

ISBN 91-7870-168-6
ISSN 0281-4250

LiTH-IDA-R-86-44
January 1987

The Department of Computer and Information Science

Linköping University

Annual Research Report 1986

This report describes research, on software technology and related areas within
the Department of Computer and Information Science at Linköping university
and Institute of Technology. Main areas of current research are programming
environments, artificial intelligence, natural language processing, application
systems, computer-aided design of digital systems, representation o f knowledge
in logic, complexity of algorithms, logic programming, library and information
science, and administrative data processing. The department has a commonly
organized integrated program for graduate studies (PhD and Licentiate
degree), with a large faculty engaged in research and thesis supervision. In
addition to the research organization and the extensive undergraduate course
program, there is also a knowledge transfer program in the department
involving cooperation with a number of large Swedish companies on medium to
long term R&D issues.

Mailing address:
Dept. of Computer and Information Science
Linköping University
S-581 83 Linköping
Sweden
Tel: int + 46 13 28 10 00
Telex: 8155076 LIUIDA S
Telefax: int + 46 13 14 22 31

Postadress:
Inst. för datavetenskap
Universitetet och
Tekniska Högskolan i Linköping
581 83 Linköping
Tel: 013 - 28 10 00
Telex: 8155076 LIUIDA S
Telefax: 013 - 14 22 31

C O N TE N TS

1 . I n t r o d u c t i o n a n d O v e r v i e w .. 1
1.1 Research Objectives in IDA.. 1
1.1.1 Current Research Objectives... 1
1.1.2 Strategic Research Planning.. 2
1.2.Organization... 3
1.2.1 IDA’s current research organization.. 3
1.2.2 Organizational Changes During 1986.. 5
1.2.3 IDA:s organization in general.. 5
1.3.International Cooperation.. 6
1.4 Knowledge Transfer Activities... 6
1.4.1 University teaching.. 6
1.4.2 Knowledge Transfer Program to industry.. 8
1.4.3 Spinoff Companies.. 8
1.5 Research Facilities... 9
1.5.1 Computer Equipment.. 9
1.5.2 Office Space... 10

2. Undergraduate Education 11
2.1 Undergraduate cu rricu la ... 11
2.2 Continued education for Swedish In d u stry ... 13
2.3 Other programmes .. 13
2.4 Conference activities ... 14
2.5 Organization .. 15

3 . T h e K n o w l e d g e T r a n s fe r P r o g r a m m e 17
3.1 Orientation of the program .. 18
3.2 Participants and organization ... 20
3.3 Example of KTP training projects.. 20
3.3.1 Economical decision making: Real estate transfers................................. 21
3.3.2 Sales support: Spot welding robot configuration.................................... 21
3.3.3 Maintenance and repair: Separator systems .. 22
3.3.4 Customer support: Performance tuning of com pu ters 22
3.4.KTP as a knowledge engineer training p r o g ra m 22
3.5 Experiences and plans for further KTP development 23

4 . T h e L a b o r a t o r y f o r C o m p l e x i t y o f A l g o r i t h m s 25
4.1 Introduction.. 25
4.2 Group M em bers... 26
4.3 Current R esearch .. 26
4.3.1 Computational Geometry .. 26
4.3.2 Data Structures.. 28
4.3.3 Parallel Graph A lgorithm s.. 29
4.4 External co n ta c ts .. 29

5. The Artificial Intelligence Environments Laboratory 31
5.1 Introduction ... 31
5.2 Researchers and Project ... 32

5.2.1 Laboratory m e m b e rs ..33
5.2.2 The AIM project33
5.3 Current research: The hideshape subproject36
5.4 Research cooperation39

6 . T h e A p p l i c a t i o n S y s t e m s L a b o r a t o r y 41
6.1 Projects and Researchers...41
6.1.1 Summary of research 1986..41
6.1.2 Personnel, ASLAB, spring 1987...44
6.2.Direction of research...45
6.3 Review of current research activities...47
6.3.1 Knowledge-Based Software Systems...47
6.3.2 Statistical information systems..54
6.4 External cooperation...56
6.5 P ublications.. 56

7 . T h e L a b o r a t o r y f o r C o m p u t e r - A i d e d D e s ig n o f D i g i t a l
S y s t e m s ..59
7.1 Introduction59
7.2 Current W o r k60
7.3 Asynchronous Architectures...61
7.4 Ongoing ASAP P r o je c t s ...62
7.5 Progress During 198665
7.6 On the Specification and Verification of VLSI S y s te m s65
7.7 Synthesis of Behavioral Descriptions67
7.8 Sim ulation ...68
7.9 Cooperation With Other Groups ...69
7.10 Industrial Significance...69
7.11 Other Related Activities 70
7.12 Personnel.. 71
7.13 Licentiate Theses 71
7.14 References 71

8 . T h e L ib r a r y a n d I n f o r m a t i o n S c i e n c e L a b o r a t o r y . . 73
8.1 Introduction... 73
8.2 Project H YPE R C A Talog.. 74
8.3 Cataloging and document description.. 77
8.3.1 Other projects and activities.. 78
8.4 Personnel 79
8.5 List of p u b lications... 81

9 . T h e L o g i c P r o g r a m m i n g L a b o r a t o r y 83
9.1.Introduction 83
9.2 Personnel and External Researchers83
9.3 Research A ctiv it ie s 84
9.3.1 The Background 84
9.3.2 The R e s u lts85
9.3.3 Other R esea rch ... 86
9.3.4 Future Research 86
9.4.Contacts within the Department .. 87
9.4.1 Courses for Graduate Students .. 87
9.4.2 Direct C o n ta cts 87
9.5 External Contacts 87
9.5.1 External C ooperation... 87
9.5.2 Conferences and S em in ars 88

1 0 . T h e L a b o r a t o r y f o r N a t u r a l L a n g u a g e P r o c e s s i n g . 89
10.1 NLPLAB P erson n el... 89
10.2 A Short Overview of Current Research .. 90
10.3 LINLIN — a general-purpose N L I ... 91
10.4 Parsing and Grammar Developm ent.. 93
10.4.1 Parsing E ffic ien cy ... 93
10.4.2 Grammar D evelopm ent... 94
10.5 Studying Human-Computer D ialogues................ 95
10.6 References ... 97

1 1 . T h e P r o g r a m m i n g E n v ir o n m e n t s L a b o r a t o r y 99
11.1 Short Summary of the Activities During 1986 100
11.1.1 PELAB Research Projects 1986 ... 100
11.1.2 PELAB Personnel 1986 ... 101
11.1.3 Publications 1986 ... 102
11.2 Project Presentations.. 103
11.2.1 The DICE P r o je c t ... 103
11.2.2 Runtime Dependent Program Flow Analysis 104
11.2.3 TOSSED, A Token-Based Syntax Sensitive E d ito r 106
11.2.4 A Structure-Oriented Text Editor for Large Programs 107
11.2.5 The PEPSy P r o je c t .. 108
11.3 Industry Related A ctiv ities .. 110

1 2 . T h e L a b o r a t o r y F o r R e p r e s e n t a t io n o f K n o w l e d g e in
L o g i c .. 111
12.1 Researchers and Projects... 111
12.1.1 Activities.. 111
12.1.2 Laboratory members.. 112
12.1.3 Main current achievements.. 112
12.2 Non-standard logics and their implementations... 113
12.2.1 Non-monotonic logic and reason maintenance... 114
12.2.2 Fuzzy logic... 116
12.2.3 Constraint programming systems... 116
12.3.Office systems... 116
12.3.1 Office systems vs. end-user operating systems... 117
12.3.2 Theories of office software.. 117
12.3.3 The LINCKS project... 119
12.4 Representation of knowledge about machinery and processes................. 120
12.4.1 Theoretical analysis of action structures... 121
12.4.2 Laboratory system for intelligent, adaptive machinery......................... 122
12.4.3 Geometrical reasoning... 123
12.5 References.. 124

1 3 . T h e A d m i n i s t r a t i v e D a t a P r o c e s s in g G r o u p 127
13.1 Administrative data processing.. 127
13.2 Research activities... 128
13.3 Personnel: ... 128

Appendix A: Administrative organization ... 129

Appendix B: Graduate Study Program... 133

Appendix C: Undergraduate Education.. 145

Appendix D: Computer Facilities... 151

Appendix E: Publications .. 153

1.

Introduction and
Overview

Erik Sandewall

1.1 Research Objectives in IDA.

1.1.1 Current Research Objectives.

This is the January, 1987 issue of the yearly overview report o f research done
at the Department of Computer and Information Science (IDA) o f Linköping
University. The scope and the objectives of our research is influenced by the
following external factors:

We are located in the University’s School of Engineering (Tekniska högskolan i
Linköping). Knowledge areas which are significant for Swedish industry before
the end of this century, should have high priority for us.

The scope of ID A ’s interest is partly defined by the natural borderlines to
other departments in the university, notably:

Electrical engineering
Mechanical engineering
Mathematics
Physics
Business administration
Communication studies
Technology and social change

(The last two of those are in the ’Themes’ research organization which has an
emphasis on social sciences).

2 ID A AN N U A L R ESEARCH R EP O R T 1986
Introduction and Overview

Our main source o f research grants is the Swedish Board o f Technical
Development (STU); only about 20% of the research resources are internal
university money. STU supports good research, according to the criteria that
are commonly accepted in the international research community. They are
eager to support the establishment and growth o f ” centers of excellence” in
selected areas. However, it is also important for our sponsor that research
results should be transferred to applications in industry, commercial users of
computer systems, public administration, or in other areas o f research outside
computer science.

These goals are sometimes competing, and possibly even contradictory. In IDA
we have tried to balance our efforts so that both the basic research goal and
the applied goal should be achieved reasonably well. We also recognize the
importance o f continuous interaction between basic and applied research in our
field.

Besides the external factors, the research direction of our department is
naturally determined by the roots and the traditions that is has emerged from.
Our research profile has evolved from early Swedish efforts in the following
areas:

artificial intelligence
programming environments
computer architectures
administrative data processing, data base

and office systems

These areas still represent a large portion of the department’s research, but
they have been complemented with research also in areas such as

logic programming
complexity theory
library science

We do not wish to be a single-issue department, but at the same time we can
not afford to spread out over all possible parts of computer science. The
present research profile, as realized by the ten laboratories described in
chapters 4-13, attempts to make a reasonable trade-off between concentration
and breadth.

1.1.2 Strategic Research Planning.

In early 1986, our University’s School of Engineering decided to focus on
Industrial information technology (IIT) as the primary area for new research
efforts. The choice was based on the observation that information technology is
both the underlying technology for the information industry (computers,
software, telecommunications, electronic components), and also it is one very
important enabling technology for other industries. The term ’industrial
information technology’ that was adopted by the School of Engineering, refers
to that second aspect o f the use of information technology.

ID A A N N U A L RESEARCH REPORT 1986
Introduction and Overview

3

The effort in industrial information technology is still just in the planning
stage, and government approval o f the plan came in February, 1987. The
actual work in the new Center for Industrial Information Technology will begin
in mid-1988. It may eventually involve most of the departments of our school.
At present, the departments of Mechanical Engineering, Electrical Engineering,
and Physics axe the ones mostly involved in the planning work besides IDA.

Within our department, we presently find it more important to strengthen the
existing laboratories, than to start new ones. The recruiting situation is
relatively good, both for faculty and for students, and funding is therefore the
primary constraint in most areas of our activities.

ID A ’s work in the area of administrative data processing has been plagued for
many years with a number of problems. The undergraduate study-line in
” computer science and business administration” (” systemvetenskapliga linjen”)
is badly under-funded. On the research side, there are organizational problems
along the administrative borderline between ’engineering’ and ’social sciences’ .
IDA brought out these problems for concrete discussion in May, 1986, and
there has been a fairly lengthy debate during the fall about how to proceed for
the future. We hope that a consensus solution can be reached soon.

Our main sponsor, STU, established a ” ramprogram” (literally, ” frame
program”) for research in information processing during the period 1980 to
1985. That program was very important for strengthening computer science
research in Swedish universities, both because the total amount of funding
increased, and because it provided fairly stable funding during a five year long
period. Since 1985 there has not been any frame program in our area, and our
grants have mostly been for two years at a time. A working group appointed
by STU is now preparing a proposal for the next frame program, which would
run from January 1, 1988. IDA has a representative (Erik Sandewall) in the
working group.

1.2 Organization.

1.2.1 ID A ’s current research organization.

This annual research report is intended both for our colleagues internationally,
and for Swedish readers in industry as well as in the universities. When it
comes to the sections about organization and about undergraduate teaching,
those two audiences have different frames of reference, and maybe also
different interests. If a reader finds some parts of the following text redundant,
then maybe that is a result of our attempts to cater to both groups o f readers
at once.

IDA has presently about 120 employees. This figure includes 16 researchers
with a Ph.D. degree. The research in our department is organized as nine (at

4 ID A AN N U AL R ESEARCH R EPO R T 1986
Introduction and Overview

present) laboratories and one smaller group (for administrative data
processing). Each lab consists of one or a few graduated (Ph.D.) researchers,
five to eight (typically) graduate students, and some lab-specific support staff.
From the department’s point of view, the laboratories are the units which
perform research projects, teach graduate courses, and are responsible for
finding their own funding. From the graduate student’s point of view, the
laboratory is his or her organizational ” home” . The thesis project is done in
one’s own laboratory, but the graduate student must take courses across the
range of all the laboratories.

The research program is coordinated by the research committee, headed by
Erik Sandewall. The current laboratories are:

ACTLAB (Lingas) for complexity of algorithms
AIELAB (Tengvald) for artificial intelligence environments
ASLAB (Hägglund) for application systems,
CADLAB (Lawson/Kuchcinski) for computer-aided design of digital systems,
LIBLAB (Hjerppe) for library and information sciences.
LOGBRO (Maluszynski) for logic programming,
NLPLAB (Ahrenberg) for natural language processing,
PELAB (Lennartsson) for programming environments,
RKLLAB (Sandewall) for representation of knowledge in logic,

The group for administrative data processing (Goldkuhl), although primarily a
group for undergraduate teaching, also includes some research activities.

The laboratory system is an intermediate form between the ” flat” university
department and the ” formally structured” one. In the ” flat” department there
is in principle no organization, just a number of professors each of which is the
advisor for a number of graduate students. The laboratory structure
encourages, and makes visible those cases where several professors /researchers
/advisors work jointly with their research and their students. In particular,
faculty members who do a lot of work for undergraduate teaching find it
convenient to be a member, but not a leader of a research laboratory. Also, a
visiting scholar would be a member of an existing laboratory and would not
form a new one.

The ” formally structured” department is the one where the academic positions
(several professorship levels, lecturer, etc.) define the hierarchical structure of
the department. This has often been the traditional organization in Swedish
universities. The laboratory structure at IDA is more uniform. It is also easier
to change, since the department’s decisions about changing laboratories
(adding, deleting, splitting, or merging them) can be taken according to the
needs o f the research activities. The creation of a senior position does not
automatically imply the creation of an organizational unit, nor the other way
around either.

ID A A N N U A L R ESEARCH REPORT 1980
Introduction and Overview

5

1.2.2 Organizational Changes During 1986.

The department’s organization has only changed at one point during 1986:
effective July 1, the previous artificial intelligence laboratory was split into two
new laboratories, namely the Laboratory for Artificial Intelligence
Environments (AIELAB), headed by Erik Tengvald, and the Natural Language
Processing Laboratory (NLPLAB), headed by Lars Ahrenberg. The goals and
the activities of these new laboratories are described in their respective
chapters of this report.

1.2.3 ID A :s organization in general.

IDA:s general organization is described in more detail in appendix A . The
department is lead by a department board (institutionsstyrelse), whose
chairman (” prefekt”) is Bengt Lennartsson. The two main areas of activity are
reflected in the two subordinate committees:

- the committee for undergraduate teaching, whose chairman
is Anders Haraldsson;

- the research committee, whose chairman is Erik Sandewall.

The research committee equals approximately the set of laboratory leaders,
and is responsible for all aspects of the department’s graduate education
programs and research.

The organizational groups within the department are:

- the research laboratories, headed by the lab leaders;

- two undergraduate teaching groups, one for the teaching in the School of
Engineering (” tekniska högskolan”), and another for the teaching in the School
of Arts and Sciences (” filosofiska fakulteten”). The teaching groups are each
headed by a ” studierektor” , namely Anders Haraldsson and Eva-Chris
Svensson. The teaching groups report to the undergraduate teaching
committee;

- a technical support and service group (TUS), which is headed by Anders
Aleryd and reports directly to the department board.

The department’s resources are almost consistently measured in monetary
units, kronor, and not as e.g. ” positions” or ” slots” for teachers. For example,
the School of Engineering buys a number of courses from the department, for a
price that is set in kronor. The ” studierektor” uses the money partly for paying
people in his own teaching group, and partly for sub- contracting research labs
to do some of the courses. The laboratory leaders see a number of distinct
sources of income, such as sub-contracted courses, research grants, and
industry cooperation, and must make the ends meet.

6 ID A AN N U A L RESEARCH R EP O R T 1986
Introduction and Overview

Through this organization, we try to de-centralize responsibilities within the
department with a minimum of bureaucracy, and without sacrificing the
advantages of joint strategical planning and continuous synergy effects between
the different parts of the department. The organizational and economic
structure defines a small set of ” rules of the game” , and the task o f the
laboratory leaders and laboratories is to maximize the lab’s performance
according to the criteria that were discussed in section 1.1.1, and within the
constraints o f the rules.

1.3 International Cooperation.

In computer science, like in most other disciplines, the most important
international cooperation is the informal one. It takes place through personal
contacts and visits, and at international conferences.

In addition, IDA or specific labs within IDA also participate in a number of
organized international projects, namely:

- the SYDPOL project, a Scandinavian project on SYstems Development and
Profession Oriented Languages, together with, the universities in Aarhus
(Denmark) and Oslo (Norway).

- the COST 13 project, a European project on Computer Architectures for
A.I., together with the Free University of Brussels (Belgium), the University of
Rome ’La Sapienza’ (Italy), and Delphi S.A. in Pisa (Italy).

- the PROMETHEUS project, which is part of the European Eureka
programme, and which is now in a planning phase. Prometheus is concerned
with future traffic and automobile systems and is a joint effort by the
European car manufacturers.

1.4 Knowledge Transfer Activities.

A research department produces and exchanges new knowledge. In order to
flourish, it must itself produce new results, and also participate in the
international ” barter trade” for research results. The useful outcome o f those
activities, from the point of view of the taxpayers and the sponsoring agencies,
is when the accumulated knowledge is transferred to practical use. We use the
term ” knowledge transfer activities” collectively for the various ways of
transferring accumulated research knowledge.

1.4.1 University teaching.

Industry representatives often point out that teaching the next generation of
engineers, ” knowledge engineers” and systems analysts is the most important
knowledge transfer activity for a university. For IDA, it accounts for roughly

ID A A N N U A L RESEARCH REPORT 1986
Introduction and Overview

7

45% o f the total budget, whereas knowledge transfer directly to industry
accounts for about 10%, and research accounts for the other 45%.

Chapter 2 gives an overview of our undergraduate educations for Swedish
readers, i.e. the chapter assumes a knowledge o f the Swedish educational
system. Here we shall briefly review the system, for the benefit of the
international reader, and using terms from the U.S. educational system for
comparison.

Students are admitted to the university after having completed senior high
school with a matriculation exam, usually the year when the student is 19
years old. The student is admitted to a specific ” study line” , which defines
what he or she will be majoring in. The school of engineering has the following
study lines:

Mechanical Engineering
Electrical Engineering and Applied Physics
Engineering and Economics
Computer Engineering
Computer Science

The first four of these study lines are nominally for 4 1 /2 years, in practice
often more. They lead to the degree which in Swedish is termed ” civilingenjör” ,
but which is used for all branches of engineering, not only for civil engineering
in the English language sense. It is comparable to a Master’s degree, with the
qualification that the concluding thesis project is of moderate size - about three
months’ work - and is usually performed in industry and not as a research
assignment. The courses in the study line are almost exclusively of a technical
character; the student is assumed to have acquired the necessary knowledge of
” Western Civ” , foreign languages, etc. before matriculation.

For the Computer Science study line, which is a knowledge engineering type
education, the nominal study time is 4 years instead of 4 1 /2 . Study lines in
the School o f Arts and Sciences are often for 3 years, and end with a Bachelor
of Science degree. The degree system there is presently being modified.

In the School of Engineering, the study lines are not directly tied to
departments. There is a matrix organization, where each study line buys
courses from (at least potentially) all the departments. In particular, IDA sells
courses to all five study lines. When we refer to courses in the ” undergraduate”
eduction in this volume, we really mean the courses in these study lines leading
to a Master’s or a Bachelor’s degree.

All the students in a study line take the same courses (with minor exceptions)
during the first two years, and have a free(-er) choice from the third year
onwards.

The students who go to graduate school must have completed the
’undergraduate’ degree with (in principle) 60 points of computer science
courses. One full-time academic year is 40 points so one point is roughly one

8 ID A AN N U A L R ESEARCH R EP O R T 1986
Introduction and Overview

work-week. The graduate study proceeds through two successive levels, the
” teknologie licentiat” degree nominally after two years, and the ” teknologie
doktor” (Ph.D. in engineering) nominally after two additional years. Both
levels require a combination of coursework and a thesis. The ” tek.lic.” can
therefore be seen as an advanced Master’s degree with a substantial, research
oriented thesis.

There are two reasons for having the licentiate degree in the system. For those
students wishing to go into industry, it is a good break point in the education.
Industry wants people to be as young as possible when they come, and the
licentiate has already had a participation in research which is a sufficient
background for many industrial jobs. Secondly, for students who contemplate
whether to enter a research education at all, the Ph.D. seems a very long way
off, and the licentiate is a more immediate and tangible goal. Many of the
licentiates continue towards the Ph.D. but appreciate having had the
breakpoint.

Students that come from the 4-year Computer science study line or from the
3-year Systems science line (Computer science and business administration) go
to ” filosofie licentiat” and ” filosofie doktor” degrees. Three years on those lines
gives 60 points in computer science, so the 2+2 years research education is
counted from the end of the third year.

1.4.2 Knowledge Transfer Program to industry.

There is an increasing awareness in Swedish industry about the need for
continuing education, and for transferring new research results directly to
corporations. IDA:s activities in this area are reported in chapter 3.

1.4.3 Spinoff Companies.

ID A ’s policy is to accept industry contracts for knowledge transfer, i.e. for
work where the customer wants (his employees) to acquire knowledge in some
area, but not to accept consulting jobs or other projects where the customer
wants software, hardware, or designs to be delivered. In such cases we refer to
existing spinoff companies, and we may also encourage IDA employees to form
new spin-off companies in order to catch an opportunity.

The significance o f university spinoff companies for industrial growth is well
known. One part of the previous artificial intelligence laboratory split off a few
years ago and formed Epitec AB. The company has presently about 25
employees and is active in development o f tools for knowledge systems
development, in development of applications for clients in industry, in
consulting and in training of knowledge engineers.

As an even earlier spinoff, Jerker Wilander and Kenth Ericson founded the
company Softlab AB in Linköping in 1981. Softlab is working in the areas of

ID A A N N U A L R ESEARCH REPORT 1986
Introduction and Overview

9

compiler design and advanced tools for software development The company is
growing steadily and is also expanding its scope of applications.

Other spinoffs, primarily from CADLAB, are Grafitec AB, founded by Michael
Pääbo and active in business graphics, and DIGSIM led by Bengt Magnhagen.

