury: Expert System Aid in Statistical Analysis and
Interpretation of Data. In Proc. o f the Society o f Reliability Engineers, Outaniemi,
1986.

11. Sham sul C how dhury: State of the art in statistical expert systems. In P roc. o f the
Conf. on Expert Systems and their Applications, Avignon, 1987.

12. Sham sul C h ow dhu ry, Ove W igertz: Microcomputer Oriented Knowledge-Based
System for Health Care Improvement in the Developing World. In P roc. o f the
IEEE/EMBS 9th Ann. C on f, Boston, 1987.

13. N ils D ahlbäck , A rne Jönsson: Analyzing Human-Computer Dialogues in Natural
Language. Accepted to the 3rd IFAC/IEA Conf. on M an-M achine Systems Analysis,
Design and Evaluation, Oulo, Finland, June, 1988.

14. N ils D ahlbäck , A rne Jönsson: Talking to a Computer is not Like Talking to
Your Best Friend. Proc. o f the 1st Scandinavian Conf. on Artificial Intelligence,
Tromsö, Norway, March 9-11, 1988.

15. Jam es A D ean, A ndrzej Lingas, Jörg Sack: Recognizing Polygons or How to
Spy, in The Visual Computer, International Journal o f Computer Graphics, Springer
Verlag. See Proc. o f the Allerton Conf. on Communication, Control and Computing,
Urbana, Illinois, 1986, for a preliminary version.

16. P io tr D em binski, Jan M aluszynski: And-Parallelism with Intelligent
Backtracking for Annotated Logic Programs. In Proc o f the IEE E Symposium on
Logic Programming, pp 29-38, Boston, 1985.

17. P ierre D eransart, Jan M aluszynski: Relating Logic Programs and Attribute
Grammars. Journal o f Logic Programming, vol 3, No. 2, pp 119-158, 1985.

18. P ierre D eransart, Jan M aluszynski: Programmation logique et grammaires
d ’attributs, in: Informatique-85, Symposium sovieto-francaise, Valgus, Tallinn, 1987,
4-10.

19. W lod zim ierz D rabent: Do Logic Programs Resemble Programs in Conventional
Languages? In Proc. o f the 4 th IEEE Symposium on Logic Programming, San
Francisco, Aug. 31 - Sept.4, 1987

150 IDA ANNUAL RESEARCH R E PO R T 1987
Publications.

20. W lodzim ierz D rabent, Jan M aluszynski: Proving Runtime Properties of Logic
Programs. In Proc o f the TA PSO FT’87, Pisa 1987, LNCS 250, 167-181.

21. W lod zim ierz D rabent, Jan M aluszynski: Inductive Assertion Method for Logic
Programs. Accepted for publication in the special issue of Theoretical Computer
S cience, 1988.

22. D im iter D riankov : An outline of a fuzzy sets approach to decision-making with
interdependent goals. In Proc. o f the 1st IFSA Congress, Palma de Mallorca, July,
1985. Int. Journal o f Fuzzy Sets and Systems, vol 21, pp. 275-288. (Extended
abstract).

23. D im iter D riankov: Inference with single fuzzy conditional proposition. Int. Journal
o f Fuzzy Sets and Systems vol 24, No 1 pp. 51-63.

24. D im iter D riankov: A calculus for belief-intervals- representation of uncertainty. In
Proc o f the Int. Conf. on Information Processing and M anagement o f Uncertainty,
Paris, June 30 - July 4, 1986, pp 235-239. (Extended abstract). In Lecture Notes on
Computer Science, B. Bouchon and R.R. Yager (eds) vol 286, pp. 205-216.

25. D im iter D riankov : Many-valued logic for belief-intervals: The logical lattice. In
P roc. o f the 2nd World Congress o f the Int. Fuzzy Sets Association , pp. 426-429,
Tokyo, July 20-25, 1987.

26. D im iter D riankov : Uncertainty Calculus with Verbally Defined Belief Intervals. In
P roc. Int. Joint Conf. o f Intelligent Systems, 1987.