Some other spinoff companies in Linköping have required a considerable
number of software specialists, although their main business is something else.
In particular, Context Vision (formed in 1983, for building picture processing
systems) recruited heavily from our department. There are also a number of
software companies founded by former undergraduate students, such as e.g.
Programsystem AB, having close contacts with the department and active in
transferring software originating from research projects into commercial
products. The intensive communication with the many developing high tech
software companies around the university is a vitalizing force for the
department.

1.5 Research Facilities.

1.5.1 Computer Equipment.

During 1985 Linköping was one of a number of European universities, which
were invited by the Rank-Xerox Corporation to submit applications for
advanced computing equipment, including AI workstations. Our application
covered 6 projects, ranging form knowledge-based systems including
applications in medicine, libraries and office work, to programming
environments and improved undergraduate education.

In May, 1986, Rank-Xerox made a donation of 18 Xerox workstations, plus
additional file servers, print servers, and other computer equipment including
software to our department. This grant covered the needs expressed in the
application and it was one of the three large grants awarded in Europe. It
represents a valuable contribution to our activities, including the possibilities
to provide experiences o f advanced workstations in the undergraduate and
masters-level education.

During the year we have also installed 7 SUN-3 workstations, which have been
purchased using a grant from Forskningsrådsnämnden, and miscellaneous
smaller computers.

The AIELAB has started a project to build a transputer-based computer
system with a ’hyper-cube’ configuration, for use in its own research as well as
by other labs.

Although we have a relatively favourable situation with respect to computer
equipment at present, there are still some unresolved problems. The

10 ID A AN N U A L R ESEARCH R EP O R T 1986
Introduction and Overview

DEC-system 2060, which we use as a ’background’ computer resource and as a
tool for office services, has far exceeded its technical and economical life-length
and must be replaced as soon as possible.

1.5.2 Office Space.

The department moved into an attractive new building, the E building, in
April, 1985. Because of the on-going expansion of the department’s activities,
we are already very crowded in the new premises. One-third of the department
is still in the old building, and in space we have borrowed from other
departments. We expect this problem to get worse before it gets better.

Figure 1.1. Peter Fritzson reports from a year at SUN during the
weekly information meeting in the coffee room.

IDA ANNUAL RESEARCH REPORT 1986
Undergraduate Education

11

2 .

U n d e r g r a d u a t e E d u c a t i o n

A nders Haraldsson

The Linköping University has since 1975 had a strong position in
undergraduate curricula and teaching in computer science. Linköping is today
the only university which offers the three main 3-4.5 years undergraduate
study programs in the area of computer science and systems analysis. An
increasing part is also other educational activities such as a continuing
education programme in computer science for Swedish industry.

2 .1 U n d e r g r a d u a t e c u r r ic u la

As the first institute of technology in Sweden we started 1975 the D-line
(Computer Science and Technology - ”Datateknik-linjen”) as a four-year
programme leading to a Master of Engineering. It was the first full and
specialized programme in computer science, specialized on software and
hardware. The programme was introduced 1982 at all other Swedish institutes
of technology.

Many persons at IDA made substantial contributions during the development
of the D-line and about 25% of the courses are given by IDA. The expansion of
staff and graduate students at IDA during the period 1980 - 1985 is to a large
extent a result from recruiting students graduated from the D-line. The
number of students accepted annually to the line has grown from 30 students
the first year to 120 students.

A new computer science programme, the C-line (Computer Science -
”Datavetenskapliga linjen”) was started in 1982. It is a four-year programme
leading to a Master of Science degree. The number of students accepted
annually is 30. The programme is also given at Uppsala and Umeå Universities.
This new programme is at Linköping in the school of engineering, but differs
from ordinary engineering curricula (such as electrical engineering, or
mechanical engineering) in some significant ways:

12 ID A AN N U AL R ESEARCH R EP O R T 1986
Undergraduate Education

= significantly more discrete mathematics and logics, partly gained by
reduction of the calculus courses

= LISP as the first programming language

= relevant humanities, such as psychology and linguistics, are significant
parts of the curriculum, and are introduced as basic courses during the first
years

= courses in theoretical branches of computer science

= courses in AI and AI-oriented subjects

The major part of the C-line was developed by persons from IDA and most
courses are given by us. The first class of students from this curriculum has
now graduated. It is already quite clear that these students develop a different
’culture’ , and in particular a more solid basis for graduate research in computer
science, than what students in our other lines do. While certainly our other
lines will continue to be of very high importance, the computer science line has
provided a significant addition. A number of students from the C-line has
during the last yeax been accepted as graduate students.

The D-line will from this year pass through some changes. The new base with
discrete mathematics, logics and to start programming with LISP instead of
Pascal will be introduced there. An advantage is that the students from the C-
and D-lines get the same basis and we except a large number o f students from
the D-line to be better prepared to specialize their studies in both more
theoretical computer science areas and in artificial intelligence. In the D-line
there is also a specialization for telematics, relying partly on our research in
interactive systems and office systems.

The set of courses that are available in the other programmes has been
extended, and many of the courses have been improved. Technically, this has
often been done by making new courses from the computer science curriculum
available to other lines as well.

The mechanical engineering programme has been extended with a new
specialization that combines mechanical and computer engineering. W e believe
that especially research in artificial intelligence will be significant within that
specialization.

The School of humanities and sciences gives since 1977 a three-year programme
in System analysis. The number of students accepted annually is 60. The
programme is given at several other Swedish universities and colleges as well.

This programme aims at professional activities of design, evaluation and
implementation of computer-based information systems. Because o f that,
ADP-systems analysis dominates the programme. Nevertheless great

ID A A N N U A L R ESEARCH REPORT 1986
Undergraduate Education

13

importance has been attached to other subjects in order to give the programme
the necessary breadth and also to ensure that the students will become aware
o f the complexity of the community where computers can be used. IDA is
responsible for the major part o f courses in the curriculum.

2.2 Continued education for Swedish Industry

We have started a programme for ” continued education” o f engineers in
computer science. The programme was developed in cooperation with a
coalition o f Swedish engineering industry (Oktogonen). The aim is to renew the
knowledge basis in computer science for engineers working with programming.
Often they are hardware-oriented engineers. Several are leaders for groups and
sections in the organization. Responsible for the programme from IDA is
Anders Haraldsson.

The courses axe given as academic courses and give academic credits after
normal examination. They are organized for half-times studies and are given in
such way that the participants axe free for studies 2 days a week with one
full-day teaching and one day for reading and exercises of their own.

The programme consists of a base-part Computer Science 20 points with the
following courses:

= Discrete Mathematics 6 points (corresponding to 12 weeks half-time studies)
= Data Structures and Algorithms 4 points
= Principles of Programming and Programming Languages, 10 points

and two additional parts, each approx 10 points

= Programming in LISP and Prolog, 5 points
= Artificial intelligence, 5 points

= Distributed Systems, 4 points
= Computer Network, 3 points
= Operating System, 2 points
= Databases, 2 points

Two base-part courses, Computer Science, 20p, have been given to LM
Ericsson in Stockholm during 1985-1986. The two additional parts are planned
to start during 1987.

2.3 Other programmes

Among other educational activities we can mention a 25 points programme
given in the area of A l/expert systems in the form of a knowledge engineering
training programme, which covers the theoretical basis needed in that area.
The programme has been developed in connection with the knowledge transfer

14 ID A AN N U A L R ESEARCH R EP O R T 1986
Undergraduate Education

program, K TP, (where also practical issues in knowledge engineering are
covered). Participants have been both external from industry (Volvo, Saab
Scania and Asea Atom) and KTP-members (Asea and Philips).

The programme consists of the following courses:

= Discrete mathematics
= Logics
= AI programming languages (LISP Prolog)
= AI cognitive structures
= AI knowledge representation
= Expert systems
= Project work with an expert system tool.

There is a proposal to start a Swedish International University (SIU) giving
Master of Science Programmes. Several Swedish universities will set up special
Master’s programmes using the English language as medium of instruction.
Responsible for the initial work with the SIU is Harold Lawson at IDA. He has
had a temporary position at the Swedish Board of Universities and Colleges
(UHÄ).

Linköping University and IDA will offer in SIU a Master’s programme in
Computer Science - Knowledge Engineering. The programme will be similar to
the 25 points program mentioned above. The plan is to start during 1988.

2.4 Conference activities

In June 1986 a Conference about the universities role in computer science
education was held at Kolmården. The conference was organized by Linköping
University in collaboration with the Royal Institute of Technology in
Stockholm and sponsored by the Swedish Board of Universities and Colleges.
The organizers from Linköping University were Harold Lawson and Anders
Haraldsson.

Participants were invited from all Swedish Universities and Colleges and
selected participants from the Swedish Industry. Invited guests were Professor
Mary Shaw, Software Engineering Institute and Carnegie-Mellon University,
presenting their new curriculum for Undergraduate Computer Science and a
proposal for ” Education for the Future of Software Engineering” , and Professor
Jacques Habenstreit, Ecole Superieure d ’Electricite, France presenting
” Computers in Education” .

From IDA speeches were held by Harold Lawson, ” Challenges and Directions
in Computers and Education” , Anders Haraldsson, ” An overview of Swedish
education in Computer Science” and Erik Sandewall, ” Fourth generation
computer science education” .

ID A AN NUAL RESEARCH RE PO R T 1986
Undergraduate Education

15

Figure 2.1. M eeting with the director o f studies Anders Haraldsson.

2.5 Organization

The undergraduate education at IDA is organized as follows:

The Committee for Undergraduate Education (IDUN - IDA’s
undervisningsnämd), headed by Anders Haraldsson, is responsible for the
contents of courses given by the department and the planning of teachers for
the courses. There are representatives from the student unions in the board.

The department is responsible for the subject areas computer science
(datalogi), telecommunication and computer systems (telesystem) and
administrative data processing (administrativ databehandling).

There is a responsible director of undergraduate studies (studierektor) for each
subject area. The computer science area is further divided into subareas. The
directors are

16 ID A AN N U A L R ESEARCH R EPO R T 1986
Undergraduate Education

Anders Haraldsson, computer science
Mikael Patel, telecommunication and computer systems, system programming
Arne Jönsson, artificial intelligence
Mats Wiren, natural language processing
R olf Karlsson, theoretical computer science
Eva-Chris Svensson, administrative data processing

The directors and many of the courses belong closely to a research laboratory
and the division of areas of responsibilities reflects to a great extent our
laboratory organization.

Appendix C lists the courses given during the academic year 1986/87, teaching
personal and computer facilities for undergraduate education.

ID A A N N U A L R ESEARCH REPORT 1986
The Knowledge Transfer Programme

17

3.

The Knowledge Transfer
Programme

Sture Hägglund

An important task for a university department is to disseminate knowledge
into the surrounding society, public sector, trade and industry. This means
that the research organization should serve as a source of competence, bringing
together and distributing not only its own results but also importing and
collecting state-of-the-art information from the international research
community.

The main channel for effectuating this task is obviously the knowledge transfer
that results when people trained in undergraduate and graduate study
programs enter working positions outside the university. Less efficient but
equally important is the spreading of results through written reports arid oral
presentations by active researchers. A third way of achieving technology
transfer is through cooperative work in joint projects.

Our department has actively pursued these strategies, e.g. by issuing a special
series of reports summarizing important results in central research areas
specifically directed towards industry {” industri-serien”), by arranging and
participating in tutorial conferences, such as e.g. the A I Week in Linköping last
spring, the Software Environment Week in the fall, and the regular SOFT
tutorials (on Artificial Intelligence, Software Development Environments,
Prolog, AI and Expert Systems, etc.), by developing continuing education
programs for industry and by direct consultation and cooperation in applied
projects with industry and organizations in the public sector.

However we felt that in many cases these methods were to slow or to restricted
in order to achieve an effective technology transfer in rapidly developing areas
of strategic importance for industry. Thus we initiated three years ago a
discussion with industry about this problem which led to the decision to start a
special knowledge transfer program, KTP.

18 ID A AN N U A L R ESEARCH R EP O R T 1986
The Knowledge Transfer Programme

The goal of this program is to ’inject’ competence derived from research into
the existing industrial organization. The method is that at least one person,
located on a middle level in the organization, comes to our department for a
period of one or a few years, in order to learn new technology, and returns to
his organization after that time. The participating company also pays a yearly
contribution that helps pay for researchers (particularly guest lecturers) and
equipment.

3.1 Orientation of the program

During the last years we have experienced a growing concern in industry about
the rapid development in the information technology area and also a
considerable increase in the interest for what is going on at the university. For
instance, the following observations axe made:

* Software competence is becoming an increasingly critical resource, also
in areas or companies which are not primarily concerned with
information technology;

* Software costs pose serious problems and it is recognized that
improved hardware will be no means change this situation;

* Computerized systems are still difficult to change and maintain, while
the demand for flexibility and adaptability become increasingly crucial;

* There is a fast international development with huge national and
international R&D information technology programmes, where every
country strives for a position on the markets of the future.

This development has resulted in a demand for a rapid expansion of
educational programs, a pressure on university staff from the labor market,
requests for direct assistance in industry projects and in general in an increased
volume of contacts between industry and the university.

The goal for the KTP program thus is to:

* promote an effective use of the results from the STU (Swedish Board
for Technical Development) programmes for knowledge development in
information technology and other efforts supported by governmental
funds;

* secure the availability of qualified competence within novel information
technology areas of high importance;

* provide a environment for early experiments and evaluation o f new
technologies as a knowledge base for industry;

* Contribute to an awareness about industry needs within the university.

A fundamental assumption is that research projects of a high international
standard is carried out within areas of common interest. In connection with
this research the university undertake to organize projects for medium term
visitors from industry with an emphasis on learning, technology evaluation and

ID A A N N U A L R ESEARCH REPORT 1986
The Knowledge Transfer Programme

19

other forms of knowledge transfer. The obligation for each participating
company is to:

assign one person full time or two persons half time working on the
joint projects at the university, with the primary objective to learn and
evaluate novel technologies and methods.

Contribute 600 000 SEK a year to the KTP budget administered by
the university.

The joint activities axe organized in close contact with the research projects in
the laboratories. Presently we have established two areas for the program:

○ A I and expert systems,
including, methodology for knowledge acquisition and expert systems
development, evaluation of tools, theoretical foundations and basic
techniques, applications e.g. in robotics, manufacturing, technical
maintenance, office systems, etc. (ASLAB, AIELAB, RKLLAB)

○ Production technology for software,
with an emphasis on software development environments, especially
incremental tools for languages in the A lgol/Pascal/A da family.
(PELAB)

The key ideas of the KTP effort can be summarized as:

1. The university carries out research projects relevant for industry in
areas which are expected to have high future potential.

2. The programme involves companies which expect advanced
information processing techniques to be of crucial importance for future
operation.

3. The emphasis is on next-generation software technology.

4. Novel and advanced equipment and software tools are used in
experimental settings.

5. The research content of the program should be of high international
quality.

6. The ultimate goal of joint activities is to supply participating
companies with a qualified background for strategic decision making,
in-house use, and training within the information technology area.

We feel that the following are the main benefits for the participating
companies:

- The immediate availability of powerful development environments
(advanced work stations and software tools) for experimentation with
new software technologies.

- Support for evaluation of new trends, methodologies and products.

- Sharing o f resources, especially critical-size research teams in areas
where competent personnel is a scarce commodity.

- Participation in pilot projects near the edge of the research front line.

20 IDA AN N U A L R ESEARCH R EP O R T 1986
The Knowledge Transfer Programme

- Education of own personnel.

- Basis for recruiting students after undergraduate education.

The program presents a highly efficient way o f communicating results to
industry and to provide immediate access to the international research
community. W e have also experienced that the demonstrated industry
relevance o f our research program improves the possibilities to recruit the best
students for graduate education.

3.2 Participants and organization

Since the start in 1984 six companies have joined the programme, namely in
the order o f the time for their affiliation: S-B-Banken, Ericsson, ASEA,
Alfa-Laval, Philips and Sandvik Coromant. S-E-Banken has now completed the
active participation in Linköping. Ericsson (through Ericsson Telecom) and
Alfa-Laval (through SATT Control, formerly Alfa-Laval Automation) have
passed on to the status of associated members, which means that no
participants from those companies are working in Linköping, but that
cooperation and other forms of contacts continue.

The programme has a budget of its own, but participating individuals are
associated with one of the research laboratories at IDA and assigned
supervisors and assistants within the research organization. Courses and other
such activities are as usual within IDA organized at the department level.

Programme leader is professor Erik Sandewall. Sture Hägglund is responsible
for project coordination and Arne Jönson for the course program.

3.3 Example of K TP training projects.

The core activity for industry participants in the knowledge transfer program
is to carry out what we call training projects. Such projects axe selected with
the aim to cover some important application area from the company, with the
constraint that the goals should be feasible within the allocated time, while att
the same time provide an optimal learning environment for the involved
people. The intention is thus that training projects should result in:

- demonstration prototypes;

- experiences of knowledge acquisition;

- an evaluation of available tools;

- a basis for strategic decision making in the company.

A number o f such projects have been carried out. Some of them are described
below, while others are concerned with areas such as operations planning in
mechanical engineering or support for decision making by operators in
real-time systems. Although the intention is not to try to build full-scale

ID A A N N U A L R ESEARCH REPORT 1986
The Knowledge Transfer Programme

21

systems during knowledge transfer activities, the results have been very
valuable both as a basis for start-up of second-generation application projects
in the companies or as an inspiration for continued research projects in the
department.

3.3.1 Economical decision making: Real estate transfers

A training project carried out by Lars Bengtsson, S-E-Banken, was concerned
with the possibility of providing knowledge-based support for legal and
economical advice-giving in a bank, in particular the transfer of real estate
within a family. The project resulted in a successful demonstration system
(LU CKY), which convincingly showed the potential for knowledge systems as a
way o f communicating expertise within a service organization.

However the project also illuminated some of the limitations of the pure
rule-based backward-chaining approach taken in LUCKY. This inspired a
licentiate thesis project (Nordin) where these problems were handled within a
framework of non-monotonic reasoning, which also explicitly handled the
strategic knowledge involved in an estate transfer consultation. In a related
master’s thesis project (Hansson) it was then shown how the knowledge base
could be reused to provide a training environment for the bank officer.

This work is a good example of the mutual benefits of joint K TP work, where
applications inspire research and research exploits new possibilities o f practical
interest.

3.3.2 Sales support: Spot welding robot configuration

The GARM AN project (sales support for spot-welding robot configuration) was
carried out in cooperation with ASEA Robotics. The main task o f the system is
to support a sales engineer in the configuration of a spot-welding robot,
including the welding gun and the transformer. Important aspects are to secure
that relevant and complete information is acquired from the customer, to
suggest a suitable combination of equipment and to verify that electrical and
mechanical constraints are satisfied. Additional complications arise from the
fact that customer preferences must be taken into account and that equipment
from different vendors has to be fitted together.

The EMYCIN system was used as the basic tool to realize the GARM AN
prototype system, although significant parts of the problem were solved
directly in Lisp. In later experiments the GARM AN application has been used
as a test case in connection with e.g. the use of hybrid development
environments.

22 ID A A N N U A L RESEARCH R EP O R T 1986
The Knowledge Transfer Programme

3.3 .3 Maintenance and repair: Separator systems

An important application area for expert systems technology is fault diagnosis
o f technical equipment. For companies which deliver complicated equipment
world wide with a reliability and maintenance responsibility, knowledge
systems promise to offer decisive advantages over traditional approaches. In
one training project, performed by Börje Rosenberg and Ove Hanebring of
Alfa-Laval, such a problem has been studied. A full scale prototype of a
trouble shooting expert system for separator-based plants has been developed,
based on Epitool after initial experiments with EMYCIN and KEE.
Contributions to the system also come from Epitec and from master’s thesis
students at IDA (graphics editor). The prototype is now further developed
inside Alfa-Laval, while core issues in the area are studied in continued
research projects at IDA and in the joint KTP cooperation.

3.3 .4 Customer support: Performance tuning of computers

Configuration, i.e. the selection and combination of components into a system
which fulfils some set o f requirements and constraints, is another important
application area. In a project conducted by Bengt Rosén from Ericsson
Information Systems, the proper configuration of a customer installation of a
computer system was studied. The prototype developed allows a customer to
analyze system logs and readjust system parameters in order to improve the
performance o f his installation, without the need to summon a specialist from
the computer vendor.

3.4 K TP as a knowledge engineer training program

The major area of interest for the companies participating in the knowledge
transfer program has been AI and expert systems. One ambition is to provide a
reasonable training in knowledge engineering and expert systems development
for people from industry. It is our experience that a one year combination o f a
half time course programme and about half time participation in applied work
on expert systems development provide a good basis for continued
undertakings in this area.

However it is also increasingly clear that the spectrum of applications, tools
and required skills for knowledge systems activities is very broad and that
different kinds of training is appropriate for different purposes. In particular we
recognize the need for application-oriented knowledge engineers, who

* are familiar with the application domain;

* build applications with shells;

* work from specifications of well understood problems;

* have limited knowledge of fundamental AI theory;

* develop ” shallow reasoning” knowledge systems.

ID A A N N U A L R ESEARCH REPORT 1986
The Knowledge Transfer Programme

23

For more large-scale undertakings AI-oriented knowledge engineers are needed,
who

* build general models of domain knowledge;

* take responsibility for tool selection, adaption, integration, etc.

* are experienced in knowledge acquisition methodology and system prototyping.

* have qualified competence in AI and computer science

* develop also ” deep reasoning” knowledge systems.

Our knowledge engineer training program tries to cover both these needs. Thus
it should fill the gap between commercially available introductions including at
best a course program for a number of days or a few weeks, and 4 year
computer science curriculums in the area (e.g. the ” datavetenskaliga linjen”).
We offer thus, in addition to the KTP project participation with
apprenticeship in research, training projects and tools evaluation activities, a
one year half time course program including:

- Introduction to AI and expert systems
- Discrete mathematics
- Logic
- AI programming systems
- AI - cognitive processes
- AI - knowledge representation
- Expert systems

There is also currently a master’s programme in computer science / knowledge
engineering being planned to be offered within the Swedish International
University. This activity is described in more detail in the chapter on
undergraduate education.

3.5 Experiences and plans for further K T P development

As far as we can judge the knowledge transfer program has become a success.
However there are also aspects which have turned out to be more problematic
than we anticipated.

Before the program was started, we analyzed the experiences o f previous efforts
to work together with industry trying to achieve an effective technology
transfer. It seemed that a crucial problem in many cases had been the tendency
to give a higher priority to short-term obligations than to research-related
work. This often gave as a result that projects did not achieve a critical mass
of activity and thus were felt as a waste of time by participants from both
sides.

To handle this problem we decided to concentrate our knowledge transfer
activities to a small number of partners, who showed a definite commitment to
the cooperation, e.g. by allocating a substantial amount of financial support to

24 ID A AN N U A L RESEARCH R E P O R T 1986
The Knowledge Transfer Programme

the program. However it still seems that the the problem of allocating the right
personnel to program participation delayed the start o f activities in many
cases.

Most companies have chosen to work with two KTP participants. Typically
one of them is a more experienced person with a PhD (although not in
computer science) and a central position in company. The other person is then
younger and with a qualified computer science education. The period of
participation tends to be about one year on a half time basis, visiting
Linköping 2-3 days each week. Courses and other K TP activities are
concentrated to certain days during a week and thus planned to meet the
needs o f part time visitors.

The main interest has, as could be expected, been in the area of AI and expert
systems, but also to a certain degree in programming environments. For
companies that have completed the knowledge transfer programme we offer an
associated membership, which does not include active project work in the
department but cooperation in various forms.

We are presently investigating the possibilities to further develop the kind of
activities offered within an associated membership in KTP. It is a general
experience that a great effort has to be spent during the initial phases of
cooperation between the university and a particular company. In the successful
cases such a cooperation is rapidly evolving into a situation, where the
infrastructure o f communication and personal contacts exist, and where a
mutual understanding improves the effectiveness of the joint activities. It
should be a common interest to encourage and develop such contacts within
the frame of some kind of advanced cooperative research and knowledge
development program. Current proposals for a competence center in industrial
information technology at Linköping University might further improve the
possibilities to achieve a effective effort in this direction.

ID A A N N U A L R ESEARCH REPORT 1986
The Laboratory for Complexity of Algorithms

25

4 .

ACTLAB
The Laboratory for

Complexity of Algorithms

Andrzej Lingas

4.1 Introduction.

The Laboratory for Complexity of Algorithms is concerned with the design and
analysis o f efficient algorithms and data structures for combinatorial and
geometric problems arising in computer science and the study of the inherent
complexity of these problems in simple models of computation. Members o f the
group believe that work on algorithm and data structures efficiency is no. less
important than the development of new, faster computers.

The laboratory is a continuation the so called Group for Complexity of
Algorithms which in turn originated from a part of the former Group for
Theoretical Computer Science in the spring of 1985. In 1986, the laboratory
acquired a new graduate student, Ola Petersson, whereas its other graduate
student, Christos Levcopoulos, defended his licentiate thesis entitled "New
Results about the Approximation Behavior o f the Greedy Triangulation".

The second year of the laboratory (group) research was mainly spent on a
project called Efficient Algorithms and Data Structures for Geometric and
Graph Problems funded by STUF and STU. The objectives o f the project fall
into three mutually interrelated categories of data structures, computational
geometry and graph algorithms. The idea of the project was to concentrate on
the problems in which the group members already gained international
recognition: data structures on bounded domains, geometric decomposition
problems and subgraph isomorphism. The considered problems have

The work in the Laboratory for Complexity of Algorithms is mainly supported by STU, The
Swedish Board for Technical Development.

26 ID A AN N U A L RESEARCH R EP O R T 1986
The Laboratory for Complexity of Algorithms

applications in VLSI chip design and fabrication, graphics, robotics, numerical
analysis, chemistry and optimization.

Comparing the research areas of the laboratory in 1986 with those in 1985, one
can observe a more explicit interest in parallel algorithms (see Section 8.2.3)
and a greater interaction between research topics in computational geometry
and data structures (see Section 8.2.1.1, 8.2.2.2). The new student, Ola
Petersson, has started preliminary research on the design and analysis of fast
and hardware-feasible parallel algorithms for geometric and combinatorial
problems.

In addition to the research, the group undertakes important consulting and
educational tasks on aspects of algorithm analysis and complexity theory
within the department, and is open to cooperate with other laboratories.
Interactions with other members of the department are a source of new
research problems for the laboratory members. For instance, the laboratory
members have recently become interested in the problem of efficiently drawing
trees raised by Sven Moen, and maintained their interest in graph concepts in
network semantics considered by Ralph Rönnquist.

4.2 Group Members

Group leadership : Andrzej Lingas, Ph.D.

Bodil Mattsson-Kihlstrom, seer.

Supervisors: R olf Karlsson, Ph.D.

Graduate Students:

Christos Levcopoulos, Ph.D. (spring -87)

Ola Petersson

4.3 Current Research

4 .3 .1 Computational Geometry

Computational Geometry on a Grid (Rolf Karlsson)

Computational geometry studies the computational complexity of finite
geometric problems. This research focuses on problems where geometric objects
are defined by edges between points taken from multi-dimensional grids.
Typical problems we consider are: finding closest points, determining connected
components, and computing all line segment intersections. The solutions are
based on an efficient point location algorithm or use a new data structure, the
interval trie, when sweeping the plane with a line. For problems in higher

ID A A N N U A L RESEARCH REPORT 1986
The Laboratory for Complexity of Algorithms

27

dimensions, we use a divide-and-conquer technique until the dimension is
reduced to 2 (or 3) where the sweep-line algorithms apply. The efficient
methods we present should be useful within computer graphics and VLSI. For
instance, when implementing geometry routines in computer graphics the
domain is a moderate sized raster. Our attention is concentrated to orthogonal
objects (the edges are parallel to one of the coordinate axes). VLSI technology,
for example, often uses only a fixed number of orientations for the object
boundaries and wires. Much of this research is joint work with Dr. Mark
Overmars o f Utrecht University. Some of the results have been published and
some are submitted for publication.

Triangulations of Planar Figures (Christos Levcopoulos, Andrzej Lingas)

The so called greedy triangulation is one of the most known heuristics for
minimum weight (length) triangulation of planar figures (the latter
triangulation has applications in interpolation two-argument functions and
finite element method). It consists in iterating the following step: insert a
shortest diagonal of the input figure that does not intersect those already in
the plane.

In his licentiate thesis, Christos Levcopoulos has shown that there is a constant
c, such that for any polygon, with or without holes, with w concave vertices,
the length o f any greedy triangulation of the polygon is no longer than c (w + l)
times the length of a minimum weight triangulation of the polygon. Christos
has also derived a low approximation constant for an interesting class of
polygons. On the other hand, Christos has shown that for every integer n
greater than S, there exists a set S o f n points in the plane such that the
greedy triangulation of S is Omega(sqrt(n)) times longer than the minimum
weight triangulation, improving the previously known lower bound
substantially. Finally, a simple linear-time algorithm for computing a greedy
triangulation of the so called semi-circular polygons has been presented in
Christos’s licentiate thesis.

Andrzej Lingas has shown independently that the greedy triangulation for
convex polygons approximates the optimum, using a quite different method
than Christos. Also, he has developed a natural generalization of Voronoi
diagrams to include visibility barriers and shown it to be useful in finding a
shortest diagonal of the input figure and consequently in implementing the
greedy triangulation efficiently. Fast algorithms for constructing such diagrams
in the general and polygon case have been designed.

The lower bound of Christos on the length o f the greedy triangulation has been
already accepted for a journal publication. For the most cases, the other
discussed results are submitted for publication.

Recognizing Polygons (Andrzej Lingas)

A new class of so called pseudo star-shaped polygons has been introduced. A

28 ID A AN N U A L R ESEARCH R EP O R T 1986
The Laboratory for Complexity of Algorithms

polygon is pseudo star-shaped if there is a point from which we can
see/eavesdrop its whole interior provided that it is possible to see/hear through
its single edges. The class of pseudo star-shaped polygons generalizes and
unifies the well known classes of convex, monotone and pseudo star-shaped
polygons. Algorithms for testing whether a polygon is pseudo star-shaped from
a given point, and for constructing all regions from which the polygon is
pseudo star-shaped, respectively running in linear and quadratic time, have
been designed. Also, it has been shown that many standard computational
geometry problems can be solved efficiently for pseudo star-shaped polygons.
The above results have been obtained jointly with Dr. Dean of Northern Bell
Research and Dr. J. Sack of Carleton University, and already have been
published.

4.3 .2 D ata Structures

Inherent Cost for Maintaining Data Structures (Rolf Karlsson)

This research is two fold. The first part looks at designing a realistic lower
bound model suitable for problems that use a bounded domain. We have
developed a segment graph model , where a single-source directed graph
represents an algorithm solving the problem under consideration. Using
versions of this model, we have proved lower bounds for the dictionary
(support insert, delete and search) and nearest neighbor (support insert,
delete and find closest) problems. These results have been published in the
proceedings of international conferences. Current research tries to further unify
these problem-oriented techniques, and to make the lower bound model we
have introduced more general. In part, this is joint research with Dr. Ian
Munro, University of Waterloo, and Dr. Ed Robertson, Indiana University.

Another problem we study is proving an adversary-based Omega (klogk) lower
bound for finding the kth smallest element in a large heap. This would then
prove a known algorithm as optimal. This research is conducted together with
Dr. Thomas Strothotte, Stuttgart University.

Optimal Search Trees and Optimal Partitions of Polygons

(Christos Levcopoulos, Andrzej Lingas)

New results concerning optimal binary seaxch trees with zero key access
probabilities (with applications eg. in point location) have been derived. It has
been shown that for an arbitrarily small positive constant e there exists a
linear-time heuristic for such search trees, producing solutions within the factor
of 1+ e from the optimum. Also, by using an interesting amortization
argument, a simple and practical, linear-time implementation o f a known
greedy heuristic for such trees has been given. The above results have been

ID A A N N U A L R ESEARCH REPORT 1986
The Laboratory for Complexity of Algorithms

29

obtained in a more general setting, namely in the context of minimum length
triangulations of so-called semi-circular polygons. They have been carried over
to binary search trees by proving a duality between minimum weight partitions
of infinitely-flat semi-circular polygons into m-gons and optimal (m-1)-way
search trees. This duality has also helped to obtain better heuristics or
algorithms for minimum length partitions of polygons using known algorithms
for optimal search trees. In particular, it has been shown that a minimum
length partition of a simple polygon into m-gons can be found in time
0(n**8m **2), and if the polygon is convex, in time 0(n**Slogm). The above
results have been partly obtained in cooperation with Dr. J. Sack, and they are
submitted for publication.

4.3 .3 Parallel Graph Algorithms

(Andrzej Lingas)

The subgraph isomorphism problem is one of the most general NP-complete
graph problems and it has many applications in computer science. It consists
in determining whether a graph is isomorphic to a subgraph of another graph.
A parallel algorithm for the subgraph isomorphism problem has been designed
using an earlier sequential algorithm for this problem. When the input graphs
are connected, have a good separator (e.g. planar graphs) and relatively small
valence, the algorithm runs in sub-linear or even poly-log time using
sub-exponential or pseudo-polynomial number o f processors, respectively. Also,
it has been shown that the problem of subgraph isomorphism restricted to
trees and that o f bipartite perfect matching are mutually reducible in poly-log
time using a polynomial number of processors. In consequence, the problem of
subgraph isomorphism for trees can be solved by a random parallel algorithm
running in poly-log time and using a polynomial number of processors. The
latter results have been partly obtained in cooperation with Prof. M. Karpinski
of Bonn University. The discussed results have been already submitted for
publication.

4.4 External contacts

Rolf Karlsson: written two papers with Mark Overmars, Rijksuniversiteit
Utrecht, The Netherlands, a research continued when Dr Overmars visited
IDA in March. Writing a paper with Thomas Strothotte, Stuttgart University,
West Germany, who visited IDA in April. Joint research to extend conference
papers is under way with Ian Munro, University of W aterloo, Canada, and Ed
Robertson, Indiana University, USA; work continued during a visit to
Waterloo in June and when Dr Munro visited IDA in November. During a trip

30 IDA ANNUAL RESEARCH REPORT 1986
The Laboratory for Complexity of Algorithms

to Brazil in July and August research contacts with 5 universities (in Recife,
Belo Horizonte, Sao Paulo, Campinas and Campina Grande) were initiated.
Gave an invited talk at the 6th Brazilian Congress on Computing .

Christos Levcopoulos: Presented his paper at the 2nd ACM Symposium on
Computational Geometry, Yorktown Heights, USA.

Andrzej Lingas: Presented papers at the 3rd Symposium on Theoretical
Aspects of Computer Science, Orsay, France (January), and at the 2nd ACM
Symposium on Computational Geometry, Yorktown Heights, USA. Written
two papers on computational geometry with Dr. J. Sack during his visit in the
School of Computer Science at Carleton University, Ottawa, Canada (May,
June). A revisit of Dr. Sack in June and July of 1987 is expected. A
cooperation with Prof. M. Karpinski of Bonn University, Bonn, West
Germany, has been established in the area of superfast parallel graph
algorithms, during Prof. Karpinski’s visit at IDA (October).

On a domestic level, the group has maintained contacts through mutual visits
with an active research group (Svante Carlsson, Arne Andersson) at the
Computer Science department, Lund University.

Courses for Graduate Students

An important task of the group is to spread the knowledge of algorithm
analysis and complexity theory among graduate students within the
department. The following graduate courses are offered for the academic year
86-87:

Amortized Computational Complexity

Computational Geometry

Previously, the following courses were given by the group members:

Algorithm Analysis and Complexity Theory (83,84-85)

Mathematical Aspects of VLSI (84)

Search Structures (85)

Analysis and Complexity of Parallel Algorithms (86)

IDA ANNUAL RESEARCH REPORT 1986
The Artificial Intelligence Environments Laboratory

31

5 .

A I E L A B

T h e A r t i f i c i a l I n t e l l i g e n c e

E n v i r o n m e n t s L a b o r a t o r y

Erik Tengvald

5 .1 I n t r o d u c t i o n

By the first of July the artificial intelligence laboratory (AILAB) was split into
two laboratories, the laboratory for artificial intelligence environments
(AIELAB) and the natural language processing laboratory (NLPLAB).

The research activity of AILAB had long been concentrated in two main
research areas namely, knowledge representation and natural language. The
rationale for the split was the increase of both the natural language and
knowledge representation sides of the AILAB research group. It is our
experience that too big research groups do not function well.

The research outlook and current projects of AIELAB are of course based in
the considerable experience gained in the previous knowledge representation
work in AILAB.

On the Knowledge representation side the mainstream of the AILAB activities
was focused on the design of programming systems for A.I., as studied through
applications selected from Mechanical Engineering. A major early work is OBS
an operations planning system for turning [Tengvald 84]. This system was
based on the object oriented representation system PAUL [Hein 83]

Most of later research in knowledge representation at the AILAB and of the
current research at the AIELAB is based in the considerable experimental
experience of the OBS/PAUL project.

The work in AIELAB is mainly supported by STU, The Swedish Board for Technical
Development.

32 ID A AN N U AL R ESEARCH R EP O R T 1986
The Artificial Intelligence Environments Laboratory

One of the experiences of this project is that the mainly procedural
object-oriented programming systems are insufficient for handling geometrical
problems. The object-oriented programming system has to be supplemented
with a more declarative programming paradigm.

In the ICONStraint project Jalal Maleki [Maleki 86, Maleki 87] has researched
the possibility of using the constraint programming paradigm as basis for such
a declarative system. The choice of constraints as opposed to other declarative
paradigms was based in another experimental experience o f the OBS project,
namely the very great computational demands o f geometric reasoning.

The results o f the ICONStraint project indicate that the expressibility of
constraints is indeed sufficient for handling many geometric problems
encountered in the OBS setting. Unfortunately it seems as if constraint based
systems executing on todays machines is too slow to make the explorative
programming method applicable in a geometric reasoning context.

Constraint based systems are maybe the most efficient of the declarative
programming systems. Consequently, our experience indicate that the
possibility of constructing expert systems with a substantial content of
geometric reasoning is slim indeed.

Alas, if you do not increase the raw processing power o f the hardware. This is
the intended method of attack chosen in the below described AIM project.

A subsidiary knowledge representation research activity at AILAB has been
Jim Goodwins extremely promising but more formal research on
non-monotonic logic [Goodwin 84, Goodwin 85]. Research in the
non-monotonic logic area has been transfered to the RKLLAB and is currently
not pursued at the AIELAB.

5.2 Researchers and Project

The AIELAB research interest is primarily directed towards geometric
reasoning or more precisely on the combination of symbolic and geometric
reasoning. This research interest has been formalized in the artifical
Intelligence for Manufacturing (AIM) project. The goal of the AIM project is
to design an Al-environment able to support expertsystems performing
combined symbolic and geometric reasoning. The project can be seen as a new
experiment in the OBS tradition.

As noted above our previous results and general experience indicate that a
substantial increase o f the raw processing power of the hardware is necessary
to make such an expertsystem shell feasible and usable. Such an increase in
processing power is only possible by the use of parallell programming.

Consequently, AIELAB has parallell programming as a subsidary research
area. During this and probably also during the next year, parallell

ID A A N N U A L R ESEARCH REPORT 1986
The Artificial Intelligence Environments Laboratory

33

programming is the area in which most if not all research will be concentrated.
The parallell programming research is formalized in the hideshape subproject.

We would like to stress that the parallell programming research in the
hideshape subproject is focused and constrained by the AIM setting. This
focusing greatly simplify the parallell programming research.

5.2.1 Laboratory members

AILAB members working in the AIM-project (eg. Hideshape subproject)
during 1986 has been:

Erik Tengvald
Bernt Nilsson
Leif Finmo
Mikael Svensson
Anders Nyberg
Jonas Wallgren

5.2.2 The A IM project

The purpose of the AIM-project is to significantly reduce the cost of the
majority of the knowledge production activities in the manufacturing industry.
The knowledge production activities is rapidly becoming the major part of the
industry’s overall activity. For an advanced product like a modern jet engine,
the specification and documentation can very well weigh more than the
product itself.

The majority of the knowledge production activities in the manufacturing
industry are based on reasoning processes where there is many and complex
interdependencies between the geometric and symbolic reasoning steps.

We have found it useful to coin a new word for this kind of reasoning, namely
geombolic reasoning. The characterizing trait of geombolic reasoning is the
intense interdependence between the geometric and the symbolic reasoning
processes.

The intended mode of attack on the geombolic reasoning research topic is by
the classic AI approach of creating a proper research vehicle. In such a research
vehicle one is able to perform experiments to acquire experience grounded in
real world problems. The goal of the AIM-project is to create such a research
vehicle in the form of a geombolic Al-environment.

It is immediately apparent that the geombolic reasoning topic is situated in the
middle ground between the two poles of geometric modelling and knowledge
engineering.

34 IDA ANNUAL RESEARCH R E P O R T 1986
The Artificial Intelligence Environments Laboratory

Figure 5.1. The overall structure o f the research vehicle.

The geombolic reasoning problem is an almost open problem. To our
knowledge there is only one paper [Ballard 84] which addresses the problem in
a systematic manner. Because of the subject’s importance there are of course
many papers which touch on the geombolic reasoning problem.

We believe that the main reason behind the lack of research on the problem of
geombolic reasoning is the lack of sufficient computing resources. An increase
of at least two or three orders of magnitude over the computing power of
today’s AI machines will most certainly be needed.

The software requirements of the knowledge engineering environment are
considerable. Knowledge engineering environments are complex systems
containing a plethora of detail. If we were to implement the knowledge
engineering environment directly in assembler or even a systems programming
language like C or Occam, our chances of meeting the project deadline would
be slim indeed. Consequently, we must introduce system software defining an
intermediate language higher than the systems programming languages. We
call this system software: The hardware hider.

A hardware hider is basic systemware, which hides the complexity of the
hardware. More precisely, it frees the programmer from the tedious tasks of
memory and process management. This must be done without introducing any
unnecessary restrictions in the use of the hardware. Metaphorically: A
hardware hider is hiding the nitty gritty details of the hardware, without
hiding it’s soul. This is illustrated in Fig. 5.1.

Based on the above considerations we have found it appropriate to divide the
AIM project into three main subprojects, namely:

ID A AN N U AL RESEARCH RE PO R T 1986
The Artificial Intelligence Environments Laboratory

35

1. Knowledgeshape: The knowledge programming environment

2. Solidshape: The geometric modeler

3. Hideshape: The hardware hider

Knowledgeshape.

Our knowledge engineering environment is intended to be pluralistic
environment supporting many programming paradigms under an integrated
debugging environment. Idealy, this system would look like.

Figure 5.2. The knowledge engineering environm ent

Of course we will not be able to implement all this software in the
AIM-project. However, we find it meaningful to keep the ideal knowledge
engineering environment in mind while designing the other parts of the AIM
system. This will protect us from making low level design decisions which
would make the ideal unreachable.

There are of course some programming paradigms which are necessary for a
geombolic AI-environment. To begin with we intend to incorporate the object
oriented and constraint programming paradigms. Object oriented programming
is very natural when describing systems of interacting things. Such systems are
very common in the manufacturing industry. Moreover the window interface is
best implemented using object oriented programming. Constraints are perfect
for describing invertible relationships. Most relationships of physics and
geometry are invertible.

36 ID A AN N U AL R ESEARCH R EPO R T 1986
The Artificial Intelligence Environments Laboratory

In a slightly longer perspective it is natural to begin incorporating the logic
programming paradigm in knowledgeshape. In this we hope to establish
practical cooperation with the logic programming laboratory at our
department. The exact order of the introduction of further programming
paradigms is currently left open.

Solidshape.

Our geometric modeler is to be a standard Constructive Solid Geometry
system with Euler capability. It is to be implemented in Hideshape. Thus it
will be easily extendable as need for more esoteric geometric operation arise.

Hideshape.

The hardware hider is called Hideshape, since it hides the complex shape of the
hardware from the programmer. It is responsible for memory and process
management, and the handling of the hardware in general.

The hideshape system defines a programming language. More precisely, it is
the interpreter/compiler for this language. This language can be viewed as a
very high level assembler, in which the higher levels of the knowledge system
are to be implemented.

5.3 Current research: The hideshape subproject

In the initial planning phase of the AIM-project we could not find any machine
on the market which could meet the general computation needs o f the
geometric modeller together with the graphics capability necessary for
presentation of the geometries.

Consequently, we initiated design of such a machine based on INMOS
transputers. In a short time there did however appear a machine satisfying our
requirements on the market. This is the NCUBE/ten supplemented with the
manufacturers graphics board.

Unfortunately we could not get funding for the purchase of an NCUBE
machine. In this situation we reverted to a transputer based solution.
Fortunately, the education department were planning to buy transputer board
for educational purposes. We could use 8 such board supplemented with a
small graphics board and a home made communications board, In an NCUBE
style transputer system, like this:

Moreover, a group at the national defence research institute have applied for a
small (16 nodes) NCUBE. They have kindly invited us to use this machine
when (and if) it arrives. Then we no longer need to rely on home made
hardware.

ID A AN N U AL RESEARCH RE PO R T 1980
The Artificial Intelligence Environments Laboratory

37

Figure 5.3. An NCUBE style transputer system

While waiting for the hardware to arrive we have concentrated our resources in
litterature studies and design discussions. These design discussions have been
concentrated on the hideshape subproject, while taking due regard to the
higher levels of the AIM-environment.

Our current design of the hideshape system can be pictorially be described like:

The hideshape language is, like for example lisp, inspired by recursive function
theory. The basis for hideshape is consequently a fairly small set of subroutines
implemented in assembler. This set of basic subroutines is called the
” hideshape core” .

The rest of the hideshape language and its interactive and inkremental
environment is implemented on top of the hideshape core. The hideshape core
does not contain any primitives with explicite access to the processors,
memories and communication links of the hardware. The only hardware
oriented primitives in the hideshape core, are primitives for terminal and file,
input and output. Since the rest of the hideshape language and the
environment is buildt on top of the hideshape core, the same is true for the
hideshape language and environment.

Consequently the hideshape core will act as a barrier which protect the
hideshape programmer from the complex structure of the parallell hardware.

38 IDA ANNUAL RESEARCH R E P O R T 1986
The Artificial Intelligence Environments Laboratory

Figure 5.4. Overall view o f the hideshape system

By extending the hideshape core with a small number of primitive subroutines
able to handle the hyper-cube’s processors, memories and communication links,
we obtain quite simply a very inefficient interpreter for the hideshape language
on the hyper-cube. This extension to the hideshape core is known as the
hardshape extension.

As well as acquiring our hideshape interpreter, we now also have an interpreter
for another language, hardshape, from which the hypercube structure is
directly accessible. More precisely, the hideshape language is a ’hardware
independent’ subset of the hideshape language.