27. D im iter D riankov : A Many-Valued Logic for Belief/Disbelief Pairs: In Proc. o f the
2nd Int. Symp. on Methodologies for Intelligent Sytems, Charlotte, NC, USA,
October, 1987. (Extended abstract).

28. D im iter D riankov: Inference with consistent probabilities in expert systems. In
Proc. Int. Joint Conf. on A .I, pp 899-901 vol 2, Milano, August,1987. To appear in
Int. Journal o f Intelligent Systems, 1988.

29. D im iter D riankov: Non-truthfunctional Aspects of Belief/Disbelief Pairs. To
appear in Proc o f the 1st IFSA-EURO Workshop on Approximate Reasoning, April
5-9, 1988.

30. Johan F agerström : Experiences with Occam: A Simulator for Asynchronous
Processes. In Proc o f the 19th Hawaii Int. Conf. on System Sciences, Hawaii, Jan,
1986, pp. 95-102.

31. Johan F agerström : Tradeoffs in an Architecture based on Asynchronous Processes.
In Proc o f the 2nd Nordic Symposium on VLSI in Computers and Communications,
1986.

32. Johan F agerström , M ikael R .K . Patel: High-level Simulation of Systolic
Architectures. In Proc o f the Int. Workshop on Systolic Arrays, Oxford, 2-4 July,
1986.

33. Johan F agerström , Y ngve Larsson and Lars S tröm berg : Debugging
Techniques for Distributed Environments. In Proc. o f the Workshop on Compiler and
Increm ental Compilation in Bautzen, East Germany, October 11-18, 1986 and the
P roc. o f the Workshop on Programming Paradigms and Programming Environments
in Roskilde, Denmark, October 22-24, 1986.

34. Johan F agerström , Lars Ström berg: A Paradigm and System for Design and
Test of Distributed Applications. In Proc. o f IEEE Compcon Spring 1988. San
Fransisco, CA, February, 1988.

35. Johan F agerström : Design and test of Distributed Applications. Accepted to the
10th Int. Conf. on Software Engineering, Raffles City, Singapore, April 11-15, 1988.

36. Johan F agerström : Enabling Structured Debugging of Distributed Sytems. To
appear in the Proc. o f the Workshop on Parallel and Distributed Debugging. Madison,
WI, May, 1988.

37. H artm ut Freitag, M ichael Reinfrank: An Efficient Interpreter for a Rule-Based
Non-Monotonic Deduction System. In Proc. o f the German Workshop on AI,
G W A I-87, Springer Verlag, 1987.

38. P eter Fritzson : The Architecture of an Incremental Programming Environment
and some Notions of Consistency. In Proc. o f the G TE Workshop on Software
Engineering Environments for Programming-in-the-large, Harwichport, MA. June
10-12, 1985.

ID A AN N U AL RESEARCH RE PO R T 1987
Publications.

151

39. P eter F ritzson : Systems and Tools for Exploratory Programming. Overview and
Examples. In Proc. o f the Workshop on Programming Environments - Programming
Paradigms, Roskilde University Centre, Denmark, October 22-24, 1986.

40. P eter F ritzson : A Common Intermediate Representation for C, Pascal, Modula-2
and Fortran-77. In Proc. o f the Workshop on Compiler Compilers and Increm ental
Compilation, Bautzen, DDR, October 12-17, 1986.

41. Jam es W . G oodw in : A Process Theory of Non-Monotonic Inference. In P roc. o f
the Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985.

42. Sture H ägglund, Christer Hansson, Tom as Sokoln ick i: Knowledge-Based
Training of Case Management Routines and Emergency Procedures. In Proc. o f the
3rd Int. Conf. on Expert Systems, London, 1987.

43. Sture H ägglund: Emerging Systems for Computer-Based Knowledge Processing in
Office Work. Accepted for publication in Office: Technology and People, 1988.

44. Sture H ägglund: The Linköping Approach to Technology Transfer in Knowledge
Engineering. To appear in The Knowledge Engineering Review, vol 2, No 3,
Cambridge University Press, 1988.

45. T im H ansen:, Diagnosing Multiple Fault Using Knowledge about Malfunctioning
Behaviour. To appear in Proc. o f the 1st Int. Conf. on Industrial and Engineering
Applications o f A I and Expert Systems, Tullahoma, Tennessee, USA, 1988.