The system designers (ie. we) can implement in this language efficient
system-ware to support hardshape and thereby hideshape, too. Hardshape acts
as out system implementation language. We are, of course, designing the
hardshape extension so that its ’concepts’ lie close to the intended application
of the hardshape extension, namely the construction of the other system-ware
components.

The compiler is, hopefully, a well-structured and modernised version of a
standard lisp compiler. For source to source transformations we envisage
simple partial evaluation transformations, beta expansion, constant folding
and, possibly, type folding. For source to assembly transformations we have:
code concatenation, box-unbox, list-array and recursion removal. The various
transformers exploit applicable results from the analysers.

ID A A N N U A L R ESEARCH REPORT 1986
The Artificial Intelligence Environments Laboratory

39

The memory manager including its main component, the garbage collector, is
relatively conventional. A degree of complication arises in the handling of what
corresponds to pointers going over processor borders.

The process manager’s duties include placing processes in the hypercube’s
processors so that the hypercube is used maximally. Ideally no processor should
remain unused unnecessarily. Many researchers considers the design of such a
perfect process manager to be very hard if not impossible [McCharty 86].

In our case however, we work in the AIM setting. In this setting the major
part o f the computational resources will be consumed by the geometric
routines.

The geometric routines are not too many and not too complex. Consequently,
the hypercube utilisation patterns o f the geometric routines can be handcoded.
Thus, they can be made to utilize the hypercube very efficiently, in many cases
perfectly.

Now, the major part of the computational resources will be consumed by
routines which are very efficient. Thus the overall system processor utilization
will be reasonable. In principle we could let the symbolic reasoning take place
on a single node of the hypercube. Symbolic reasoning do progress with
sufficient speed on Lisp-machines no stronger the a single NCUBE node.

However, to let all the other nodes wait for calls to geometric routines from a
single sequential process, seem a bit wasteful. Consequently, we will supply the
hideshape system with a simple dynamic load balancer. W e could for example
use a simple master-slave scheme as discussed in [Williams 86],

The task o f all the system-ware components except the hardshape extension is
to make more efficient the execution of programs written in the hardshape
language. Also all the system-ware components are written in the hardshape
language. As we successively improve the various components, the efficiency of
all the components will increase. An improved compiler will make the process
manager, the analyser, the memory manager and the compiler itself more
efficient. The same applies to the other components.

The hardshape system is, thus, implemented in itself. We expect to be be able
to utilise the advantages of such an implementation strategy to a wider extent
than usual. This expectation forms the basis of our intention to implement the
not insignificant hardshape system and thereby also the hideshape language
and its environment in a short time.

5.4 Research cooperation

We participate in the COST-13 project number 21, Advanced Issues in
Knowledge Representation. We are members of the PA R SYM computer mail
group and regularly get the PARSYM digest via the computer mail network.

40 ID A AN N U A L RESEARCH R EP O R T 1986
The Artificial Intelligence Environments Laboratory

We have also been in contact with Oslo University, discussing the geometric
modeller. As noted above we also cooperate with the national defence research
institute.

We are in contact with the companies: SAAB, Sandvik, M cAuto and
Computer Vision. Hopefully we will be able to establish contacts with other
companies during the planning period.

References

[Ballard 84] D. Ballard, Task Frames in Robot Manipulation, Proceedings AAAI-84. 1984

[Goodwin 84] J.W. Goodwin, WATSON - A Dependency Directed Inference System, In Proc.
of the AAAI Workshop on Non-Monotonic Reasoning, New Palz, NY, 1984.

[Goodwin 85] J.W. Goodwin, A Process Theory of Non-Monotonic Inference, in Proc. of the
Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985.

[Hein 83] U. Hein, PAUL - the kernel of a representation and reasoning system for knowledge
engineering tasks. 1983

[Maleki 86] J. Maleki, ” A Dependency Directed Deduction System Based on the Constraints
Paradigm of Computation” , Licentiate Thesis no. 71, Dept. of Computer and Information
Science, Linköping University, 1986.

[Maleki 87] J. Maleki, ” VIVID, The Kernel of a Knowledge Representation Environment Based
on the Constraints Paradigm of Computation” , Proc. HICSS-20, Hawaii, January 1987.

[McCharty 86] J. McCharty, Personal communication.

[Olafsson 85] Computer mail from: M. Olafsson, University of Alberta, Edmonton, Alberta
Canada. 1985

[Tengvald 84] E. Tengvald, The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning. 1984

[Williams 86] W. Williams, Load Balancing and Hypercubes, A Preliminary Look, Second
Conference on Hypercube Multiprocessors, Knoxville, Tennesse, September 29 - October 1,
1986

ID A A N N U A L RESEARCH REPORT 1986
The Application Systems Laboratory

41

6.

ASLAB
The Application Systems

Laboratory
Sture Hägglund

The research program in the Applications Systems Laboratory (ASLAB) is
oriented towards the study of theory, methods and tools, in particular
knowledge-based approaches, for the development and maintenance o f a
non-trivial range of applications software with a significant increase in
productivity, maintainability, understandability and user control. A central
theme for our research is the integration o f applied AI techniques and expert
systems methodology with more traditional information technology. Projects
usually take an experimental approach and emphasize participation in
application-oriented projects with industry and the public sector.

6.1 Projects and Researchers

This section summarizes the current achievements in the laboratory and lists
the personnel currently active in ASLAB research.

6.1 .1 Summary of research 1986.

During the last year, activities in the laboratory have been carried out mainly
in four areas as summarized below.

○ Knowledge-based application systems. This is the major activity
in the lab, where we study a number of aspects of expert systems and
knowledge-based techniques. In particular we take the approach that in
the end a typical knowledge-based system will run in an environment
where it will have to interface with traditional software, databases,
conventional terminal interfaces, etc. Thus we believe that an effective

The work in ASLAB is mainly supported by STU, The Swedish Board for Technical
Development.

42 ID A ANNUAL RESEARCH R E P O R T 1986
The Application Systems Laboratory

strategy for productive knowledge-based application development has
to start with a consideration of the ultimate delivery environment, and
that we have to work backwards towards the design of facilities needed
in the development environment.

Knowledge acquisition and maintenance environments. It is a
fact generally agreed upon, that knowledge representation and
knowledge acquisition are key issues in successful expert system
development. Our approach emphasizes the importance of
making knowledge reusable, both for simplified development of
generic applications and for the reuse of problem solving
knowledge for e.g. teaching and training. Current efforts are
concerned with the acquisition and representation of knowledge
about technical equipment in a maintainable way. Practical
applications are studied together with SATT Control
(previously Alfa-Laval Automation), where we are
implementing expert systems for fault diagnosis including
graphical interfaces for visual interaction. This work is done by
Nordin (who was visiting the Carnegie-Mellon University in
Pittsburgh during 1985/86, working on the PRODIGY learning
apprentice project under Jaime Carbonell) together with
Hansen et al.

Knowledge-base migration. Continued work has been conducted
on knowledge base migration from environments supporting
knowledge acquisition and knowledge engineering into possibly
diverse delivery environments, including requirements on
interfaces to existing systems, such as e.g. databases. Practical
cases include the migration of a knowledge base (The Antibody
Analysis Advisor) from the Lisp-based EMYCIN system into
the database system MUMPS. A summary of experiences in
this area will among other things' be presented in a forthcoming
licentiate thesis by Sandahl. A related problem was studied in
a master’s thesis project (Andersson), where a conventional
database application (a budget quotation system) was
connected to an expert system in a PC environment.

Intelligent human-computer interaction. In knowledge-based
systems, as in other kinds of software, the design of the human
computer interface accounts for a large part of the effort and
contributes significantly to the resulting quality and usefulness
of the finished system. This area has been touched upon in
several of the current projects. Intelligent front-ends, i.e.
systems for simplifying the interaction with complicated
special-purpose software packages, have been studied e.g. for
statistical systems (Chowdhury, Sisk). Techniques for visual
interaction in trouble-shooting expert systems have been
explored in cooperation with the knowledge transfer program
(Hansen, Eriksson, Johansson). A main theme for our work in
this area is methodology for generation of natural language
text and explanations, with an emphasis on discourse rather

ID A A N N U A L R ESEARCH REPORT 1986
The Application Systems Laboratory

43

than simple translation from internal to external representation
(Rankin).

Architecture of development tools and environments. When
studying techniques for building knowledge-based system, it is
also necessary to evaluate to what degree commercial tools and
environments for expert systems development can be used. Our
aim is to build as far as possible on existing tools and
undertake tool implementation efforts only when necessary. For
this purpose we are continually surveying available software on
market in cooperation with the knowledge transfer program
(Johansson). However certain work on the architecture level
can not be avoided and this together with our interest in
efficient strategies for knowledge base migration forces us to
devote some effort to this issue (Rehmnert).

○ Statistical information systems. This group, under the leadership
of adj. professor Bo Sundgren, is studying systems for processing of
aggregated information concerning groups of objects in a universe of
discourse. A major activity during the year has been the study o f how
expert systems can be an aid for this purpose. The result of this study
will be presented in a forthcoming licentiate thesis by Chowdhury.
More applied work has been done as a preliminary explorative
implementation of certain aspects of a statisticians workstation on a
Xerox Lisp machine (Chowdhury, Sisk et al.) and as a study of the
need for more precise and exact methods for strategic interpretation of
administrative business data (Wallgren and Wallgren).

○ M ethod-driven software development environments. During
1985/86 Kevin Ryan from Trinity College in Dublin has visited the
department, working on the use of knowledge-based support for
software engineering in a context of the ESPRIT ToolUse project. In
particular he has studied how the supporting tools can be made to
work more intimately integrated with a chosen development
methodology. Although this work is oriented towards supporting a
traditional programming process, it shares many of the the underlying
research issues with other work on knowledge-based expert systems in
the laboratory.

○ Knowledge transfer and other externally oriented activities.
During the year KTP participants from ASEA, Alfa-Laval and Philips
have been associated with our lab. Under this period especially
Alfa-Laval has inspired research tasks and master’s theses assignments
for lab members.

We have also conducted a study for Sveriges Mekanförbund in the area
o f knowledge-based expert systems, together with a support committee
with representatives from industry. A follow-up project in the same
area started in the fall 1986.

44 ID A AN N U A L RESEARC H R EP O R T 1986
The Application Systems Laboratory

Members of the lab have also been very active in presenting our
research areas and results, both on professional conferences and for
industrial audiences. We also participated as one of the main
organizers for the AI week in Linköping, April 1986, with more than
300 visitors.

More details on these and other activities within the laboratory are given in a
later section.

6.1.2 Personnel, A S L A B , spring 1987.

The following list presents persons active in ASLAB during 1986 and early
1987.

Project leadership/thesis supervision:

Sture Hägglund, PhD, docent, lab leader
Gunilla Lingenhult, secr.

Kevin Ryan, PhD, guest researcher 1985/86
Bo Sundgren, PhD, adj. professor

Graduate students:

Shamsul Chowdhury, BSc, MSc
Tim Hansen, MSc
Malin Johansson, MSc (starting late fall 1986)
Henrik Nordin, MSc, Tekn. Lic . (at CMU 1985/86)
Ivan Rankin, M A
Roland Rehmnert, MSc
Kristian Sandahl, MSc (at Epitec AB 1986/87)
Pål Sørgaard, MSc (visiting from Arhus 1986)

Associated persons:

This list includes persons who are actively participating in ASLAB projects,
either as industry participants in the knowledge transfer program, as
cooperating researchers in other departments or as undergraduate students
doing their masters thesis projects in the lab.

Martin Andersson, undergraduate student
Hans Block, SCB, Stockholm
Henrik Eriksson, undergraduate student
Torbjörn Eriksson, undergraduate student
Ove Hanebring, Alfa-Laval Automation, Lund
Stefan Hammar, Philips Elektronikindustrier, Uppsala
Christer Hansson, research assistant
Kerstin Johansson, undergraduate student
Christian Krysander, lecturer
Jonas Löwgren, undergraduate student

ID A AN N U AL RESEARCH RE PO R T 1986
The Application Systems Laboratory

45

Sven Moen, undergraduate student
Gösta Nilsson, Högskolan i Örebro
Erling Nordmark, Philips Elektronikindustrier, Järfälla
Pablo Lozan-Villegas, ASEA, Västerås
Lars Reshagen, Dept of medical informatics
Börje Rosengren, Alfa-Laval Automation, Lund
Päivi Sisk, undergraduate student
Tomas Sokolnicki, undergraduate student
Toomas Timpka, Dept of medical informatics
Anders Wallgren, Dept of math/statistics
Britt Wallgren, Dept of math/statistics

Figure 6.1. Researchers in ASLAB. From the left: Shamsul Chowdhury,
Roland Rehmnert, Malin Johansson, Henrik Nordin, Kristian

Sandahl, Sture Hägglund and Tim Hansen. Missing on the
picture is Ivan Rankin and Bo Sundgren.

6.2 Direction of research.

A central theme for our research is the application of knowledge-based
techniques for software development, both for improved development support
environments and for extending established software design practises with

46 ID A AN N U A L RESEARCH R EP O R T 1986
The Application Systems Laboratory

knowledge-based techniques. In this process we emphasize the potential
benefits o f applied AI and knowledge-based methods for producing more useful,
easy-to-change and understandable software, rather than as a way to solve
computationally difficult problems, but also as a way to introduce the
following qualities into software development, maintenance and use:

○ Interactive support for application modelling, through the use of
Al-inspired representation techniques which allow incremental
modification and maintenance of knowledge stored in the system.

○ Advanced dialogue management, including (restricted) natural
language explanations, queries and result presentations.

○ Learning support (for the user), based on the fact that information
inside the system may be inspectable and also reusable for teaching
and training.

○ More maintainable software, since the distance between what is stated
by the domain expert and what is entered into the system can be
shorter than in conventional programming.

Areas

Presently we are particularly interested in problems related to

○ knowledge acquisition and maintenance, especially for representations
supporting qualitative reasoning in addition to shallow heuristics with
a high potential for reusability of stored knowledge.

○ generic knowledge systems, where similar representation and reasoning
patterns reappear in different applications and where the specific
functions needed are specified by changing or extending a generic
knowledge base.

○ iterative methods for system development, which combine database
modelling with knowledge-based prototyping of system functions and
allow adaptive maintenance when requirements are changing.

Goals.

The goals for our research can be summarized as that we want to:

○ develop methodology and tools for knowledge-based expert systems;

○ understand the basis for human-computer cooperative problem solving;

○ improve our ability to create transparent reusable software;

○ promote an increased productivity and maintainability in applications
software development.

Style of research.

Our style of research is characterized by a heavy emphasis on founding the

ID A A N N U A L R ESEARCH REPORT 1986
The Application Systems Laboratory

47

selection or research problems and the assessment of results on practical
experiences from realistic applications. On the other hand there is a limit on
the ability to undertake real application projects in a research group, which in
general tends to bias research towards ”programming-in-the-small” rather than
towards ” programming-in-the-large” .

We try to cope with this problem by associating people from industry in
knowledge transfer activities and to cooperate with other researchers in
application-oriented projects. In such projects we attempt to apply and
evaluate previous results regarding methods and techniques. Experiences are
then generalized when possible and form the basis for theory development, as
well as for the design and redesign of methods and tools.

6.3 Review of current research activities.

Work in the laboratory is organized in two subgroups, one for Knowledge-based
software systems, led by Sture Hägglund and one for Statistical information
systems, led by Bo Sundgren.

6.3 .1 Knowledge-Based Software Systems.

(Hägglund, Hansen, Nordin, Rankin, Rehmnert, Sandahl, et al.)

This work is oriented towards the application of knowledge-based techniques
for software development, in particular architecture and development of
generic application systems, knowledge-based design and maintenance of
software and the integration o f methodology for developing expert systems
with more conventional information technology such as database management
and office information systems.

Knowledge acquisition and maintenance environments.

Knowledge acquisition, i.e. the process of understanding, formulating and
representing of the relevant knowledge for solving problems in a particular
area, is generally recognized as a problem of prime importance in knowledge
system development. It is our intention to focus on this problem area in our
work on methods and tools for knowledge system development.

Our main approach is to support a two-phase development strategy, where
properties o f the final delivery environment is studied independently of the
knowledge acquisition and development (KAD) environment. The latter should
provide extensive support for formulating and understanding a given
information processing problem, including the possibility to execute the stored
representation o f its solution. In a second phase this solution is transformed
into a production version in such a way that external constraints regarding e.g.
efficiency, database size, robustness, interface to other systems, etc are
observed. It is assumed that although this version of a system will allow

48 ID A AN N U A L RESEARCH R EP O R T 1986
The Application Systems Laboratory

considerably less freedom than is provided in the development environment, it
will still be flexible with respect to modifiability and maintainability.

In the KAD environment a set of common services for knowledge acquisition
and knowledge representation will be provided together with a layered
structure of generic knowledge about certain problem types (such as e.g.
diagnosis, configuration, planning, etc.) and application areas (such as e.g.
medicine, economy, technical equipment, etc.). Subsequently
application-specific information can be stored in order to customize the
development system to a certain class of applications. Developing an
application can then be seen as a further specialization and instantiation of
object classes, processing rules, integrity constraints, input/output behavior,
etc.

In the KAD environment we thus expect to find e.g. the following facilities:

Tools and methodological support for knowledge acquisition.

The knowledge base, containing e.g. knowledge about the application,
control knowledge, and meta-level knowledge relating to the various
services provided.

Mechanisms for utilizing the knowledge for problem-solving and other
purposes (” inference engines” and model interpreters).

Other tools for analysis, migration to the delivery environment, etc.

We expect to restrict our study of KAD environments to certain classes of
applications. One such application area is what we call initial advice,
consultation systems, i.e. knowledge-based systems for supporting a non-expert
user to make decisions and solve problems. In particular it is necessary to be
able to decide when a case should be handed over to a real expert. We are
especially interested in diagnosis (in a wide sense), e.g. fault finding and
maintenance of technical equipment. But we have also participated in and
collected experiences from applications in medicine and economy.

Currently our work on technical trouble shooting employs an approach which
combines deep and shallow reasoning models. Shallow models expressing local
heuristics in the form of symptom-cause rules have been successful in many
cases, but suffer from the inability to provide good causal explanations or from
restricted potential for reuse in similar but not identical situations. Qualitative
reasoning models on the other hand have better properties from these points of
view, but are harder to express and handle. We try to promote the use of
qualitative models when appropriate, but with fall-back methods employing
simple heuristics or user-controlled strategies as a complement.

In technical applications, the use of graphics and in particular the possibilities
for visual interaction during dialogues in a consultation system for e.g. trouble
shooting is o f prime importance. Although we try to avoid spreading out over
too many issues and thus basically intend to rely on standard graphics, we
have found the design of visual interaction techniques to be so intertwined

IDA ANNUAL RESEARCH REPORT 1986
The Application Systems Laboratory

49

with the design of the knowledge system interface in general that it deserves
further study.

Several master’s thesis projects (Johansson, Eriksson, Eriksson) have been
initiated in this area. Thus we have developed a graphics editor and a dialogue
interface for the kind of illustrations (schemata, sketches, pictures of
components, etc.) that is typically found in technical manuals. As a practical
application an interface to the Alfa-Laval separator trouble shooting expert
system was developed and connected to the Epitool-based knowledge system.

Figure 6.2. Graphics support for separator trouble shooting.

The visual interaction system is based on hierarchically organized composite
graphic objects, where each component at a given level can be presented in
different ways, views, e.g. as a piece of the composite object, as an icon, a
(photographic) picture, or as a composite object at a lower level. The system
allows the user during a dialogue to refer to a certain component by pointing
as an alternative to naming, and can also highlight current components as an
aid for the user to identify a specific object referenced by the system. Pictures
and schemata are entered with the help of the graphics editor, the standard
bitmap editor or by scanning from a paper representation, and it will in the
near future be possible also to enter such information directly from existing
CAD systems.

Knowledge-base m igration and expert systems architectures
Historically expert systems have dealt with hard problems which could not
readily be solved by conventional software development approaches. Projects

50 ID A AN N U A L RESEARC H R EP O R T 1986
The Application Systems Laboratory

were thus organized with an extreme emphasis on development support with
little or none concern for conditions to be met in a regular production
environment with routine users. When a successful solution was achieved,
developers had to face the problem of adaption to demands regarding
computational efficiency, interfacing to standard software, smoothing the user
interface, technical reliability and maintainability. Sometimes these goals could
be satisfactorily solved by a continued development effort. In other cases a
reimplementation with a partly different technology was forced. In still other
cases no fielded system was ever achieved.

Vendor of tools and environments for knowledge system development have
recently recognized the importance of this problem and strive for solutions
mainly along two lines. One is to reimplement the tool in a language which is
easier to support in a corporate data processing center and also to interface to
conventional software. It is not obvious that this approach improves the
flexibility, power and usability of the development tool. The other line is to
provide delivery versions of the tool, which are tuned to efficient performance
in a production environment and where knowledge bases can be compiled when
migrated to the delivery environment. This approach preserves the full power
of the development environment, but introduces a seemingly unattractive
dichotomy between the development and delivery environment.

We believe that this dichotomy should not be regarded as a drawback, but
rather be envisioned as a powerful strategy which in many cases provide
decisive advantages. Further we believe that time is now ripe to start from the
perspective of viewing the delivery environment as the primary object and thus
design the development tools starting from the anticipated spectrum of
software technology indicated by application demands. With this view the
reason for a separate development environment is not only to provide the best
possible support in the development process, but also to avoid making
premature decisions on run-time technology or particularities o f a specific
installation, while still designing with delivery in mind.

For instance, knowledge-based systems have as one of their main advantages
that the knowledge base do act as a parameter structure, which specifies the
problem solving behaviour of the program as governed by domain knowledge.
By changing this domain knowledge, a system can be adapted to a slightly
different application environment, i.e. be customized to a particular
installation. We perceive this situation to be typical for many commercial
knowledge systems, where a generic application is developed as a prototypical
program, which is then supplemented with local and installation-specific
information, before delivery to the customer. In this process it is reasonable to
believe that differences in local hardware and software should also be catered
for. Thus the only viable approach is to make the development tools as
independent as possible of any particular delivery environment.

The first step in such a migration project has been undertaken for the
Antibody Analysis Advisor (A3) [Sandahl 1985], An EMYCIN-compatible core
system was written for MUMPS (Reshagen) and a semi-automated translation

ID A A N N U A L RESEARCH REPORT 1986
The Application Systems Laboratory

51

system of the rule base from Lisp to MUMPS made the migration smooth
[Shasavar 1985].

A 3 is a medical expert system developed for the purpose of providing guidance
in the initial selection of analysis techniques for antibody identification in
blood samples. The system was developed as a joint effort between the
departments of computer science, medical informatics and the blood center at
the regional hospital in Linköping. It is a medium-size, quite typical rule-based
consultation system in the MYCIN tradition, with provisions for reasoning
under uncertainty (with was however used only to a very limited extent),
explanations and a backward-chaining control regime.

However the routines in different blood centres differ significantly, as do their
computing equipment. Thus a delivery of an A3-like system to another blood
center would presume a renewed customization of the knowledge base and the
run-time environment. We believe that customized migration of generic
knowledge systems in the long run might prove to be at least as useful as
running parameterized application programs under a standard operating
system.

Intelligent human-computer interaction.

Previous work in ASLAB has emphasized the importance of human-computer
interaction in various respects. Thus we have worked on models for dialogue
management systems and their use for software prototyping, as well as on
authoring environments for educational software, in particular for medical
simulations.

In our view, human-computer interaction can not be studied out o f context. It
appears that generally applicable results concerning dialogue design guidelines
and interaction techniques are scarce and that the application-dependent
aspects of a particular human-computer interface are o f prime importance. We
also believe that knowledge-based systems provide an appropriate background
for development of high-quality interfaces, where aspects of dialogue initiative,
sequencing, help and explanation facilities, division of tasks between user and
system respectively, etc. are primary, while syntactic details o f the language
used are secondary factors.

Important subjects for study in ASLAB are knowledge-based models of
human-computer interaction, effective methods for producing explanations of
system behaviour and results, and tutoring techniques for build-up and
maintenance o f user competence. Thus work on expert systems has e.g. clearly
demonstrated the great practical value of even simple schemes for producing
natural language presentations of facts and inference structures represented
inside the system.

One area of particular interest to us is to find more effective ways o f producing
help and explanations, in particular involving text generation. Most tools for
developing expert systems which provide support for explanations use very
simple techniques, e.g. display what is essentially a trace of the computation

52 IDA ANNUAL RESEARCH R E P O R T 1986
The Application Systems Laboratory

with a limited explanatory value for human. Thus the translation of the
internal representation for each piece of information needs to be supplemented
with an intelligent selection strategy based on a model of the user’s cognitive
understanding of what is going on.

Initial applications will be taken from the area of technical descriptions and
manuals. A typical situation is that directions for use employ examples to
explain how a certain result should be achieved. However it is often the case
that these examples differ in significant aspects from the user’s situation, which
easily causes misunderstandings or confusion. Likewise a typical manual refer
at the same time to many different models of the equipment, which make them
hard to read and understand. Thus the benefits of a system which can generate
a customized example or description from its knowledge of the current
equipment and the user’s situation should be obvious.

The primary motive for development of expert systems has typically been the
desire to support or automate problem-solving processes in the domain of
application. However the explicit representation of knowledge in a system can
also serve the dual purpose of providing the basis also for a tutoring system,
which can be used to train inexperienced personnel in decision making,
especially for unfamiliar or extraordinary situations.

We believe the potential for reuse of knowledge in new applications or for
different purposes, such as e.g. problem solving or training respectively, to be a
core issue in expert systems technology. In order to develop a methodology and
practical techniques for supporting application-oriented training in knowledge
systems, we have investigated how a rule-based consultation system giving
advice on economical and legal issues (LUCKY) could be reused for training
(Hansson), in the same style that has previously been tried for medical decision
making (MEDICS).

With these experiences as a background, we now plan to develop a generalized
approach, which tries to incorporate support for knowledge-based training, in
particular of emergency procedures, in a hybrid expert systems development
environment. This approach calls for an integration of deep and shallow models
for reasoning, e.g. in order to support process supervision or fault diagnosis in
technical equipment based to a reasonable degree on a qualitative
understanding of the corresponding processes. Initial experiments will continue
previous work in the medical area.

Knowledge-based approaches to systems development

The impact of knowledge-based techniques on systems development
methodology can be twofold. Either we use these techniques to support the
development process, e.g. by introducing new tools or improving the old ones,
or else we change the methodologies, e.g. by substituting automated procedures
for work previously carried out manually.

We believe that a combination of those effects will turn out to be very
important in the near future. Thus for instance the availability of powerful

ID A AN N U AL RESEARCH RE PO R T 1986
The Application Systems Laboratory

53

techniques to represent and manipulate domain knowledge about objects,
concepts and procedures, etc. will in a decisive way improve the possibilities to
employ methods in the tradition of the rapid prototyping approach to systems
development.

Experiences from previous projects in the area of office information systems led
us to the formulation of stepwise structuring as a generalization of rapid
prototyping, both being examples of methods for iterative development of
software. Using a stepwise structuring approach essentially means that the
degree of formalization (and thus the possibility for automated operations) of
information is gradually increased during successive implementations of
working prototypes or system generations. For instance, a formatted data
record is conceived as a more formalized representation than a text string for a
certain piece of information.

We believe that finding the right delimitation of a system’s tasks and the
appropriate representation of the information concerned is a crucial problem in
many application areas, and that working prototypes are often effective aids in
that process. Thus we think that methods for iterative development and
adaptive maintenance are much needed and we also believe that
knowledge-based techniques can contribute a lot to this end.

One useful strategy employed in knowledge systems for finding the right
concepts and decision rules is (inductive) learning. A system for learning rules
from examples was previously implemented as an experiment (Moen) and we
are now looking into an approach suggested by Borgida at Rutgers regarding
how to ” learn” concepts and which specific attributes characterize these
concepts (Hansson). The idea is is to be very restrictive when the properties of
vague concepts are initially specified, but periodically review all exceptions
that have been encountered and when necessary relaxing the constraints or
reconsidering the concept hierarchy.

This approach presumes an ability to handle exceptions in a knowledge system,
which is more flexible than simply rejecting transactions that violate
constraints. This is essential for systems concerned with information systems
dealing with ” natural” objects. Such objects are typically vague to a certain
degree and it is often very hard to specify integrity constraints which prevent
faulty data to enter the system, while allowing correct but unusual variations
to pass. Certain (declared) types of violations of constraints applying to objects
in the knowledge base should thus not force a fatal error, but result in
” exception objects” which are allowed to persist in the knowledge base.

Other aspects of systems development support are currently studied within the
laboratory. Kevin Ryan, from Trinity College in Dublin, has been a guest
researcher in ASLAB during 1985/86. He has conducted research in the
context of the ESPRIT ToolUse project, which is concerned with the study of
software engineering environments, and in particular with the possibilities to
integrate tools supporting method-based software development. Dr Ryan’s
work here concentrated on the investigation of knowledge-based support tools

54 IDA ANNUAL RESEARCH R E PO R T 1986
The Application Systems Laboratory

for a method-driven environment.

Here the software development process is viewed as a series of successive
transformations Starting from a vague idea of user requirements the
” specification” is successively transformed until an acceptable implementation
is achieved. In this paradigm a ” method” can be informally defined e ls a body
of knowledge that guides the choice of transformation, while a ” tool” , in its
simplest form, is a piece of software which assists in carrying out the chosen
transformation. Many existing or proposed software engineering environments
facilitate or even automate these individual transformations, but a method
driven environment must, in addition, guide and inform the developer in the
choice of applicable and appropriate transformations.

Problems studied involve support for requirements engineering and
knowledge-based systems design. In an experimental implementation
(Hansson), the possibilities to support systems design according to the JSD
method using the KEE system on Xerox Lispmachines was investigated.

During 1986 Pål Sørgaard visited the group from Aarhus, with an interest in
the studying of the relationship between a traditional information system
development process and one where knowledge-based techniques are used. In
particular he emphasizes the need for end user involvement and the
development of evaluation standards, which recognizes the importance of
assessing the performance of an expert system in an actual use situation.

The issues raised by Ryan and Sørgaard during 1986 are still considered of
prime importance for research in the lab, although current staffing forces
activities in this area to be concentrated on the iterative development and
adaptive maintenance issues.

6.3.2 Statistical information systems.

(Sundgren, Block, Chowdhury, et al.)

The main area of study for this group is statistical information systems, i.e.
systems for observation, collection, entry, storing, processing and retrieval/pre
sentation/distribution of aggregated information concerning groups of objects
(or higher level objects) in the current universe of discourse. Important aspects
here are problems regarding quality of information (e.g. incomplete, unreliable,
or misused data), support for selection of methods and tools for statistics
production, techniques for interpretation and presentation of results and formal
methods for description of statistical operators.

The Statistician’s Workstation.

Current efforts include the study of consultation systems for statistical
analysis. The background is the well-known problem of understanding how to
apply different tools for statistical analysis as correctly as possible on a given

ID A AN N U AL RESEARCH RE PO R T 1986
The Application Systems Laboratory

55

data material. The broad availability of statistical library software as well as
computer-stored information bases will significantly increase the danger of
misuse or even making faulty conclusions due to a lacking understanding of the
often intricate problems involved in the proper use and interpretation of
statistical data.

The goal is to build an integrated environment to support the analysis and
effective presentation of aggregated information. Subtasks involve quality
control of available data, assistance for selection of appropriate statistical
methods, for adjustment of data, and for preparing parameters for the
corresponding analysis programs, support for interpretation of results and for
tabular, graphical and verbal presentation of abstracted information. In
preliminary studies a knowledge-based assistant for eliminating seasonal
variations in statistical studies of industry and trade has been implemented
with existing shells (SAGE on a PC and KEE on a Lisp machine).

As part of current activities an experimental implementation of a statistician’s
workstation is carried out in Lisp on a Xerox Lispmachine (Sisk). This
implementation primarily supports the use of a statistical program package
MINITAB, which is actually run on a different computer via the local area
network. The idea is to demonstrate a situation where different tools for data
analysis and interpretation are available and where an intelligent front-end
system helps the user to select the appropriate tool, connect to the
recommended computer, initialize the processing of data and finally assists in
the presentation and interpretation of the results.

In the current implementation the system basically assists in multivariate table
analysis, carrying out a dialogue with the user and initiating different analyses
to be done by MINITAB. Built-in statistical expertise is needed in order to
structure the analysis in successive steps and guide in the choice between
alternatives. The system illustrate possible relationships between variables
(indicating potential dependencies) using the graphics of the Lisp Machine.

This effort is part of a research project where the possibilities of utilizing
expert systems techniques in statistical information systems are studied
[Chowdhury 1986]. The first comprehensive result of this investigation will be
published as a licentiate thesis by Shamsul Chowdhury during the spring 1987.

An algebra of base operators for production of statistics.

On a high level the statistical production process may be regarded as a system
of production functions like editing and correction of data, tabulation,
graphical presentation, and statistical analysis. Generalized statistical software
is usually developed for functions on this level. However, the high-level
functions may be defined in terms of simpler more general, and logically better
defined subfunctions like selection of certain objects on the basis of certain
criteria, creation of new variables in terms of existing ones by means of logical
and arithmetic operations, aggregations of data in accordance with
cross-defined and/or hierarchically defined aggregation structures, etc.

56 ID A ANNUAL RESEARCH R E PO R T 1986
The Application Systems Laboratory

A set of such statistical base operators is being defined in an international joint
effort with participation of Statistics Sweden [Sundgren 1985]. In connection
with that work, we are developing a theoretical framework in the form of an
algebra, with the purpose of giving a firm basis for implementation and
application of such operators as well as a conceptual integration with current
practices in the field of relational databases. (Sundgren, Nilsson.)

6.4 External cooperation.

ASLAB projects emphasize joint efforts with other groups and industry. The
following are the main current involvements:

1. Department of Medical Informatics. Previous cooperation on advanced
CAI systems (MEDICS) is now followed by joint work on medical
expert systems (Gill, Reshagen, Timpka). Renewed joint activities in
the area of knowledge-based training systems are starting spring 1987.

2. Alfa-Laval Automation. Joint work on expert systems for fault
diagnosis and maintenance within the Knowledge Transfer Program
(Rosenberg, Hanebring).

3. ASEA. Previous cooperation on a consultation system for robot
configuration is now followed by Knowledge Transfer Program
activities (Lozan-Villegas).

4. Philips Elektronikindustrier AB. Cooperation in the Knowledge
Transfer Program with an emphasis on knowledge-based techniques for
supporting routine operators in real-time systems, e.g. in military
applications (Hammar, Nordmark).

5. National Bureau of Statistics. Study of the design of statistical
information systems. (Block, Nilsson, Wallgren and Wallgren. See also
above.)

6. Nordic cooperation with Oslo (Kristen Nygaard) and Arhus (Lars
Mathiassen) in the SYDPOL programme (System Development
Environments for Profession-Oriented Languages.) This programme is
partly supported by Nordforsk and consists of national projects and
four inter-nordic working groups, where Aslab participates in those
concerned with systems developments methods and medical expert
systems respectively.

6.5 Publications

External publications: For a full listing of published papers, including
departmental reports, see appendix E. Below the last year’s external
publications by lab members are listed for an easy reference.

1. Sham sul C how dhury: Expert System Aid in Statistical Analysis and
Interpretation of Data. In Proc. o f the Society o f Reliability Engineers, Outaniemi,
1986.

ID A AN NUAL RESEARCH REPORT 1986
The Application Systems Laboratory

57

2. Sture H ägglund, Kunskapsbaserade expertsystem, rapport Sv. Mekanförbund,
86001.

3. Sture H ägglund, Redskap för expertsystem, i Proc. N ordD A TA -86, och i Nordisk
D A TAnytt, no 8, 1986.

4. Sture H ägglund, Kunskapsbaserade expertsystem i administrativa tillämpningar, i
Nordisk D A T A n ytt, no 6, 1986.

5. M in ton , C arbonell, K n ob lock , K uokka and N ord in , Improving the
Effectiveness of Explanation-based Learning, in P roc. o f the Workshop on Knowledge
Compilation, Sept. 24-26, Oregon State University, 1986.

6. H enrik N ord in : Using Typical Cases for Knowledge-Based Consultation and
Teaching. In Proc. o f the Srd Annual Conf. on Applications o f Expert Systems,
Orlando, Fla., 1986.

7. Ivan R ankin , On the Implementation of Hellberg’s Morphology System. Proc. o f
the Fifth M eeting o f Nordic Computational Linguists, Helsinki 1986.

8. K evin R yan , et al., Surveying Software Tools for a Method Driven Environment,
Proc IFIP-86 , Dublin, 1986.

9. K evin R yan , The Value of Mixed Metaphors in Computer Education, P roc. Nat.
Computer Education Conf., San Diego, 1986.

10. K ristian Sandahl: The Migration of Expert Systems into Production
Environments. Proc. Nord-Info Seminar on Knowledge Engineering, Köpenhamn,
1986.

11. P å l S0rgaard, Evaluating Expert Systems Prototypes. Presented at The 9th Scand.
Sem. on Use and Development o f Information Systems, Båstad 1986.

ASLAB Memo series 1985 and 1986
85-01 N ord in , Knowledge Reuse in a Back-Office Expert System.

85-02 B engtsson , LUCKY System Documentation.

85-03 H ägglund, From Rapid Prototyping to Stepwise Structuring and Knowledge-Based
Software Development.

85-04 Sundgren, Outline of an Algebra of Base Operators for Production of Statistics.

85-05 D oh erty , A Rule Interpreter for an EMYCIN-like Expert System Tool. Master’s
thesis, 1985.

85-06 M oen : Expert-Trees User Manual

85-07 H ägglund et al., Feature Catalogue of Tools for Building Expert Systems. Draft
version.

86-01 H anson, W ATT - A Knowledge-Based Case-Oriented Teaching System. Master’s
thesis, 1985.

86-02 H ägglund, Datorstödda kunskapssystem i framtidens kontor. (Publiceras även som
TELDOK-rapport, 1986.)

86-03 H ägglund, Sandahl and T im pka, Expert Systems in Medical Care.

86-04 S0rgaard , Evaluating Expert Systems Prototypes.

86-05 C h ow dhu ry : Expert System Aid in Statistical Analysis and Interpretation of Data.

86-06 W allgren , B , W allgren, A : Företagets Informationssystem. Statistisk analys med
företagets administrativa data.

IDA ANNUAL RESEARCH R E P O R T 1986
The Application Systems Laboratory

58

IDA ANNUAL RESEARCH REPORT 1986
The Laboratory for Computer-Aided Design of Digital Systems

59

7 .

C A D L A B

T h e L a b o r a t o r y f o r

C o m p u t e r - A i d e d D e s i g n o f

D i g i t a l S y s t e m s

H arold W. Lawson, J r.
Professor of telecommunications

and computer systems.

K rzysztof Kuchcinski

7 .1 I n t r o d u c t i o n

The laboratory for Computer Aided Design of Digital Systems, CADLAB, is
concerned with the behavioral and structural aspects of the specification,
design, simulation, optimization, partitioning, synthesis and evaluation of
digital systems, especially those involving very large scale integrated circuits
(VLSI).

CADLAB was formed from Professor Harold Lawson’s Telesystem group when
Telesystem, Datalogi and ADB merged to form IDA in 1983. In addition to its
being part of IDA, CADLAB also cooperates with Professor Christer
Svensson’s group in IFM (Physics) and the Applied Electronics group in ISY
(Electrical Engineering) to form the loosely coupled VLSI Design Center at
Linköping.

The first years of VLSI Design Center were devoted to building competence
and acquiring basic software. The year 83/84 marked the transition from the
building phase to initiating new research. The ”fruits” of these early years are
now being harvested and CADLAB is able to report on some significant

The work in CADLAB is mainly supported by STU, The Swedish Board for Technical
Development.

60 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

progress made during 1986. This progress will be highlighted in a later section.
CADLAB is broadly concerned with many aspects of the problem of silicon
compilation; the process of translating a high level description of a system to a
silicon layout. One model of the silicon compiler is that of a translator which
takes a high level description of a chip and transforms the semantic content of
the description into a machine as indicated in Fig. 7.1.

Figure 7.1. Silicon Compiler Model.

In the framework of the silicon compilation model, our research activities
concentrate mainly on different tools which constitute a complete silicon
compilation environment. They include the development of methods,
algorithms as well as integrated tools. As a result of this work, we have
implemented, among others, the ASL language and the CAMAD system.

7.2 Current Work

CADLAB is currently engaged in a set of research projects collectively called
the ASAP-project (An Architectural Strategy for Asynchronous Processing)
which is an attempt to provide an architectural basis for a new generation of
sophisticated CAD tools. Specifically, we are interested in exploring the
implications of asynchronous design and distributed control. This assumption
has an evident implication on the CAD tools. First, the tools should allow the
designer to explore the design space starting from the architectural level rather
than a lower level like a logic level. It provides a possibility to choose a better
design at an early stage of the design process. Second, it yields special purpose
systems (rather than general purpose systems) which are embedded in a wide
variety of products such as telecommunication systems, electronic and
biological instruments, robots and automatic control systems. For the
embedded, or special purpose systems, the structure of the application is well
defined. In such environments, we are faced with only a small number of

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory for Com puter-Aided Design o f Digital Systems

61

programs and the payoff in being able to specialize the system is potentially
quite high. In the next section we now identify the major premises of the
ASAP project.

7.3 Asynchronous Architectures

In the ASAP project we argue strongly for the asynchronous architecture
implementation of embedded (special purpose) systems. The facts that support
our assumption are as follows:

- Today, VLSI technology ensures a high performance of digital circuits.
Unfortunately, while gate delays scale linearly, the RC-line delay for
communications between gates does not scale, thus leading to a situation
where the chip speed is limited by the interconnections. Even with today’s
technology ” it takes about as long for a signal to cross a chip of side .5mm
as it does to go along a coaxial cable 75cm long.”

- There are problems to implement a single, global clock for large synchronous
systems (for example, two dimensional systolic arrays). However, within
regions of a VLSI circuit, called isochronous or equipotential, the system
may be considered synchronous at the maximum clock rate permitted by the
circuit technology. To synchronize independent isochronous regions we can
use a self-timed discipline which leads us to asynchronous systems.

- Embedded systems axe inherently parallel. Typical tasks to be performed in
embedded systems are data capture, processing, control signal generation,
display maintenance and possibly statistics gathering. They are usually
described as a set of heterogeneous tasks which are called processes. The
process can be view as an independent program which communicates with
other processes and the external environment to perform some system
activities. To implement the process abstraction, we map processes into the
set of processors. This also leads to the asynchronous architecture with the
communication protocol between processors.

- The asynchronous architecture approach forms a background for a ” flexible”
design style. This implies that a system may be easily extended using well
defined components. One can think also about specialization of the system
components (e.g. processors) to obtain an efficient realization, well suited for
the problem. Trade-offs to obtain a balance between performance and
cost-effective implementation are also possible.

- The approach, where timing is handled by the asynchronous strategy,
provides a basis to design systems rather than single chips. To find
” optimal” system solution one may also include into CAD tools a
hardware-software trade-offs. CAD tools must provide, in such case, various
forms of synthesis and support the evaluation of the designs in order to
compare the performance. This helps a designer to investigate the design
space.

62 IDA ANNUAL RESEARCH R E PO R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

We have now identified the major advantages of using asynchronous
architecture approach at every level- starting at the technology level with
assumptions about delays and clocks and ending at the system level with
assumption of design style. To fully utilize proposed ASAP architecture
benefits there must exist, however, CAD systems supported this approach. The
CAD systems must conveniently provide many different tools that utilize an
efficient graphical man-machine interface as well as design database which
possess a knowledge about various design views. The CAD systems should
contain many different tools like synthesizers, simulators, verifiers and also
more specialized like testability rule checkers and enforcers.

7.4 Ongoing A SA P Projects

The following concrete project areas have been identified and are being actively
pursued by members of CADLAB.

System Specification

Specification, Synthesis and Analysis

To support architectural specification, synthesis and analysis; a specification
language has been proposed in a licenciate thesis by Tony Larsson. The
language supports synthesis, analysis and simulation tools. A set of calculus-
hiding- binding and event reduction-rules are indented to form a framework for
the design of higher level verification and synthesis tools. Enabling semantic
preserving syntactic transformations, the rules support deductive verification
methods; however, exhaustive verification methods may also be tractable if
hiding and binding rules are used to prune a design description.

Simulation

As part of the overall goal of studying architectures and silicon compilers, this
project aims at investigating different simulation techniques and different
architectures. We started from detailed definition of the main components of
the ASAP architectural strategy. A register level simulator for the family of
this architectures has been produced. Then, based on the knowledge gained
during realization of the project, the simulator for systolic arrays has been
proposed. Finally, a simulation study of different binary tree structures has
been done. As a result, the performance evaluation comparison of different tree
structures has been obtained. This project includes also a study of the
programming language Occam and its usability for this type of application.

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory for Com puter-Aided Design o f Digital Systems

63

Synthesis of Behavioral Descriptions

The CAMAD project aims at the development of a formal design methodology
and an integrated set of automatic as well as computer aided design tools for
digital VLSI systems. We are particularly interested in the synthesis of VLSI
systems from their high level behavioral descriptions. Four problems of this
synthesis process have been identified; first the automatic generation of VLSI
implementation structures from a behavioral description which specifies only
what the system should be able to do. The second problem is how to partition
the implementation structure into a set of system modules so that each module
can be implemented independently. The third problem is the optimization of
the system implementation in terms of cost and performance. Finally, we have
also studied the problem of how to automatically generate microprograms to
implement the control structures of VLSI circuits.

To address these four synthesis problems, a unified design representation
model, the extended timed Petri net (ETPN), has been developed. This design
representation consists of separate but related models of control and data part.
This separation makes it possible to represent both structures and behaviors of
VLSI systems, thus the generation of implementation structures from their
high level behavioral descriptions can be done in an iterative way. The ETPN
allows also formal manipulation of the design space and different optimization
trade-offs between performance and cost. Partitioning of systems into
submodules can be provided both on the data part and on the control part,
which produces a set of pairs of corresponding data subparts and control
subparts. As such, asynchronous operation of the designed systems as well as
physical distribution of the modules is possible. The use of such a formal
representation model also leads to the effective use of CAD and automatic
tools in the synthesis process and the possibility of verifying some aspects of a
design before it is completed. An integrated design environment, the CAMAD
design aid system, has been developed based on the ETPN model.