46. R olan d H jerppe, B irgitta O lander, K ari M arklund : Project ESSCAPE -
Expert Systems for Simple Choice of Access Points for Entries: Applications of
Artificial Intelligence in Cataloging. IFLA 51st Conf, Chicago, 18-24 August, 1985.

47. R olan d H jerppe: Project HYPERCATalog: Visions and preliminary conceptions of
an extended and enhanced catalog. Published in Intelligent Inform ation Systems for
the Information Society, B C Brookes. Eld. In Proc. o f the IRFIS 6th Conf.
(International Research Forum in Information Science), Frascati, Italy, 15-18 Sept,
1985. Elsevier Science Publishers B.V. (North-Holland), 1986, pp. 211-232.

48. R olan d H jerppe: Electronic Publishing: Writing Machines and Machine Writings.
The impact of computers on text. Published in Annual Review o f Information
Science and Technology, vol. 21, 1986, M Williams. Ed. Knowledge Industry
Publications Inc, pp. 123-166.

49. R olan d H jerppe: Knowledge Organizing, Collection Derived, and User Established
Structures. Published in Online Public Access to Library Files: 2nd National Conf. J
Kinsella Ed. Elsevier International Bulletins, Oxford 1986, pp. 101-110.

50. R olan d H jerppe: LINS - LIBLAB’s Name Handling System. A knowledge-based
system for authority control of personal names according to AACR2, Ch.22, Headings
for persons. June, 1987, p.8. I: C. Bossmeyer, ED. The Library of the Future. In
P roc. o f the ELAG (European Library Automation Group), 11th Library Systems
Seminar, Frankfurt, April 1-3, 1987. Deutsche Bibliothek, Frankfurt am Main. 1987.
ISBN:3-922051-19-7. pp.67-80.

51. R olan d H jerppe: Computer Networks as a Publication Medium? Implications for
Libraries. August, 1987, p 4. Presented at 53rd IFLA General Conf. ,Brighton,
England, August 16-21, 1987.

52. R olan d H jerppe: IFLA and Professional Communication. Presented at the IFLA
53rd General Conf. ,Brighton, England, August 16-21, 1987.

53. Johan H ultm an: COPPS A Software System for Defining and Controlling Actions
in a Mechanical System. In Proc. o f the IEEE Workshop on Languages for
Autom ation , Wien, September, 1987.

54. A rn e Jonsson , N ils D ahlbäck: Talking to a Computer is not like Talking to Your
Best Friend. In P roc. o f the SCAI, Tromsö, Norway, 1988.

55. M ariam K am kar, N ahid Shahm ehri, P eter F ritzson : Affect-Chaining and
Dependency Oriented Flow Analysis Applied to Queries of Program. To appear in
Proceedings o f the A C M Symposium on Personal and Small Computers. Cannes,
France, May, 1988.

56. M ariam K am kar, N ahid Shahm ehri: Runtime Dependent Program Flow
Analysis. In Proc. o f the Workshop on Programming Environments - Programming
Paradigms, at Roskilde University Centre, Denmark, October 22-24, 1986.

57. R o l f G . K arlsson, Ian M unro: Proximity on a Grid. In P roc. o f the 2nd

152 IDA ANNUAL RESEARCH R E P O R T 1987
Publications.

Symposium on Theoretical Aspects o f Computer Science (1985), Springer-Verlag
Lecture Notes on Computer Science 182, pp. 187-196.

58. R o l f G . K arlsson, Ian M unro, Ed R obertson : The Nearest Neighbour Problem
on Bounded Domains. In Proc. o f the 12th Int. Colloquium on Automata, Languages
and Programming (1985), Springer-Verlag Lecture Notes on Computer Science 194,
pp 318-327.

59. R o lf G . K arlsson: Point Location in Discrete Computational Geometry. In P roc. o f
the 6th Brazilian Congress on Computing, 1986, pp. 561-569.