Pipeline Extraction

Pipelining is a fundamental technique in computer design, but since it is today
usually a manual process, it is prone to design errors. This project tries to find
a way of describing a system so that extraction of ” pipelinable” parts can be
done automatically. A pipeline can be described in terms of processes and
processors, yielding two fundamental views:

1. The computation stages are processes, exchanging data.
2. The computations are processes, moving over the stages/processors.

The first view facilitates description of communication between stages, while
the second simplifies description of the state of the computations. Also,
formalisms for process definition in this context need to be developed.

This project tries to combine these features into a single view, by using a

64 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

formalism that describes each excitation of the pipeline as a separate process,
and letting these processes be interrelated by the constraints given by the data
path (pipeline stages). This way, one can achieve a description that allows
expression of scheduling constraints as well as error handling, and thus can be
used as the basis for a CAD tool for designing pipelined systems.

Representation and Reasoning

To support the ASAP architecture approach of VLSI System Design,
knowledge and design representation should be such that architectural
decisions may be reasoned about both manually and automatically. The
Representation and Reasoning subproject of ASAP aims at embedding the
ASAP methodology into AI based tools, such as Design Assistants (Expert
Systems), on different levels and phases in the design project.

One particular problem is the representation of the design itself, the design
task, and the design knowledge. A number of international research groups are
very active in this area, such as the PALLADIO design environment at
Stanford University, COMPUTER, Dec. 1983, and the Knowledge-based
Design System at Carnegie-Mellon University. Through the use of design
representation in the form of dependency networks, it is possible to reason
about the interaction between subparts and their interrelation so that an
optimal partitioning is possible. Thus support can be provided to the
partitioning task in the Synthesis of Behavioral Descriptions subproject of
ASAP.

Reusability is an important issues related to designing complex system. To be
able to reuse design or parts of design is a natural topic to explore. The
suggested method of reusablity is to use partial evaluation, e.g. extract
subparts of a previous design and minimize these according to their usage
within the new design.

Methods for reusal may be found within other parts of Computer Science and
as a software technique is referred to as Program Transformation. Within IDA
several research efforts have been related to this area. The work done thus far
has resulted in two doctoral dissertations, a thesis by Anders Haraldsson,
entitled ” A Program Manipulation System based on Partial Evaluation” and a
thesis by Pär Emanuelsson entitled ” Performance enhancement in a
well-structured pattern matcher through Partial Evaluation” .

Now that we have considered the general course of research activities, let us
highlight the progress made during 1986.

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory for Com puter-Aided Design o f Digital Systems

65

7.5 Progress During 1986

The CADLAB group made several important advances on the ASAP project
during 1986. This has resulted in the completion of another licentiate thesis.
Further, many papers have been published and presented at the international
and nordic conferences.

We feel that we have made progress in all of the areas mentioned in the
previous section. However, based upon the licentiate thesis and published
papers, we can identify some more specific progress.

Via the licentiate of Tony Larsson, we have a language for a specification of
asynchronous architectures. The language and a proposed set of calculus-
hiding- binding and event reduction-rules forms a basis for further research in
the field of verification and synthesis CAD tools. The highlights of this work
are presented in section 7.6.

In the area of silicon compilation, the work performed to develop the CAD
system called CAMAD (Computer Aided Modelling, Analysis, and Design of
VLSI Systems) shows a significant progress. Based on the formal model of the
VLSI circuits the optimization, partitioning and synthesis algorithms have
been developed and implemented. The work has been described in 6 papers
published on the international and nordic conferences. The highlights of this
work are presented in section 7.7.

In the area of simulation and ASAP architecture definition, we investigated
different methods of simulation using Occam language. This work resulted in
three publications this year. The highlights of this work afe presented in
section 7.8.

7.6 On the Specification and Verification of VLSI
Systems

Increasing complexity of VLSI systems and the requirements for more or less
automated analysis and synthesis tools have made it essential to improve
system specification and verification methods. The design of large systems
composed of subsystems, designed by different design teams, requires that
these subsystems can communicate with each other. This requires that each
subsystem has well specified and verified communication interfaces.

In the thesis, a combination of issues related to the specification and
verification of (VLSI) hardware systems are treated. Traditional hardware
description languages (HDL:s) are considered too feature rich to keep the
number of transformation rules reasonable as a media for verification. Hence, a
small but general specification language, ASL, is proposed as an experimental

66 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

tool for specification, verification, and synthesis of system architectures. The
language supports specification of a systems behaviour and structural
decomposition. A second problem with most traditional hardware description
languages are that their semantics are at best described informally in a
programmers manual or are embedded in related tools such as simulators. This
provides a motive to focus on semantic issues, especially the actional behaviour
and related transformation rules.

ASL is intended to be used as input to automatic synthesis, analysis, and
verification tools. This requires that the language has a well defined semantics
and that a set of rules are defined such that the specification and the
implementation can be compared and shown equal in a formal sense. The
semantics of ASL is defined by help of a semantic relation. A calculus
(semantic preserving syntactic transformation rules), event and port reduction
rules, and partial evaluation (binding) rules are proposed. These rules are
intended to support semantic preserving (or reducing) syntactic
transformations which enable deductive verification of equality of a design
specification and its implementation. Port binding and partial evaluation may
also be used to prune a design specification and/or implementation (in order to
reduce combinatorial and sequential complexity) so that both deductive and
exhaustive verification techniques are made tractable.

Figure 7.2. Verification Utilizing Calculus, Internal Event and Port Reduction Rules.

ASL, is designed to support specification of a system viewed as a module that
can provide a set of functions to an external environment. To gain access to
these functions, the module and its environment must agree upon a
communication scheme. In a communication scheme, the ordering of a set of
actions is described. These actions performed by agents, specify the
interchange of information between the module and its environment. The

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory for Computer-Aided Design o f Digital Systems

67

module communicates via ports and has no knowledge about the environment
where it may be initialized. This implies that the actions performed are viewed
as driven by events that are visual in the form of changes at the module ports.
A port can be viewed as a connector to a net (or a set of nets) connecting a set
of communicating modules. Events can have both global and local triggering
effect, hence ASL can support design of both synchronous and asynchronous
systems at different levels of abstraction. The encapsulation facilities of ASL
provides for reusability of functions, interfaces (communication actions related
to ports) as well as complete modules.

7.7 Synthesis of Behavioral Descriptions

The major results of the CAMAD project have been published in 6 papers.
Here we will describe some most important results, which have been published
in international journals and international conference proceedings.

In the first paper [4], we gives the formal definition of the extended timed Petri
net (ETPN) model which consists of separate but related models of control and
data parts. The application of this model for the description and synthesis of
VLSI systems with asynchronous processing strategy is then discussed. The use
of the ETPN model in the VLSI design process leads to the formalization of
the control/data path allocation and module partitioning problem as an
optimization problem. To solve this optimization problem, a set of design space
exploration strategies and heuristic algorithms are then proposed.

The application of this design representation also leads to the effective use of
CAD and automatic tools in the synthesis process. As a result, the CAMAD
design aid system was developed based on the ETPN design representation and
its synthesis methodology. Input to CAMAD is a high level behavioral
specification which specifies what a system should be able to do without
prescribing the physical structure of the implementation. This specification is
first translated into the ETPN design representation. The ETPN
representation is then analyzed, transformed, and finally partitioned into a set
of processing modules which can be implemented independently. The major
synthesis task in CAMAD is carried out by a set of semantics-preserving
transformation algorithms which move a design step by step from an initial
state to better ones and finally to an optimal or near optimal one. The
overview of CAMAD is presented together with its major characteristics in the
second paper [5],

In the following paper [6], the problem of how to automate the design of
control structures for VLSI systems is addressed. We have developed design
tools which can synthesize a control structure from a high level specification
into microprograms as well as perform optimization based on some
implementation constraints. The entry to such tools is a timed Petri nets with

68 IDA ANNUAL RESEARCH R E PO R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

restricted transition firing rules. This timed Petri net model is used to produce
sequences of control signals to evoke operations of their associated data parts
as defined in the ETPN design representation model. A set of algorithms for
the control synthesis have been implemented and integrated into the CAMAD
design aid system.

Finally in [7] we describe a systematic way to design asynchronous concurrent
systems. Usually, it is very difficult for human designers to design such
systems. One of the reasons is that such systems are inherently
nondeterministic; therefore, it is almost impossible for designers to keep track
of all activities of the designed system. Our approach to addressing this
complicated problem is to start the design process with a behavioral
specification of the system where the designers concentrate only on the desired
system semantics. The designers can then utilize some design tools to exploit
the design space so as to create an appropriate implementation structure or
have the design system attempt to automatically provide an optimized solution
based on a library of functional implementations. A general partitioning
algorithm used to partition a VLSI description into a set of processing modules
whose actions are coordinated to implement the specified behaviors is then
proposed.

7.8 Simulation

The work on the simulation techniques applied for different architectures
spread into three research subjects. In each subject, we used the programming
language Occam as a basic simulation tool. The results of this work have been
published as a three papers and an internal report.

A short description of the Occam language has been provided in the paper [1],
It summarizes some experiences (issues of design, testing and maintaining
concurrent programs) gained during the ASAP simulator implementation in
this language. The paper thus describes a register level simulator for a family
of architectures based on asynchronous processes. Within this architecture we
hope to avoid the usual bottlenecks of Von Neuman machines and at the same
time avoid the problem of dynamically binding every operation as in dataflow
machines.

Systolic architectures have proven to be cost effective and high-performance
solutions to a variety of problems in, for example, signal and image processing.
Usually, the development of a systolic solution to a problem is divided into
three major steps: requirements definition, design and implementation. The
design phase often consists of an ad hoc choice from a family of possible
systolic solutions. To allow the designer to study and evaluate various
trade-offs in different designs, we propose to use a high- level simulation
package tailored for systolic architectures. The system, described in [2], will be

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory for Com puter-Aided Design o f Digital Systems

69

used for teaching under-graduate students basic design principles as well as for
developing contemporary designs.

The simulation and performance evaluation of different tree computer
architectures has been studied in the framework of the project. The internal
report [3] summarizes some results obtained from this research work. The
binary, completely linked, half ring, and full ring trees have been compared in
respect to their relative performance for a random message exchange as well as
for implementations of algorithms for Heapsort and adaptive numerical
integration. For the completely linked tree, a foult-tolerant routing algorithm
is tested.

7.9 Cooperation W ith Other Groups

CADLAB has cooperated with the Computer Systems Laboratory at Uppsala
as well as with Piotr Dembinski in Gothenburg in applying the formal design
techniques developed for description of control and processing structures and
communications protocols to the description of integrated circuits. The
CADLAB group, in November, presented the ASAP project for Microelectronic
Center. Ideas presented during this meeting seems to be of great interest to the
developed projects. Further, we have had contacts with Gunnar Carlstedt of
HYLAB AB concerning the exchange of ideas for VLSI design. We are in the
process of defining a closer cooperation with Dr. Gunnar Carlstedt; particularly
in the relationship to his work on architecture and CAD tools sponsored by
SICS (The Swedish Institute of Computer Science).

7.10 Industrial Significance

Many VLSI experts have come to the conclusion that the possibility to design
and implement complex systems composed of heterogeneous processes will
require wide spread use of asynchronous control strategies (see ” Logic
Designers Toss Out the Clock” , Electronics December 9, 1985). Thus the
asynchronous approach which has for many years been a premise for the
architectural research and development of Professor Lawson is becoming wide
spread. The industrial relevance of this research for future complex system
construction is rapidly increasing.

70 IDA ANNUAL RESEARCH REPORT 1986
The Laboratory for Computer-Aided Design of Digital Systems

7 .1 1 O t h e r R e la te d A c t iv i t ie s

As a result of Professor Lawsons assistance to the Prime Minister of Malaysia
Dr. Mahathir in planing a National Microelectronic Programme, a new
institute MIMOS (Malaysian Institute of Microelectronic Systems) was
established and inaugurated during 1985. Further contacts between MIMOS
and various Swedish Institutes and the Ericsson Corporation have been
pursued. MIMOS as of December 1986 has 48 employees. They have utilized
Swedish CAD software from the Microwave Institute and Linköping
University. Further, they completed 5 integrated circuits designs that were
processed by NORDCHIP. We shall consider to accept a doctoral student from
MIMOS during 1987.

Figure 7.3. CADLAB meeting with Tony Larsson, Björn Fjellborg, Britt-Marie
Ahlenbäck, Krzysztof Kuchcinski, Zebo Peng and Nail Kavak.

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory for Com puter-Aided Design o f Digital Systems

71

7.12 Personnel

Professor Harold W. Lawson Jr., Ph.D.
Krzysztof Kuchcinski, Ph.D. (from September)
Britt-Marie Ahlenbäck, secr.
Björn Fjellborg, MSE
Nail Kavak, MSE
Tony Larsson, Tech.Lic
Mikael Patel, Tech.Lic.
Zebo Peng, Tech.Lic.

Professor Harold Lawson has been acting laboratory leader until September
when Dr. Krzysztof Kuchcinski joined CADLAB. During this period Mikael
Patel actively participated in the leadership of CADLAB. We expect that 2
new doctoral students will be added to the group during 1987.

7.13 Licentiate Theses

Vojin Plavsic, Interleaved Processing of Non-Numerical Data Stored on a
Cyclic Memory.

Arne Jönsson and Mikael Patel, An Interactive Flowcharting Technique for
Communicating and Realizing Algorithms.

Zebo Peng, Steps Towards the Formalization of Designing VLSI Systems.

Johan Fagerström, Simulation and Evaluation of an Architecture based on
Asynchronous Processes.

Tony Larsson, On the Specification and Verification of VLSI Systems.

7.14 References

The following are the CADLAB publications for the year 1986 that are
referenced in the text. For the full list of publications, please refer to the
appendix.

1. J.Fagerström, Experiences with Occam: A Simulator for Asynchronous
Processes, Proc. 19th Hawaii Int. Conf. on System Sciences, Hawaii, Jan.

72 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Computer-Aided Design o f Digital Systems

1986, pp.95-102

2. J.Fagerström and M.Patel, High-level Simulation o f Systolic Architectures,
The First International Workshops on Systolic Architectures Oxford, 2-4
july 1986

3. B. Fjellborg, A Simulation Study of Four Binary Tree Structures, Report
LiTH-IDA-R-86-19.

4. Z. Peng, A Formal Approach to the Synthesis of VLSI Systems From
Their Behavioral Descriptions, Proc. 19th Annu. Hawaii Int. Symp. on
System Sciences, Hawaii, Jan. 1986, pp.160-167

5. Z. Peng, Synthesis of VLSI Systems with the CAM AD Design Aid, Proc.
23rd ACM/IEEE Design Automation Conf., Las Vegas, Jun. 1986,
pp.278-284

6. Z. Peng and K. Kuchcinski, Synthesis of Control Structures From Petri
Net Descriptions, Microprocessing and Microprogramming, Vol.18, Nrs.1-5,
1986, pp.335-340

7. Z. Peng, Construction of Asynchronous Concurrent Systems From Their
Behavioral Specifications, Proc. 10th World Computer Congress, Dublin,
Ireland, Sept. 1986, pp.859-864

IDA ANNUAL RESEARCH REPORT 1986
The Library and Information Science Laboratory

73

8 .

L I B L A B

T h e L i b r a r y a n d I n f o r m a t i o n S c i e n c e

R e s e a r c h L a b o r a t o r y

Roland Hjerppe

8 .1 I n t r o d u c t i o n .

LIBLAB, a joint project of the Department of Computer and Information
Science and the University Library, studies methods for access to documents in
collections and the information contained in them. In the research program for
LIBLAB are specified two major themes: Document Description and
Representation, and Users and Library (Systems), and one minor: Networking,
especially questions of central vs. local handling. For each of the themes there
are also two subthemes defined.

The interest in document description and respresentation arises from the
observation that all other types of improvements in systems for access to
documents (catalogs or information retrieval systems) are of no avail if the
basic data in the database do not adequately describe the document and its
contents or if the representation hampers or prohibits the manipulations
desired.

Appropriate data in a congruous database is, however, not enough. If flexible
and convenient means for access to the information are lacking then the usage
of the system will cease and information sought will never be found. Hence the
interest in Users and Library (Systems).

The work in LIBLAB is mainly supported by DFI, The Swedish Delegation for Scientific and
Technical Information.

74 IDA ANNUAL RESEARCH R E P O R T 1986
The Library and Information Science Laboratory

No single source, system or service can alone cater to all the needs and
demands of its users. The documents needed by an individual user are usually
accessible in collections which mostly are arranged so that their size and the
distance to them increases as the usage by the individual decreases. Documents
needed often or regularly are available in the room, those needed less
frequently are available in the room or department, those needed occasionally
are available in the local library and those needed once or very seldom are
available locally or in other libraries. This structure, which can easily be
recognized once it exists, is troublesome to implement or cultivate as part of a
plan since it is very difficult to predict the usage of an individual item.
Problems of relations between and access to other collections, of networking,
are therefore also a concern.

All of the themes and their subthemes were looked into during the first three
years, 1983-1985, but the concentration has been mainly on the first theme:
Document description and representation. The ” Anglo-American Cataloging
Rules. Second Edition.” (AACR2) was studied by building a a number of small
knowledge based systems with the cataloging rules as a knowledge domain.
During 1985 the HYPERCATalog-project emerged as a project in which
problem areas can be found that relate to all the themes, becoming the main
focus of the activities of LIBLAB.

In 1986 the activities in LIBLAB have hence mostly been related to
HYPERCATalog or been a continuation of earlier work on knowledge based
systems and document description.

8.2 Project H YPERCATalog

The fundamental paradox of information retrieval:

T he need to describe that w hich you do n ot know in order to find it

is usually solved by attempting to circumscribe the unknown by trying to
describe that which is known. All operational systems are based on this
approach.

A different solution, based on ” I can’t describe it, but I recognize it when I see
it” , and ” I want more like this (but slightly modified)” , which takes into
consideration our perceptual and cognitive capabilities, is one of the bases for
the HYPERCATalog.

The HYPERCATalog-project was briefly described in the previous Annual
Research Report and fuller descriptions are available in LIBLAB’s report
series. The goal is eventually to build and implement a catalog that differs in
most ways from today’s catalogs. The most important desired features are
listed below:

The catalog as a hypertext structure, implying navigation and
browsing as the primary modes of use.

ID A AN N U AL RESEARCH RE PO R T 1986
The Library and Information Science Laboratory

75

Maps and graphic illustrations of structures as tools for visualization of
database structure, which mirrors conceptual structures.

Integration of text and structure editor with other functions.

The database grows with use, enabling capitalization of the use made
of it.

Multiple views of the database and its structure.

Private, modifiable versions of the database and the collective views.

Different interaction modes, user models and customization needed to
accomodate a wide range of users.

The main components of HYPERCATalog are depicted in Fig. 8.1 below.

Figure 8.1. HYPERCATalog components

The HYPERCATAlog-project is planned to proceed through the following
phases:

Generation of design specification, functions and components

Identification of problems inherent in specification

Search for, and evaluation of, solutions to specific problems

Elaboration of blueprint for construction

Construction of a prototype

76 IDA ANNUAL RESEARCH R E P O R T 1986
The Library and Information Science Laboratory

Implementation and use

Modifications

In the original plans the specification phase was to be concluded in 1986, with
a design specification as a result. A full specification has, however, not been
produced although the papers published are important parts of this
specification. Some of the main reasons for the delay are i.a.

questions on the form of the specification and its level of detail,

the desire to gain experience of hypertexts through the usage of
NoteCards, an application developed by Xerox for handling one type of
hypertexts,

the delay in the installation of the Xerox workstations that were
received through their University Grant Program,

more extensive studies of single components than originally planned.

Another important factor was the fact that inherent (and recognised from the
beginning) even in the early visions of HYPERCATalog was also the need for
an accompanying research program to study a number of problems and
questions arising from the central conceptions. Some of these were listed in the
previous Annual Research Report.

During 1986 preliminary work has been done on the concepts of filters,
providing different views of the contents of the database and three
fundamental types of views were identified, see Fig. 8.2 below (taken from the
paper ” HYPERCATalog and Three Meta-Schemata for Database Views:
Knowledge Organizing, Collection Derived, and User Established Structures”),

The ambition in HYPERCATalog is to be able to cater to a very wide range of
users, from first time library users, with perhaps no experience of libraries and
catalogs, nor computers, to the researcher who uses the library on a daily
basis. For all of these users are needed means for building mental models of the
system, and these mental models have to be initially simple as well as
extensible as experience and demands grow. A conscious use and provision of
metaphors has been recognised as a potential, partial solution. An investigation
of metaphors was thus initiated and a first result presented by Arja
Vainio-Larsson in the paper ” Metaphors as Communicators of Conceptual
Ideas”

Preparatory work has also been done during 1986 on approaches to the
handling of classification schedules as databases in their own right and on the
the generation of ” maps” from classification schedules.

The present outlook for the design specification phase is to have it conluded
during 1987. The delays are expected to be more than compensated by the
experiences gained internally and from work on Hypertexts at other places.

ID A AN N U AL RESEARCH RE PO R T 1986
The Library and Information Science Laboratory

77

Figure 8.2. The three fundamental views o f databases, and additional filters .

8.3 Cataloging and document description.

During the first months of 1986 a survey article titled ” Electronic Publishing:
Writing Machines and Machine Writings” , was prepared by Roland Hjerppe
for v. 21 of ” Annual Review of Information Science and Technology” . This
survey is planned as the introduction to a discussion of the effects of modern
information technology on 1) the change of and interaction between the
concepts document/work/text, and 2) the concomitant impact on form, style
and mode of literary expression.

Previous experiments with expert-systems for cataloging were written up for
publication and a paper by Roland Hjerppe and Birgitta Olander titled
” Cataloging and Expert Systems: AACR2 as Knowledge Base” has been
accepted for publication during 1987 in Journal of the American Society for
Information Science. A presentation of the project was made by Birgitta
Olander at the session on ” Al and Bibliographic Control” on 1968 Annual
Meeting of the American Society for Information Science in Chicago in October
1986.

The mapping and graphic display of the structure of the set of rules in
” Anglo-American Cataloging Rules. Second Edition” that was initiated (but
not finalized) in 1985 - as a part of the ESSCAPE-project - was taken up again
in November and concluded by the end of the year.

78 IDA ANNUAL RESEARCH R E P O R T 1986
The Library and Information Science Laboratory

Preparatory work on formalization of bibliographic description and catalogs,
using ideas and formalism from SGML, Standard Generalized Markup
Languages and abstract editors, has also been done and the FORMEX
(Formalised Exchange of Electronic Publications) document from the New
Technologies Project Management of the Office for Official Publications of the
European Communities is indicating an interesting possibility for Editing
Systems with Cataloging Helper And Tagging Operators.

8.3.1 Other projects and activities

Manny Jägerfeld, one of LIBLAB’s doctoral students, has during the latter half
of 1986 participated in a pre-study for WHO on the Establishment of a
European Clearinghouse on Assessment of Health Technology in Linköping.

LIBLAB has also participated in a project at the Dept, of Medical Informatics
aimed at building decision support systems for general practitioners in primary
care. One of the goals in this project is first to design and provide three
different approaches to decision support: Knowledge based systems, Hypertexts
and Bibliographic databases, and then after testing prototypes attempt to
integrate the approaches in one system. In Fig. 8.3 below is a typical screen
display from LIMCONS, one of the decision support modules.

Figure 8.3. LIMCONS interface

ID A AN N U AL RESEARCH RE PO R T 1986
The Library and Information Science Laboratory

79

During 1986 two papers were published that describe this work:

” Decision Support for General Practitioners; Design and Implementation by
Integrating Paradigms: Hypertext, Knowledge Based Systems and Online
Library.” and
” The Need for Supplements to Traditional Expert Systems: Lessons from
Designing Knowledge Based Systems for Primary Care.”

Birgitta Olander and Roland Hjerppe participated in a task force plannning
the development of an information network for primary health care, and
Birgitta Olander, acting as the secretary wrote the final report, ” HUGIN -
Health University General Interactive Network” . (The work was performed as
a part of establishing a medical education program in Linköping that is called
the Health University to indicate its commitment to health rather than disease,
and that integrates education for people at various levels in medical and health
care.)

8.4 Personnel

LIBLAB is now fully staffed and an interesting mixture of competences has
been achieved. The personnel of LIBLAB is briefly presented below, most of
them participate in all projects but with different emphases.

Roland Hjerppe, MSc, Laboratory leader, spends, apart from planning,
coordination and administration etc., most of the time on the HYPERCATalog
project.

Birgitta Olander, BA, MLS, Systems Librarian at Lund University, former
head of the acquisitions department at Linköping University Library. BO is
also pursuing doctorate studies at University of Toronto, Faculty of Library
and Information Science and spent the summer of 1985 with LIBLAB in the
HYPERCATalog project, before going back to finish her courses in Toronto
during 1986.

Arja Vainio-Larsson, MA, former lecturer in psychology, began her doctoral
studies at LIBLAB the fall of 1984. The main area of interest is the design of
user interfaces. AVL has studied the use of metaphors and is now i.a.
investigating the confluence of object oriented approaches with metaphors.

Lisbeth Björklund, B.Sc., library assistant in the interlending department of
Linköping University Library, began her doctorate studies at LIBLAB the fall
of 1985 and has mostly been taking graduate courses, i.a. in knowledge
engineering.

Manny Jägerfeld, BA, who has had a research scholarship from DFI for
studying computerization in libraries, has also started his doctorate studies at
LIBLAB the fall of 1985 and was during the lattter half of 1986 engaged in the
WHO-project on assessment of medical technology, focusing on the database

80 IDA ANNUAL RESEARCH REPORT 1986
The Library and Information Science Laboratory

and information systems aspects.

Siv Söderlund who replaced Anne-M arie Jacobson from July 1986 as part
time secretary for LIBLAB.

Figure 8.4. Project discussion with Manny Jägerfeld, Arja Vainio-Larsson
and Toomas Timpka.

A s s o c ia te d p e o p le :

The following have various associations to LIBLAB:

K ristian W allin, student, responsible for local systems at the university
library, and formerly for the NYTTFO-project in Linköping, will join LIBLAB
as a doctoral student on a half-time basis after finalizing his BA-paper, and
devote most of his time to the HYPERCATalog project.

Toomas Tim pka, M.D. Doctoral student, Dept, of Medical Informatics,
principal investigator in the LIMEDS project, a cooperative venture between
LIBLAB and Dept. of Medical Informatics.

ID A AN N U AL RESEARCH REPORT 1986
The Library and Information Science Laboratory

81

8.5 List of publications

Reports:
(i.e. more extensive writings, reprints, etc.)

LiU-LIBLAB-R-1986:1
Hjerppe, R.: Electronic Publishing: Writing Machines and Machine
Writings. The impact of computers on text. Mars 1986, 28+21p
(Edited version published in ” Annual Review of Information Science
and Technology.” vol. 21 1986. M. Williams. Ed. Knowledge Industry
Publications Inc. pp.123-166)

LiU-LIBLAB-R-1986:2
Hjerppe, R.: (Reflections (Education (Library, Information, Computer
(Science (Research))))) Mars 1986, 8p (Discussionstarter for the
Anglo-Nordic Research Seminar ” Training the Information Researcher
for the Future” , Lidingö, 9-11 April 1986)

LiU-LIBLAB-R-1986:3
Hjerppe, R.: HYPERCATalog and Three Meta-Schemata for Database
Views: Knowledge Organizing, Collection Derived, and User
Established Structures. (Published in ” Online Public Access to Library
Files: Second National Conference.” J Kinsella Ed. Elsevier)

LiU-LIBLAB-R-1986:5
Malmberg, I-M.; Östberg, B-M.: LINS - LIBLABs Namnhantering-
System. Testning och utvärdering. Maj 1986, 17p. (Also available as
Specialarbete nr 108, 1985, Institutionen Bibliotekshögskolan,
Högskolan i Borås)

LiU-LIBLAB-R-1986:6
Vainio-Larsson, A.: Metaphors as Communicators of Conceptual Ideas.
August 1986, 14p. (Paper presented at ” Ninth Scandinavian Research
Seminar on Use and Development of Information Systems” , Båstad,
19-22 August 1986)

Working papers:
(i.e. usually preliminary, smaller papers, distributed as requested and from
separate mailing list)

1. LiU -LIBLA-W P:33 Hultman, J.; Idberger, K.; Johansson, M.; Sisk, P.:
Systemdokumentation. LINS: LIBLABs NamnhanteringsSystem. May
1986, 7 4 + 2 3 8 p .

2. LiU-LIBLA- W P:34 Olander, B.: Notes on Notecards. Augusti 1986, 5p.

3. LiU -LIBLA-W P:35 Hjerppe, R.: Utkastet ” DFIs VERKSAMHET - EN
UTVÄRDERING” (Dnr 100/86-5) från Statskontoret, några
synpunkter och kommentarer. September 1986, 6p.

4. LiU -LIBLA-W P:36 Hjerppe, R.: A review of the dissertation ” A
Bibliometric Analysis and Evaluation of Research Writings by Indian
Authors in the Field of Physics” by Paul Mohan Roy. Oktober 1986,

82 ID A ANNUAL RESEARCH R E P O R T 1986
The Library and Information Science Laboratory

13+11p.

5. LiU -LIBLA-W P:37 Hjerppe, R.: Informationssystem i kontor.
Kursinformation. Oktober 1986, 3p.

6. LiU -LIBLA-W P:38 Hjerppe, R.: LIBLAB. Verksamheten under 1986
och plan för 1987. Oktober 1986, 8+5p.

External papers:
(i.e. reports in other series or co-authored with people from other institutions)

1. (Olander, B.:) HUGIN (HälsoUniversitetets Generali Interaktiva
Nätverk) - ett förslag till stöd för informationsförsörjningen vid
hälsouniversitetet. Rapport för etapp 1 från Arbetsgruppen för
delprojektet Kunskapsuppbyggnad och kunskapsspridning,
Hälsouniversitetet i Östergötland. HälsoUniversitetet, rapport 1986:2,
32+2p.

2. Timpka, T.; Strömberg, D.; Möller, I.; Gill, H.; Bjurulf, P.,; Mattson,
P. and Wigertz, O.: The Need for Supplements to Traditional Expert
Systems: Lessons from Designing Knowledge Based Systems for
Primary Care. Jan. 1986, 10+4p. (Paper presented at the conference
” Expert Systems and Applications” in Avignon, April 28-30 1986)

3. Timpka, T.; Strömberg, D.; Möller, I.; Bjurulf, P.; Gill, H.; Mattson,
P.; Olander, B. and Wigertz, O.: Decision Support for General
Practitioners: Design and Implementation by Integrating Paradigms:
Hypertext, Knowledge Based Systems and Online Library. (Paper
presented at MEDINFO 86, 5th World Congress on Medical
Informatics, in Washington, D.C. October 26-30 1986)

IDA ANNUAL RESEARCH REPORT 1986
The Logic Programming Laboratory

83

9 .

L O G P R O

T h e L o g i c P r o g r a m m i n g

L a b o r a t o r y

Ja n M aluszynski

9 .1 I n t r o d u c t i o n

The Laboratory for Logic Programming was created in spring 1985 as a result
of division of the former Group for Theoretical Computer Science into two
independent research groups. (Until November 1986 LOGPRO had the status
of a research group). The research concentrates on the foundations of logic
programming systems and on the relation of logic programming to other
computational paradigms.

An important objective of the group is also to contribute to the research
activities of the other laboratories by offering courses and seminars on logic
programming, theory of programming and formal language theory.

9 .2 P e r s o n n e l a n d E x te r n a l R e s e a r c h e r s

The following persons were involved in the research activities of the group:

Jan Maluszynski, Ph.D., professor, group leader
Douglas Busch, Ph. D. visiting researcher
Wlodzimierz Drabent, Ph. D. visiting researcher
Staffan Bonnier, graduate student
Håkan Jakobsson, graduate student (at Stanford since Sept. 1986)
Simin Nadjm-Tehrani, graduate student
Ulf Nilsson, graduate student

The work in the Logic Programming Group is mainly supported by STU, The Swedish Board
for Technical Development and by NFR, the Swedish Natural Science Research Council.

84 ID A ANNUAL RESEARCH R E P O R T 1986
The Logic Programming Laboratory

Some of the research was done in external cooperation with:

Pierre Deransart at INRIA, France
Jan Komorowski at Aiken Computation Lab., Harvard

The main research activity concentrated around the project ”Research in
Efficiency of Logic Programming” funded by the National Swedish Board for
Technical Development (grants STU-F 85-3166 and STU 86-3372).

9.3 Research Activities

9.3.1 The Background

We are searching for concepts that make it possible to improve efficiency of
execution of logic programs and to facilitate logic programming. For this we
study relationships between logic programming and other programming
paradigms.

Research in 1986 was based on our previous results:

a study of two-level grammars as a logic programming language:
(Maluszynski,J., Towards a programming language based on the notion
of two-level grammar, Theoretical Computer Science 28 (1984), 13-43);

a formal comparison of logic programs and attribute grammars
(Deransart,P. and Maluszynski,J.: Relating logic programs and
attribute grammars Journal o f Logic Programming 3, No. 2 (1985)
119-158).

The most important differences between logic programs and attribute
grammars are the following:

Attribute grammars use a many-sorted type discipline, while no
concept of type is introduced in (traditional) logic programming.

Attribute grammars refer to the concept of term evaluation, while the
operational semantics of logic programs is based on resolution.
Attribute evaluation process is conceptually separated from the parsing
process that creates the unlabeled skeleton parse tree to be decorated,
while the proof trees of logic programs are constructed together with
their labels and no concept of unlabelled skeleton tree exists.

It is an interesting question whether the features of attribute grammars which
distinguish them from logic programs possibly could be used in logic
programming.

As a result of this research we obtained:

a notion of data dependencies in logic programs;

IDA AN N U AL RESEARCH RE PO R T 1986
The Logic Programming Laboratory

85

a notion of type for logic programs;

an alternative view of Definite Clause Grammars.

9.3.2 The Results

The results obtained in 1986 are partially based on these notions. They are
presented in the following papers:

Nilsson,U., AID: An alternative implementation of DCG’s, New Generation
Computing 4 (1986)
This paper describes an experimental implementation of Definite Clause
Grammars based on conceptual separation of parsing and decorating of the
context-free parse tree. This makes it possible to avoid unnecessary
backtracking and to accept left-recursive grammatical rules. The
implementation is done in DEC10 Prolog. It uses the SLR(l) parsing
technique but it accepts any type of grammar. The conflicts in the parse
table occurring for non-SLR(l) grammars are automatically and correctly
handled by Prolog backtracking mechanism. In spite of its prototype nature
the system is faster, at least on some examples, than the original
implementation of DCG’s provided by the Prolog system.

Drabent,W., and Maluszynski,J.: Inductive assertion method for logic
programs, Proc. of TAPSOFT 87 Pisa , March 1987

Certain properties of logic programs are inexpressible in terms of their
declarative semantics. One example of such properties would be the actual
form of procedure calls and successes which occur during computations of a
program. They are often used by programmers in their informal reasoning.

In this paper, the inductive assertion method for proving partial correctness
of logic programs is introduced and proved sound. The method formalizes
common ways of reasoning about logic programs and makes it possible to
formulate and prove properties which are inexpressible in terms of the
declarative semantics. An execution mechanism using the Prolog
computation rule and arbitrary search strategy (eg. OR-parallelism or
Prolog backtracking) is assumed. The method may be also used to specify
the semantics of some extra-logical built-in procedures for which the
declarative semantics is not applicable.

Komorowski,J. and Maluszynski,J. Logic Programming and Rapid
Prototyping, Report TR-01-86, Harvard University, Aiken Computation
Lab. and LiTH-IDA-R-86-20 (to appear in Science of Computer
Programming)

The paper discusses the usefulness of types and data-flow declarations in the
process of systematic development of a logic program from an intuitive
description of the problem. It outlines a methodology of logic programming
based on these concepts. The methodology is introduced by means of an

86 IDA ANNUAL RESEARCH R E P O R T 1986
The Logic Programming Laboratory

example larger than those usually used to illustrate the advantages of logic
programming. Starting with an informal specification of a structure-editor, it
is shown how to formalize it into a directly executable prototype. The paper
also introduces guidelines for validating logic programming code as
implemented in Prolog.

9.3.3 Other Research

The group is currently engaged in the following activities:

development of an improved model of AND/OR-parallel execution of
logic programs (U. Nilsson). This is a continuation of the previous
work. Some preliminary ideas are included in the examination thesis of
H. Jakobsson. The aim of the work is to develop an AND/OR-parallel
execution model without backtracking, based on a clear concept of
data dependency. We plan to continue this work in cooperation with
the Swedish Institute of Computer Science.

experimental analysis of programming techniques used in logic
programming (W.Drabent). We defined a class of logic programs which
do not employ logical variable, work on ground terms and have
particularly simple data flow. These are called simple logic programs.
The aim of the experiment was to check how often logic programs
belong to the class and to analyze the programming techniques which
result in the programs which are not in the class. For this an analyzing
program has been written which checks whether a given program is in
the class. The sample of analyzed programs includes programs of
different size. The results show that simple programs are used quite
often and give insight into some techniques of using logical variables. A
draft paper is prepared for publication.

9.3.4 Future Research

The aim of our future research is to contribute to methodology of logic
programming, both theoretically and by creating tools supporting the
suggested methodologies. We plan to concentrate our efforts on the following
important problems: 1. How to facilitate logic programming for beginners. 2.
How to combine logic programs with external procedures without loosing their
declarative nature.

We believe that a progress can be obtained by studying and developing formal
concepts of data dependencies, types and inductive assertions for logic
programs. We intend to develop methods for deducing types and data
dependencies from logic programs. Such an analysis may allow to trace some
inconsistencies in a program in compile time. We suggest to use additional
(optional) declarations in logic programs to make the check more complete.
The assertions will be used for proving partial correctness and/or for run-time
check of the program. We also plan to use the information about types and

ID A AN N U AL RESEARCH RE PO R T 1986
The Logic Programming Laboratory

87

data dependencies for controlling debugging and for systematic generation of
test data. Finally we have grounds to believe that this information opens for a
disciplined use of calls of external (possibly higher-order) functional procedures
as terms in logic programs without destroying their declarative reading.

9.4 Contacts within the Department

An important objective of the Laboratory for Logic Programming is to
contribute to the activities of the other laboratories by organizing courses
presenting mathematical theories relevant for these activities, and by informal
discussions.

9.4.1 Courses for Graduate Students

The following courses were given in the academic years 1985/86 and 1986/87
by the members of the group or by visiting lecturers invited by the group:

Formal Language Theory (J. Maluszynski, D.Busch)

Logic for Artificial Intelligence (D.Busch)

Introduction to Logic Programming (J.Maluszynski, W.Drabent, U.Nilsson,
S.Nadjm-Tehrani)

Algebraic Specifications (D.Busch, S.Bonnier)

CSP and CCS (J.Fagerström (PELAB), J.Maluszynski)

Logic Programming (research seminar)

9.4.2 Direct Contacts

The major area of interaction have been with PELAB (esp. regarding theory of
programming languages, joint graduate corses, individual discussions, etc.).

9.5 External Contacts

9.5.1 External Cooperation

A great deal of the results has been obtained in cooperation with researchers
abroad (see Section 9.3.). We hope to continue such a cooperation also in the
future. We consider also a possibility of starting new joint projects. The
laboratory remains in contact with Professor K. Futatsugi of Elechtrotechnical

88 ID A ANNUAL RESEARCH R E PO R T 1986
The Logic Programming Laboratory

Laboratory at Tsukuba (Japan). We received a prototype of the OBJ2 system
developed by Professor Futatsugi in cooperation with Professor J.Goguen at
SRI. The system was studied and used for preparation of laboratories in the
course on algebraic specifications.

9.5.2 Conferences and Seminars

During 1986 the work of our group was presented at the following conferences:

The 4th Japanese-Swedish Workshop on Fifth Generation , Sigtuna, July
1986

The Workshop on Programming Environments and Programming
Paradigms, Roskilde, Denmark, October 1986

We have regular contacts with the Swedish Institute of Computer Science in
Stockholm. These contacts are supported by mutual presentations of the
current research.

IDA ANNUAL RESEARCH REPORT 1986
The Laboratory for Natural Language Processing

89

1 0 .

N L P L A B

T h e L a b o r a t o r y f o r

N a t u r a l L a n g u a g e P r o c e s s i n g

Lars A hrenberg

The Laboratory for Natural Language Processing (NLPLAB) was formed from
the research group working with Natural Language Processing within the then
existing Artificial Intelligence Laboratory (AILAB), when this laboratory was
split at the start of the new fiscal year 1986/87. The split of AILAB was a
purely organizational change; the research carried out at NLPLAB is a
continuation of that carried out by the former NLP research group.

The interests and competence of NLPLAB cover most aspects of the fields of
Natural Language Processing and Computational Linguistics. Presently one
application area is of special interest to us, namely the construction and use of
natural language interfaces (NLIs) to computer software. Research in this area
is carried out within a the project ”Analysis and Generation of Natural
Language Texts” , financed by STU. The goal of this project is to develop a
general-purpose NLI with ability to communicate in Swedish and English.

1 0 .1 N L P L A B P e r s o n n e l

Lars Ahrenberg, Ph.D., lab leader
Britt-Marie Ahlenbäck, secretary
Nils Dahlbäck, B.A.
Arne Jönsson, M.Sc., B.A.
Magnus Merkel, B.A.
Bernt Nilsson, research engineer
Mats Wirén, M.Sc., B.A.

The work in the Laboratory for Natural Language Processing is mainly supported by STU,
The Swedish Board for Technical Development.

90 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Natural Language Processing

Figure 10.1. Researchers in NLPLAB: Nils Dahlbäck, Arne Jönsson,
Magnus Merkel, Mats Wirén and Lars Ahrenberg.

10.2 A Short Overview of Current Research

The development of NLIs involves a number of research problems, many of
which have a general theoretical interest as well. The tasks that have been of
primary importance to us during 1986 are the following:

1. The overall functioning and organization of general-purpose NLIs. This task
first of all involves the specification of appropriate behaviour for
general-purpose NLIs and secondly the specification of built-in knowledge and
design features that makes such behaviour possible. It is generally agreed that
the knowledge required is of many different kinds. It does not only comprise
linguistic knowledge in a narrow sense but also knowledge of the world (the
domain of the background system) and knowledge about how to participate in
a dialogue. For instance, in order to cope with a question such as

- Kan jag få veta vilka dom är?
- Can you tell me which they are?

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory for Natural Language Processing

91

the NLI has to know what objects are presently being talked about (to find out
what is meant by they) and to have some knowledge about the supposed
working of the background system and the supposed intentions of the user (to
decide whether to answer by a simple Yes or No or a list of items). It is a
difficult issue, not only to track down and give appropriate representation of
the knowledge needed, but even more so to integrate it and making optimal
use of it in one system employing a number of different knowledge sources.

2. Parsing efficiency and grammar development. An absolute requirement on a
general-purpose NLI is that it can handle a fairly large number of the
grammatical constructions of the languages that it communicates in. Ideally,
the constructions that have been used in the construction of users’ inputs
should be recognizable in real time. For this to be possible we require a
grammatical formalism which is both powerful enough to express the
complexity of natural language constructions, yet sufficiently restricted so as to
allow recognition and parsing by fast algorithms.

3. The study of dialogues between human users and NLIs. A natural language
dialogue between a computer and a human user by means of a natural
language interface differs in important respects from human dialogues, spoken
as well as written. To some extent these differences are known, but there is a
need for empirical studies aiming at uncovering the similarities and differences
between these types of dialogues. To perform such studies we have been
developing tools for the analysis of dialogue and for the simulation of NLIs
which will be used in a series of simulation experiments which will give us
answers to questions such as the following: (a) What linguistic coverage do we
need in a natural language interface? (b)How much of the language is specific
for different domains? (c) What restrictions and limitations can we impose on
the dialogue without it causing problems for the user?

10.3 LINLIN — a general-purpose NLI

Our research into the construction of NLIs is centered around the development
of a general-purpose NLI, tentatively being called LINLIN (Linköping Natural
Language INterface). By the term ” general-purpose” we mean that the system
should be adaptable to different kinds of background systems, such as
databases, expert systems and instruction systems and have a general
knowledge of natural language communication at different levels, including
morphology, syntax, reference, speech acts and dialogue. To be usable a NLI
must also be robust and time efficient.

During 1986 we have primarily been concerned with developing a suitable
theoretical framework for LINLIN (Ahrenberg et al., 1986; see also Ahrenberg,
1987). Work with the first application — a group calendar — has started.

The dialogue capabilities of LINLIN are primarily designed for the following
purposes: (a) to allow the user to build commands incrementally; (b) to
provide help to the user in forming commands; (c) to ask the user for

92 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Natural Language Processing

clarifications and other information that the system might need; (d) to enable
the user to make explicit and implicit cross-references between utterances, e.g.
by the use of pronouns and elliptical constructions.

Whereas there exist fairly well developed techniques for the representation and
invocation of grammars and lexicons in syntactic natural language parsing, the
situation is much more unsettled in the case of assigning appropriate
interpretations to expressions when uttered in a specific context. First of all,
for many linguistic phenomena it is not even known what kind of knowledge is
needed to make appropriate interpretations and hence not known how it can
be represented. Second, since different types of knowledge (word knowledge,
syntax, dialogue knowledge, knowledge of the world, etc.) are potentially
relevant, there is also the problem of how to integrate these different
knowledge sources in a working system. We may distinguish two
fundamentally different ways of doing this. One is the sequential approach
which applies different knowledge sources at different stages of the
interpretation process, starting with a syntactic representation which is
mapped onto a semantic representation which in turn is mapped into a more
elaborate semantic structure and so on. The other is the parallel approach
which in principle builds only one structure representing the interpretation and
uses syntactic, semantic, pragmatic and world knowledge simultaneously in the
process.

Both models have their draw-backs, but we favour the parallel model as it
promises to reduce computation and seems to be more in line with human
interpretation. The parallel model requires that the different types of
knowledge sources can be seen under a common perspective. We find this
common perspective in the object orientation of the system and especially in
the notion of a discourse object (cf. Hayes, 1984). Virtually anything that can
be individuated can be talked about and hence serve as a discourse object.
Thus, the objects and facts of a database are discourse objects as well as the
interface itself, the inputs it receives and the outputs it responds with as well
as the commands that the user intends to be executed.

World knowledge is knowledge that relate directly to discourse objects, e.g.,
knowledge about what objects exist in the universe of discourse and what
possible types of discourse objects there are. Linguistic knowledge is knowledge
about how to talk about discourse objects, e.g., how we classify, measure, refer
to and make statements about them. Dialogue knowledge is knowledge about
how we interact with others in talking about discourse objects. The
interpretation of an utterance is a discourse object description, in the simplest
case a structure formed by an identified discourse object and a property
ascribed to it in some appropriate mode of ascription, affirmative in the case of
a statement, interrogative in the case of a question.