60. R o lf G . K arlsson: Greedy matching on a grid. To appear in BIT, 1988.
61. R o lf G . K arlsson, M ark Overm ars: Normalized Divide-and-Conquer: A Scaling

Technique for Solving Multi-dimensional Problems. In Information Processing
Letters, 26, pp. 307-312, 1988.

62. R o lf G K arlsson, M ark Overm ars: Scanline Algorithms on a Grid. To appear in
B IT , 1988.

63. Jan K om orow sk i, Jan M aluszynski: Logic Programming and Rapid Prototyping.
Report TR-01-86, Harward University, Aiken Computation Laboratory. In Science o f
Computer Programming, 9, 1987, pp. 179-205.

64. K rzy sz to f K uchcinski and Zebo Peng: Microprogramming Implementation of
Timed Petri Nets. In Proc. o f the 2nd Nordic Symp. on VLSI in Computers and
Communications, Linköping, Sweden, June, 1986.

65. K rzy sz to f K uchcinski, Zebo Peng: Parallelism Extraction from Sequential
Programs for VLSI Applications. Presented at Euromicro 87, Southsea-Portsmouth.

66. K rzy sz to f K uchcinski, Z ebo Peng: Microprogramming implementation of timed
Petri nets. In North-Holland INTEGRATION, the VLSI Journal, No 5, 1987.

67. K rzy sz to f K uchcinski, B . W iszniewski: Path Analysis of Distributed Programs.
In Proc. o f the 1988 A C M Computer Science Conf., Atlanta, Georgia, February,
23-25 1988.

68. T on y Larsson: Semantics of a Hardware Specification Language and Related
Transformation Rules. In Proc. o f the 2nd Nordic Symp. on VLSI in Computers and
Communications, Linköping, Sweden, June, 1986.

69. T on y Larsson: Semantics of a Hardware Specification Language. M icroprocessing
and Microprogramming, vol.18, No 1-5, pp. 637-643, 1986.

70. T on y Larsson: Specification and Verification of VLSI Sytems Actional Behaviour -
8th International Symposium on Computer Hardware, Description Languages and
their Applications, Amsterdam, April 27-29, 1987.

71. T on y Larsson: Semantics of a Hardware Specification Language and Related
Transformation Rules. In North-Holland IN TEGRATION, the VLSI Journal, No 5,
1987.

72. Y n gve Larsson: A Testbed Environment for Debugging Distributed Systems. To
appear in the Proc. o f the Workshop on Parallel and Distributed Debugging. Madison,
WI, May, 1988.

73. H arold W . Law son, Jr.: Addressing Fundamental Problems in Computer Related
Education and Training. In Proc. o f the 4 th World Conf. on Computers in
Education, Norfolk, 1985.

74. H arold W . Law son Jr., Bryan Lyles: An Architectural Strategy for
Asynchronous Processing. In Concurrent Languages in Distributed Systems:
Hardware-Supported Implementation, (ed. by Reijnsand, Dagless), North-Holland,
1985.

75. J .L eszczylow ski, Staffan B onnier, Jan M aluszynski: Logic Programming with
External Procedures: Introducing S-unification. Accepted for publication in
Information Processing Letters, 1987.

76. B en gt Lennartsson: Programming Environments and Paradigms - Some
Reflections. In Proc. o f the Workshop on Programming Environments - Programming
Paradigms, Roskilde, Denmark, October 1986.

77. C hristos L evcopou los: Minimum Length and ” Thickest-First” Rectangular
Partitions of Polygons. In Proc. o f the 23rd Allerton Conf. on Comm., Control and
Computing, Illinois, October, 1985.

78. C hristos L evcopou los: A Fast Heuristic for Covering Polygons with Rectangles. In

ID A AN N U AL RESEARCH RE PO R T 1987
Publications.

153

P roc. o f the 5th Int. Conf. on Foundations o f Computation Theory, GDR, (1985),
L ectures Notes in Computer Science, vol 199, Springer Verlag.

79. C hristos L evcopou los: Fast Heuristics for Minimum Length Rectangular Partitions
of Polygons. In Proc o f the 2nd A C M Symposium in Computational Geometry,
Yorktown Heights, June, 1986.

80. C hristos L evcopou los: An Omega (square root(n)) Lower Bound for the
Non-Optimality of the Greedy Triangulation. In Inform ation Processing Letters, No
25 (1987), pp. 247-251.

81. C hristos L evcopou los, A ndrzej Lingas: On the Approximation Behavior of the
Greedy Triangulation for Convex Polygons. In Algorithmica, No 2, 1987, pp. 175-193.

82. C hristos L evcopou los: Improved Bounds for Covering General Polygons with
Rectangles. In Proc o f the 7th Conf. on Foundations o f Software Technology and
Theoretical Computer Science, Pune, INDIA, December 17-19, 1987. Lecture Notes
287, Springer Verlag.

83. C hristos L evcopou los, A ndrzej Lingas och J org Sack: Nearly Optimal
Heuristics for Binary Search Trees with Geometric Generalizations. In Proc o f the
IC A L P ’87 Karlsruhe, West Germany, July, 1987. Springer Verlag Lecture Notes
267.

84. A n drzej Lingas: A Linear-Time Heuristic for Minimum Weight Triangulation of
Convex Polygons. In Proc. o f the Allerton Conf. on Communication, Control, and
Computing, Urbana, Illinois, 1985.

85. A n drzej Lingas: Subgraph Isomorphism for Easily Separable Graphs of Bounded
Valence. In P roc. o f the 11th Int. Workshop on Graphtheoretie Concepts in
Computer Science, Castle Schwanberg, Wuerzburg, Germany, June, 1985.

86. A n drzej Lingas: On Partitioning Polygons. In Proc o f the 1st A C M Symposium on
Computational Geometry, Baltimore, Maryland, June, 1985.

87. A n drzej Lingas: Subgraph Isomorphism for Biconnected Outerplanar Graphs in
Cubic Time. In Proc. o f the 3rd Symposium on Theoretical A spects o f Computer
Science, January, 1986, Orsay, France. Lecture Notes in Computer Science, vol 210,
Springer Verlag. To appear in Theoretical Computer Science.

88. A n drzej Lingas: On Approximation Behavior and Implementation of the Greedy
Triangulation for Convex Planar Point Sets. In Proc o f the 2nd A C M Symposium in
Computational Geometry, Yorktown Heights, June, 1986.

89. A n drzej Lingas, A ndrzej Proskurow ski: Fast Parallel Algorithms for the
Subgraph Homeomorphism and the Subgraph Isomorphism Problems for Classes of
Planar Graphs. In Proc. o f the 7th Conf. on Foundations o f Software Technology and
Theoretical Computer Science, Pune, INDIA, December 17-19, 1987, Springer Verlag
Lecture Notes 287.

90. A n drze j Lingas, Christos Levcopou los, Jörg Sack: Algorithms for Minimum
Length Partitions of Polygons of Polygons. In BIT, Vol 27, No 4, pp. 474-479.

91. A n drzej Lingas: A New Heuristic for Minimum Weight Triangulation. In SIAM
Journal o f Discrete and Algebraic Methods. Vol 8, No 4, pp. 646-653. (This is an
improved version of LiTH-IDA-R-84-15).

92. A n drze j Lingas: A Space Efficient Algorithm for Greedy Triangulation.In P roc. o f
the 13th IFIP Conf. on System Modelling and Optimization, Tokyo, 1987, Springer
Verlag Lecture Notes.

93. A n drze j Lingas, M aciej Syslo: A Polynomial-time algorithm for subgraph
isomorphism of two-connected series-parallel graphs. To appear in P roc. o f the
IC ALP, Tampere, July, 1988. Lecture Notes in Computer Science, Springer Verlag.

94. Jalal M aleki: VIVID. The Kernel of a Knowledge Representation Environment
Based on the Constraints Paradigm of Computation. In P roc. o f the 20th Hawaii Int.
Conf. on System Sciences, Kailua-Kona, 1987.

95. Jan M aluszynski, H . Jan K om orow ski: Unification-Free Execution of Logic
Programs. In Proc o f the IEEE Symposium on Logic Programming, Boston, 1985.

96. M agnus M erkel: The Interpretation of Swedish Temporal Frame-Adverbials.In
Proc. o f the 10th Scandinavian Conf. on Linguistics, Bergen, June 11-13, 1987.

97. M agnus M erkel: A Novel Analysis of Temporal Frame Adverbials. In P roc. o f the
12th International Conf. on Computational Linguistics in Budapest, August 22-26,

154 IDA ANNUAL RESEARCH R E P O R T 1987
Publications.

1988.
98. M in ton , C arbonell, K nob lock , K uokka and Henrik N ord in : Improving the

Effectiveness of Explanation-based Learning. In Proc. o f the Workshop on Knowledge
Compilation, September 24-26, Oregon State University, 1986.

99. T o rb jö rn N äslund: An Experimental Implementation of a Compiler for Two-Level
Grammars. In: Z.W Ras and M. Zemankova (eds.). In Proc. o f the 2nd Int.
Symposium, Methodologies for Intelligent Systems, North-Holland, 1987, pp. 424-431.

100. U lf N ilsson: AID: An Alternative Implementation of DCGs. New Generation
Computing, vol 4, No 4, pp. 383-399, 1986.

101. H enrik N ord in : Using Typical Cases for Knowledge-Based Consultation and
Teaching. In Proc o f the 3rd Annual Conf. on Applications o f Expert Systems,
Orlando, Fla., 1986.

102. Lin P adgham : A Description of LINCKS: Linköpings Intelligent Knowledge
Communication System. In Proc. o f the IFIP Working Conf. on Methods and Tools
fo r Office Systems, Pisa, Italy, October 22-24, 1986.

103. Lin P adgham , R alph Rönnquist: From a Technical to a Humane Environment:
A Software System Supporting Co-operative Work. In Proc. o f the G D I International
Conf. on USER INTERFACES, Riischlikon, Switzerland, October 20-21, 1986.

104. Lin P adgham , R alph Rönnquist: An Imperative Object Oriented System. In
P roc. o f the 20th Hawaii International Conf. on System Sciences, 1987, vol 1, p 516.

105. M ikael P atel, A rne Jönsson: An Interactive Flowcharting Technique for
Communicating and Realizing Algorithms. In Proc o f the 19th Annual Hawaii Int.
Conf. on System Sciences, HICSS-19, 1986.

106. M ikael P atel: A Threaded Interpretive Language Supporting Programming in the
Large. In Proc. o f the 6th Rochester Forth Conf, University of Rochester, Rochester,
New York, June 11-14, 1986.

107. Z ebo P eng and K K uchcinski: Synthesis of Control Structures from Petri Net
Descriptions, Microprocessing and Microprogramming, Vol.18, No 1-5, 1986, pp.
335-340.

108. Z ebo Peng: Synthesis of VLSI Systems with the CAMAD Design Aid. In P roc. o f
the 2Srd ACM /IEEE Design Automation Conf, Las Vegas, June, 1986.

109. Z ebo P eng: Integration of VLSI Design Tools by a Unified Design Representation.
Published as a part of the Proc o f the 2nd Nordic Symposium on VLSI in Computers
and Communications, June 2-4, 1986.

110. Z ebo P eng: A Formal Approach to the Synthesis of VLSI Systems from their
Behavioral Descriptions. In Proc o f the 19th Annual Hawaii Int. Symp. on System
Sciences, Hawaii, January 1986, pp. 160-167.

111. Z ebo P eng: Construction of Asynchronous Concurrent Systems from their
Behavioral Specifications. In Proc. o f the 10th World Computer Congress IFIP-86,
Dublin, Ireland, September 1986, pp. 859-864.

112. Ivan Rankin: SMORF - An Implementation of Hellberg’s Morphology System. In
Papers from the 5th Scandinavian Conf. o f Computational Linguistics, University of
Helsinki, Dept of General Linguistics, pp. 161-172.

113. R olan d R ehm nert, K ristian Sandahl: Knowledge Organization in an Expert
System for Spot-Welding Robot Configuration. In Proc. o f the 5th Int. Workshop on
Expert Systems and Their Applications, Avignon, 1985.

114. M ichael Reinfrank, H artm ut Ereitag: An Integrated Non-Monotonic Deduction
and Reason Maintenance System. In Herbert Stoyan (ed.) Proc. o f the Workshop on
Truth Maintenance, Berlin, 1986. Springer Verlag.

115. M ichael Reinfrank: Reason Maintenance Systems. In Herbert Stoyan (ed.) P roc. o f
the Workshop on Truth Maintenance, Berlin, 1986. Springer Verlag.

116. M ichael Reinfrank: Multiple Extensions, where’s the Problem? In F. Brown (ed.)
The Frame Problem in Artificial Intelligence. Proc. o f the 1987 Workshop.

117. R a lph R önnquist: The Information Lattice of Networks Used for Knowledge
Representation. In Proc. o f the Int. Symp. on Methodologies for Intelligent Systems,
Charlotte, NC, October, 1987.

118. P io tr R udn ick i, W lodzim ierz D rabent: Proving Properties of Pascal Programs
in MIZAR 2, A cta Informatica, vol 22, pp. 311-331, 1985.

ID A AN N U AL RESEARCH RE PO R T 1987
Publications.

155

119. K ev in R yan : The Value of Mixed Metaphors in Computer Education. In Proc. of
the Nat. Computer Education Conf., San Diego, 1986.

120. K evin R yan , J A R edm ond , and Others: Surveying Software Tools for a
Method Driven Environment. IFIP, Dublin, September, 1986.

121. K ristian Sandahl, Sture H ägglund, Jan -O lof H ildén , R olan d R eh m n ert,
Lars R eshagen: The Antibody Analysis Advisor and its Migration into a
Production Environment. In Proc. of the 1st Int. Conf. on Expert Systems, London,
1985.

122. K ristian Sandahl: The Migration of Expert Systems into Production
Environments. In Proc. of the Nord-Info Seminar on Knowledge Engineering,
Köpenhamn, 1986.

123. Erik Sandew all: A Functional Approach to Non-Monotonic Logic. In Proc of the
Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985 and Computational
Intelligence, vol 1, No 2, pp. 80-87, 1985.

124. Erik Sandew all, R alph R önnquist: A Representation of Action Structures. In
Proc. of the 5th National Conf. on Artificial Intelligence, AAAI-86, Philadelphia,
1986.

125. Erik Sandew all: Non-Monotonic Inference Rules for Inheritance with Exception. In
Proc. o f the IEEE, Special Issue on Knowledge Representation, 1986.

126. Erik Sandew all: Specification Environments for Information Management Systems.
Panel position paper in Proc. of the IFIP Congress, 1986.

127. Erik Sandew all: The Pipelining Transformation on Plans for Manufacturing Cells
with Robots. In Proc. of the Int. Joint Conf. on A.I., Milano, August, 1987.

128. Ola S tröm fors: Editing Large Programs Using a Structure-Oriented Text Editor. In
Proc. o f the Int. Workshop on Advanced Programming Environments. Trondheim,
Norway, June, 1986.

129. Ola S tröm fors: A Structure Editor as a Template for Programming Environment
Functions. In Proc. of the Workshop on Programming Environments - Programming
Paradigms, at Roskilde University Centre, Denmark, October 22-24, 1986.

130. B o Sundgren: How to Satisfy a Statistical Agency’s Need for General Survey
Processing Programs. In Proc. of the 45th Session of the International Statistical
Institute, Amsterdam, August 12-22, 1985.

131. Erik Tengvald : The AIM-project: Establishing a Knowledge Engineering
Environment for the Application of Artifical Intelligence Techniques in the
Manufacturing Industry. Presented at Artificial Intelligence - Supercomputers, Umeå,
Sweden, June 22-24, 1987.

132. A r ja V ain io-L arsson : Metaphors as Communicators of Conceptual Ideas. In the
9th Scandinavian Research Seminar on Use and Development of Information
Systems, Båstad, August 19-22, 1986.

133. M ats W irén : A Comparison of Different Rule-Invocation Strategies in Context-Free
Chart Parsing. In Proc. of the 3rd Conf. of the European Chapter o f the Association
for Computational Linguistics, in Copenhagen, Denmark, April 1-3, 1987.

134. M ats W irén : A Control-Strategy-Independent Implementation of PATR. Proc. of
the 1st Scandinavian Conf. on Artificial Intelligence, Tromsö, Norway, March 9-11,
1988.

D E P A R T M E N T A L REPORTS 1987

LiTH-IDA-R-87-01 W lodzim ierz D rabent: Do Logic Programs Resemble Programs in
Conventional Languages?

LiTH-IDA-R-87-02 R ob er B ilos: A Token-Based Syntax Sensitive Editor.
LiTH-IDA-R-87-03 M ikael Patel: A Threaded Interpretive Language Supporting

Programming in the Large.
LiTH-IDA-R-87-05 Christer B äckström : Logical Modelling of Simplified Geometrical

Objects and Mechanical Assembley processes.
LiTH-IDA-R-87-06 Johan H ultm an: COPPS A Software System for Defining and

Controlling Actions in a Mechanical System.

156 IDA ANNUAL RESEARCH R E PO R T 1987
Publications.

LiTH-IDA-R-87-07 Peter Haneclou: A Formal Approach to Reason-maintenance Based
on Abstract Domains.

LiTH-IDA-R-87-08 Christos Levcopoulos, Andrzej Lingas, Jorg-R. Sack: Nearly
Optimal Heuristics for Binary Search Trees with Geometric
Generalizations.

LiTH-IDA-R-87-09 Andrzej Lingas, Marek Karpinski: Subtreee Isomorphism and
Bipartite Perfect Matching are Mutually NC Reducible.

LiTH-IDA-R-87-10 Andrzej Lingas: On Parallel Complexity of the Subgraph
Isomorphism Problem.

LiTH-IDA-R-87-11 Sture Hägglund, Christer Hansson, Tomas Sokolnicki:
Knowledge-Based Training of Case Management Routines and
Emergency Procedures.

LiTH-IDA-R-87-13 M ats Wirén: A Comparison of Rule-Invocation Strategies in
Context-Free Chart Parsing.

LiTH-IDA-R-87-14 Peter Fritzson: Window System Architectures - an Overview.
LiTH-IDA-R-87-15 Nils Dahlbäck: Kommunikation med datorer i naturligt språk - vad

är det och vem behöver det?
LiTH-IDA-R-87-16 Shamsul I. Chowdhury: State of the Art in Statistical Expert

Systems.
LiTH-IDA-R-87-17 Tony Larsson: Specification and Verification of VLSI Systems

Actional Behaviour.
LiTH-IDA-R-87-18 Henrik Nordin: Reuse and Maintenance Techniques in

Knowledge-based Systems.
LiTH-IDA-R-87-19 Zebo Peng: Construction of Asynchronous Concurrent Systems from

their Behavioral Specifications.
LiTH-IDA-R-87-20 K rzysztof Kuchcinski, Zebo Peng: Parallelism Extraction from

Sequential Programs for VLSI Applications.
LiTH-IDA-R-87-21 Harold W. Lawson: Challenges and Directions in Computers and

Education.
LiTH-IDA-R-87-22 Lars Ahrenberg, Arne Jönsson: An Interactive System for Tagging

Dialogues.
LiTH-IDA-R-87-24 Sven Moen: Drawing Dynamic Trees.
LiTH-IDA-R-87-25 Arne Jönsson: Naturligt språk för användardialog och

databas förfrågningar
LiTH-IDA-R-87-26 Jonas Löwgren: Applying a Rapid Prototyping System to Control

Panel Dialogues.

Diskussion Debatt:

LiTH-IDA-R-87-04 Arja Vainio-Larsson: Datavetenskap: Teknik och Vetenskap.
LiTH-IDA-R-87-12 Sture Hägglund: Yrkeskompetens och kunskapskrav i 90-talets

datormiljö.
LiTH-IDA-R-87-23 Börje Langefors: Idén om informationssystem.

LIBLAB RESEARCH REPORTS

LiU-LIBLAB-R-87:1 R olan d H jerppe: LINS - LIBLAB’S Name Handling System. A
Knowledge-Based System for Authority Control of Personal Names
According to AACR2, Ch.22., Headings for Persons.