Object orientation require that discourse objects can be identified in the
interpretation process. But the way we identify discourse objects and otherwise
talk about them depends on their type. For instance, people tend to be
identified by names whereas material objects tend to be identified by kind. To

ID A AN NUAL RESEARCH RE PO R T 1986
The Laboratory for Natural Language Processing

93

a certain degree natural language can be viewed as a union of sublanguages of
this kind, which are appropriate for different types of discourse objects. It
follows that a general-purpose NLI should have knowledge about such
sublanguages at least for the most common types of objects. As part of our
first application Magnus Merkel is developing a system which handles temporal
reference in Swedish.

Of course it is necessary even in a parallel system to impose some order on the
interpretation process. This is a serious problem that we have only started
working with and which will be in the fore-front in the year to come.

10.4 Parsing and Grammar Development

This project is being carried out as two separate but communicating
subprojects, one directed towards finding efficient control strategies in parsing
and the other directed towards development of unification-based grammars for
Swedish.

10.4.1 Parsing Efficiency

An important motivation to this subproject stems from a tendency in
natural-language processing during the last several years towards declarative
grammar formalisms. This tendency has manifested itself with respect to
linguistic tools, perhaps seen most clearly in the evolution from ATNs, with
their strongly procedural grammars, to PATR in its various incarnations
(Shieber et al. 1983, Karttunen 1986), and to logic-based formalisms such as
DCG (Pereira & Warren 1980). It has also manifested itself in linguistic
theories, where there has been a development from systems employing
sequential derivations in the analysis of sentence structures to systems like
LFG and GPSG which establish relations among the elements of a sentence in
a non-sequential and inherently direction-independent way. E.g., things like
rule ordering simply do not arise in these theories.

Declarative grammar formalisms describe linguistic structure in a
non-procedural and, in principle, processor-independent way. Procedural
formalisms, although possibly highly standardized (like Woods’ ATN
formalism), typically make references to an (abstract) machine.

The promise of declarative formalisms is to remove from the grammar writer
the burden of expressing linguistic descriptions in a way which allows for
efficient execution by the processor. On the other hand, the designer of the
processor then has to find an overall ” optimal” control strategy for processing
grammars. In particular, this brings the rule-invocation strategy into critical
focus: to gain maximal processing efficiency, one has to determine the optimal
way of putting the rules to use. The potentially very large number of rules in

94 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Natural Language Processing

realistic natural-language systems makes this issue all the more important.

In a practical sense, the motivation for this subproject to some extent arised
out of the grammar-development project: it was found that the execution times
of the D-PATR system (Karttunen 1986) — which can be regarded as a
prototypical unification-based parser — ought to be significantly reduced given
a more fine-tuned (less predictive) rule-invocation strategy.

D-PATR employs rule invocation top-down (through an Earley-style chart
parser). One soon realizes that a pure top-down strategy is far too predictive,
postulating all the lower-level constituents that can immediately follow in a
phrase. It seems that by employing a bottom-up or a mixed
top-down/bottom-up strategy, it would be possible to significantly reduce the
number of edges (items) produced, and, hence, parsing times and memory
demands. But the question of precisely what strategy to be preferred is more or
less open.

This forms the background for work by Wirén, who, starting off with a
context-free chart parser in the manner of Ritchie & Thompson (1984) and
Thompson (1981), has made systematic variations to the rule-invocation
strategy. In an experiment reported in Wirén (forthcoming), six alternative
strategies were compared in terms of the number of edges produced and overall
parsing times.

The most efficient strategy turned out to be top-down filtering (a mixed
top-down/bottom-up approach) which outperformed the standard top-down
strategy with a factor of between three to five. Another well-behaved candidate
was the elegant bottom-up strategy by Kilbury (1985).

The plan is to draw further upon these experiences in exploring how
unification-based parsing might be realized more efficiently. In particular, it is
expected that Kilbury’s strategy, with its low overhead, will then turn out to
be very useful.

10.4.2 Grammar Development

The above-mentioned D-PATR system has been available to the laboratory
since January 1986. D-PATR is an environment for unification-based
grammars on Xerox 1100 workstations and it was developed at SRI
International (Karttunen 1986). Previous work has been carried out within the
laboratory on developing grammars in unification-based formalisms; Ahrenberg
has written a Swedish grammar within the lexical-functional grammar
framework (Ahrenberg 1986) which uses unification as one of the primitive
operations to constrain the parsing procedure.The main difference between
D-PATR and other unification-based systems is that D-PATR is a general
grammar development environment whereas other systems are developed to
support one specific formalism. It is therefore possible to develop and test
various types of grammars in D-PATR, from simple phrase structure

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory for Natural Language Processing

95

grammars without feature augmentations to more complex grammars, such as
lexical-functional grammar (LFG) and functional unification grammar (FUG).

We have used D-PATR to develop a grammar for a subset of Swedish (Merkel
1986) and thereby tested it on a variety of Swedish constructions. Unification
as a means of constraining linguistic analysis seems indeed to be a sound and
promising device, but the question is whether it is feasible, or even preferable,
to restrict oneself to a single primitive operation. Other questions that arise are
existing drawbacks in the D-PATR system, e. g. the lack of optionality in the
rules and in the lexicon.

10.5 Studying Human-Computer Dialogues

To a large extent, the work on natural language understanding in AI and
computational linguistics, is motivated by the need to build more user-friendly
interfaces. At the same time, there is a continuing discussion on the pros and
cons of natural language interfaces as compared with artificial (query)
languages. In our opinion, this discussion is based on some questionable
assumptions on the nature of language and communication. Assumptions which
tend to influence work in natural language, and also to some extent the work
on natural language interfaces, in an unhealthy way.

Therefore we intend to do empirical studies of human-computer dialogues using
a simulated natural language interface. (Dahlbäck &; Jönsson 1986). The
experimental situation is shown in figure 10.1 below. To the left we have the
subject, in the middle we have the intelligent natural language interface,
ARNE (Almost Realistic Natural language Equipment), and to the right is the
background system, a data base, an expert system etc. The subjects are not
told anything about the simulation. They all think they are using a real
natural language interface that we want to test.

The experiment is conducted by placing the subjects in one room, allowing
them to use a regular terminal on which they type in their questions. When
the subject enters a question to the database, ARNE receives the question and
if possible transforms it to an appropriate command in the query language
which is then sent to the data base system. If the question is inappropriate, (it
could for instance be about a completely wrong subject, or too vague a
question to ask the data base system), then ARNE asks the subject for
clarification, more information or gives information about the system being
used, i.e. the background system.

The background system, upon receiving a query from ARNE, responds with an
answer which is passed back in one way or the other to the subject. Otherwise,
if there is something wrong or no answer can be given etc, then ARNE asks for
or gives some additional information. In this fashion ARNE conducts a
dialogue with the subjects.

96 ID A ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Natural Language Processing

Figure 10.2. Experimental situation

There are, however, some problems when conducting an experiment using such
a simulated natural language equipment. These includes the need to control
the variation of the responses from the ” system” as well as the need to achieve
a reasonable response time and appropriate response quality. Short response
times are necessary for achieving a continuity in the dialogue. Furthermore,
since we want to study if the output from the system effects the language used
by the user, we want to be able to vary the quality of the responses, sometimes
using standardized output of a ” canned text” quality, sometimes using a more
human-like stylistic variation. To achive these goals, we have for the first
background system used developed a parser that can handle most of the initial
questions in a dialogue (Jönsson, 1986). We have also developed a set of
standardized responses for this domain.

The environment described above is tuned up for one background system, a
data base system. However, we intend to do series of experiments using
different background systems, not only data base systems, but also various
expert systems and CAI systems.

This means that we must reconfigurate the screen so that the menus reflect the
current background system. It will also mean that we have to write some other
elementary parser, based on simple pattern matching like AV-OM. Therefore it
is not an easy task to conduct a dialogue simulation using some other
background system. Of course, one could always use the system without all
these refinements, but as pointed out earlier, such a system will probably be
too slow and could thus lose the coherence of the dialogue.

For the analysis of the data we have developed a tagging system for dialogues.
The system is interactive, and uses window techniques and pop up menues etc.

ID A AN NUAL RESEARCH RE PO R T 1986
The Laboratory for Natural Language Processing

97

The system can easily be reconfigured for any aspect of structure that the user
may be interested in.

10.6 References

Ahrenberg, Lars (1986). Lexikalisk-Funktionell Grammatik på svenska.
Forskningsrapport LiTH-IDA-R-86-07. Also in Karlsson, Fred (ed.) Papers
from the Fifth Scandinavian Conference on Computational Linguistics,
Helsinki, Department of General Linguistics.

Ahrenberg, Lars (1987). Interrogative Structures of Swedish. Aspects of the
Relation between Grammar and Speech Acts. Doctoral dissertation, Reports
from Uppsala University department of Linguistics 15, Uppsala 1987.

Ahrenberg, Lars, Dahlbäck, Nils, Jönsson, Arne, Merkel, Magnus och Wirén,
Mats (1986). M ot ett dialogsystem för svenska. NLPLAB Memo 86-01.

Dahlbäck, Nils & Jönsson, Arne, A System for Studying Human Computer
Dialogues in Natural Language, Research Report, LiTH-IDA-R-86-42, 1986.

Hayes, Philip J. (1984). Entity-Oriented Parsing. Technical Report
CMU-CS-84-138, Carnegie-Mellon University.

Jönsson, Arne (1986). AV-O M : ett hjälpmedel för dialogsimulering. NLPLAB
Memo 86-02.

Karttunen, Lauri (1986). D -PATR : A Development Environment for
Unification-Based Grammars. Proc. 11th COLING, Bonn, 74— 80.

Kilbury, James (1985). Chart Parsing and the Earley Algorithm. KIT-Report
24, Projektgruppe Kiinstliche Intelligenz und Textverstehen, Technische
Universität Berlin.

Merkel, Magnus. A Swedish Grammar in D -PATR — Experiences of working
with D -PA TR . Research Report LiTH-IDA-R-86-31.

Pereira, Fernando C. N. and David H. D. Warren (1980). Definite Clause
Grammars for Language Analysis—A Survey of the Formalism and a
Comparison with Augmented Transition Networks. Artificial Intelligence 13(3),
231—278.

Shieber, Stuart M., Hans Uszkoreit, Fernando C. N. Pereira, Jane J. Robinson,
and M. Tyson (1983). The Formalism and Implementation o f PATR -II. In:
Barbara Grosz and M. Stickel, eds., Research on Interactive Acquisition and
Use of Knowledge, SRI Final Report 1894, SRI International, Menlo Park, Cal.

Thompson, Henry and Graeme Ritchie (1984). Implementing Natural Language
Parsers. In: Tim O ’Shea & Marc Eisenstadt: Artificial Intelligence: Tools,

98 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory for Natural Language Processing

Techniques, and Applications. H arper &: R ow .

T h om p son , H enry (1981). Chart Parsing and Rule Schemata in GPSG.
R esearch P aper N o. 165, D epartm ent o f A rtificial Intelligence, U niversity o f
Edinburgh.

W irén , M ats (forthcom in g). A Comparison of Different Rule-invocation
Strategies in Context-Free Chart Parsing.

IDA ANNUAL RESEARCH REPORT 1986
The Programming Environments Laboratory

99

1 1 .

P E L A B

T h e P r o g r a m m i n g E n v i r o n m e n t s

L a b o r a t o r y

Bengt Lennartsson

Programming Environments is a research area in evolution. Four cornerstones,
or points of reference, have been: Interlisp for its power, Unix for its simplicity,
Mentor for its formal foundation, and Smalltalk for its integrated window and
dialogue system. During the years a number of research projects have been
carried out at several universities and research institutes: Cedar at Xerox
PARC, Cornell Program Synthesizer and The Synthesizer Generator at Cornell
University, Pecan and Garden at Brown University, Gandalf at CMU, and
Pathcal and DICE at Linköping University, to mention a few.

The research projects have, in general, not been aiming at full size complete
production quality systems, but rather at investigating consequences of certain
ideas and design decisions. A general criticism from people in the real world
has been that programming environment research is focusing on programming
in the small while programming in the large is the real issue. The distinction
programming in the small vs programming in the large has several
interpretations. In general programming in the small means software design,
coding, integration and testing made by the individual software specialist or by
a small group of people. Programming in the large on the other hand puts
emphasis on the management of hundreds of thousands or even millions of lines
of code, hundreds of people, multiple versions, and configuration management.

Programming Environment research in general is aiming at supporting
creativity and productivity for the individual software designer, and sometimes
at investigating new architectures for software systems. It may be true that in
some of the biggest industrial software projects, the software design and coding
is a small fraction of the total effort.

However, in order to achieve the best total result from the software process, it
may be a good idea to choose the best possible tools and techniques for the

The work in PELAB is mainly supported by STU, The Swedish Board for Technical
Development.

100 IDA ANNUAL RESEARCH R E P O R T 1986
The Programming Environments Laboratory

individual software designers and then tune the management and administra
tion to the techniques used rather than vice versa. No doubt, better support
for the individuals means increased productivity and fewer individuals to
manage and control for a specific task. Programming in the small and
programming in the large represent two views on how to handle the software
crises: better technology or better administration and management.

Experiences from Xerox Corporation, Rational, Apple, and other companies
have evidenced that ideas from programming environment research can be
scaled up from the original toy implementations to commercial competitive
systems.

11.1 Short Summary of the Activities During 1986

In this paragraph the PELAB work during 1986 is presented very briefly. The
different projects are described in more detail under P ro ject Presentations later
on.

11.1.1 PELAB Research Projects 1986

The idea in PELAB is to have a kernel project with a number of individual
thesis projects attached to it.

DICE, Distributed Incremental Compiling Environment, was the kernel project
during 1982-85. Peter Fritzson, the DICE architect, has been with SUN Micro
Systems from April 1985 to July 1986. After return to Linköping he has been
working part time on transforming the DICE prototype, implemented in
Interlisp on DEC-20, to a demo system implemented in Pascal on SUN-3.
Peter Fritzson has presented some new papers on DICE related work. DICE,
as a kernel project, is essentially completed, but a couple of individual thesis
projects started in the DICE context still exist. Rober Bilos has presented his
first paper on a token based editor, TOSSED, and so have Nahid Shahmehri
and Mariam Kamkar on their work on Runtime Dependent Program Flow
Analysis.

Ola Strömfors has presented his licentiate thesis and two more papers on his
work on the ED3 editor. One of the IDA related spin-off companies,
Programsystem, has developed ED3 to a software product now available for a
number of computers and operating systems.

Kristina Ernstsson’s licentiate project is inactive, since she is on leave of
absence during the academic year 1986-87.

The new kernel project PEPSy, Programming Environment for Parallel
Systems, is gathering speed. The definition of the problems has been
sharpened, and one report and one paper have been written. Johan
Fagerström, licentiate, and three more graduate students are currently

ID A AN NUAL RESEARCH RE PO R T 1986
The Programming Environments Laboratory

101

involved in the work.

11.1.2 PELAB Personnel 1986

Bengt Lennartsson, PhD, lab. leader
Gunilla Lingenhult, secretary

Supervisors:
Peter Fritzson, PhD At SUN March 1985 - July 1986
Anders Haraldsson, PhD

Employed graduate students:
Rober Bilos, MSE
Kristina Ernstsson, MSE Not 1986/87
Johan Fagerström, licentiate
Bengt Karlstrand, BSc From Aug. 1986
Mariam Kamkar, BSc
Yngve Larsson, MSE
Nahid Shahmehri, BSc
Lars Strömberg, MSE
Ola Strömfors, licentiate

Associated persons:
Johnny Eckerland, licentiate, Epitec AB
Kenth Ericson, Softlab AB
Pär Emanuelson, PhD, Epitec AB
Azadeh Ghaemi, undergraduate student
Tommy Olsson, MSE, IDA
Lennart Lövstrand, undergraduate student
Jerker Wilander, Softlab AB

102 ID A AN NUAL RE SEARCH R E P O R T 1986
The Programming Environments Laboratory

11.1.3 Publications 1986

Rober Bilos: A Token-Based Syntax Sensitive Editor. Proceedings of the
workshop on Programming Environments - Programming Paradigms.
Roskilde, Denmark. October, 1986.

Johan Fagerström, Yngve Larsson, Lars Strömberg: Debugging Techniques for
Distributed Environments. Proceedings of the workshop on Compiler Compilers
and Incremental Compilation. Bautzen, GDR. October, 1986.

Johan Fagerström, Yngve Larsson, Lars Strömberg: Distributed Debugging - -
collected ideas. LITH-IDA-R-86-21. June, 1986.

Peter Fritzson: A Multi-Language High-Level Common Intermediate
Representation. Proceedings of the workshop on Compiler Compilers and
Incremental Compilation. Bautzen, GDR. October, 1986.

Peter Fritzson: Systems and Tools for Exploratory Programming - Overview
and Examples. Proceedings of the workshop on Programming Environ
ments - Programming Paradigms. Roskilde, Denmark. October, 1986.

Mariam Kamkar, Nahid Shahmehri: Runtime Dependent Program Flow
Analysis. Proceedings of the workshop on Programming Environ
ments - Programming Paradigms. Roskilde, Denmark. October, 1986.

Bengt Lennartsson: Programming Environments and Paradigms - Some
Reflections. Proceedings of the workshop on Programming Environ
ments - Programming Paradigms. Roskilde, Denmark. October, 1986.

Bengt Lennartsson, Anne-Marie Fransson, Jerker Wilander: Future Techniques
for Software Systems Design (in Swedish). Sveriges Mekanförbund.
Mekanresultat 86004.

Ola Strömfors: A Structure Editor for Documents and Programs. Licentiate
Thesis No 73. Linköping Studies in Science and Technology. Linköping 1986.

Ola Strömfors: Editing Large Programs Using a Structure-Oriented Text
Editor. Proceedings of International Workshop on Advanced Programming
Environments. Trondheim, Norway. June 1986.

Ola Strömfors: A Structure Editor as a Template for Programming
Environment Functions. Proceedings of the workshop on Programming
Environments - Programming Paradigms. Roskilde, Denmark. October, 1986.

ID A AN N U AL RESEARCH RE PO R T 1986
The Programming Environments Laboratory

103

11.2 Project Presentations

The current research in PELAB is a continuation of the work in program
manipulation projects, that was done during the seventies, and of the
INTERLISP experience in general. PELAB was established as a separate
research group in 1980. Since then four PhD dissertations and two licentiate
theses have been presented. The work has covered a large area, from partial
evaluation and its application to Pattern Matching and to Specification of an
Abstract Prolog Machine, to Compiler Writing Systems and Incremental
Compilation. A very successful project, DICE (Distributed Incremental
Compiling Environment), is approaching termination, and a new kernel project,
PEPSy (Programming Environment for Parallel Systems) has been set up.

In the future it is quite likely that we will return to program analysis and
program transformations again. We imagine that software specialists designing
systems in the future will define their own notions and operations tuned to the
specific problem or application domain, rather than coding very large systems
in a standardized general purpose programming language. We are just about to
start preliminary studies on new architectures for large software systems, and
the kernel project to follow PEPSy in a few years will, potentially, be on
Multi-Level Software Architectures. In such a situation general analysis and
transformation tools will be very useful.

11.2.1 The DICE Project

Peter Fritzson, Johnny Eckerland, Mariam Kamkar, Ralf Nilsson, Nahid
Shahmehri, Ola Strömfors

The DICE project is based on experience from previous PELAB projects,
PATHCAL (Jerker Wilander) and Parser Writing System (Kenth Ericson).
PATHCAL was a very early investigation of integration of command language,
programming language, and debug language in an environment supporting
incremental development and execution of Pascal programs..

In the DICE project (Distributed Incremental Compiling Environment) we
have been aiming at developing an appropriate architecture for a full scale
integrated environment supporting the development of programs coded in
block-structured languages.

A prototype of DICE was first implemented. The tools were running on a
DEC-20, the host, where also all the information of the developed program was
saved. The host was connected to a target, a PDP-11, where the developed
program was executed. Among the results should be mentioned that:

- the flex ib ility norm ally available in an interpreting system can be ach ieved in a
com pilin g system also, and that

- the fun ction a lity o f a high level target debugger can be obta in ed v ia the
increm ental com piler w ith ou t any target code instrum entation , a n d w ith ou t
the existence of a target debugger at all.

104 IDA ANNUAL RESEARCH R E PO R T 1986
The Programming Environments Laboratory

The architecture of DICE has been developed under several constraints. The
system should be able to operate on compiled code and the developed program
should be kept separate from the development environment. Some of the more
important points of the DICE system are:

- R em ote debugging and m aintenance is easy to achieve with the DICE system
configuration.

- An incrementally compiling system like DICE which has a program data
base is especially suitable for the developm ent o f b ig program s, on the order
of 20 000 to 100 000 lines of code. Compiled code gives fast execution and
incrementality gives fast program update and powerful debugging facilities.

- Separability - the compiled program is separated from the source code so
that it can execute outside of the program development system.

- Connectivity - the DICE system can be connected to a malfunctioning
production program in order to debug it or to correct it. This can be done
after the error has occurred and need not be planned in advance.

The DICE prototype, implemented in Interlisp on the DEC-20, has been
machine translated to Pascal, and when the translated system is in operation
on a SUN-3, the project as such will terminate. However, the results, the
experiences, and the people will be necessary when implementations and
experimental research become important in the PEPSy project.

11.2.2 Runtime Dependent Program Flow Analysis

Mariam Kamkar, Nahid Shahmehri

The long term goal in this project is to investigate how results from static
program flow analysis can be combined with dynamic state information in an
executing system to support interactive and incremental updating, testing and
debugging.

Interactive access to static analysis information is a powerful facility which is
often far superior to manual inspection of program text. Static analysis can be
performed with varying degree of precision. We identify three classes of
analysis with successively increasing precision:

Cross-reference analysis is the first class. Examples of queries which
can be handled by such a tool are:

W h ich procedu res /fu n ction s call a nam ed p roced u re /fu n ction ?

W h ich ob jects are declared /re feren ced /m od ified b y a nam ed
p roced u re /fu n ction ?

Such queries can be answered without doing any data or control flow
analysis of a program. A well-known example of such a tool is the
Masterscope facility in Interlisp.

ID A AN N U AL RESEARCH REPORT 1986
The Programming Environments Laboratory

105

Static analysis of programs including control and data flow analysis is
the second class. Other kinds of queries which may be answered
through this analysis are:

W here m ay a variable have been assigned its current value ? or

W here (and if) w ill the current value o f a variable be used later in an
execution ?

S how the data flow from variable x to variable y .

The last class, and our proposed addition to the two categories above,
is runtime dependent program flow analysis, i.e. control and data flow
analysis which depends on the current runtime state. This kind of
analysis copes with the same queries as in the previous category, but
with greater precision.

To solve the query problems, we first deal with the control and data flow
analysis problems. This problem area may be divided into two subproblems,
intraprocedural and interprocedural flow analysis.

Intraprocedural data flow analysis is performed on the basic blocks of a
procedure body. Having access to the resulting information, we are able to
solve two common data flow problems, i.e. live variables and ” reaching
definitions, see [Hecht-77], These results are used to establish definition-use
chaining for the relevant variables. Some extra computation will be needed
during a query to get to the right instances of a variable within a basic block.

Interprocedural analysis determines the effects of procedure calls on the
variables of a program, and how to associate this information" with call
statements. In the case of optimization, one usually is interested in the direct
effect of a variable on another. Here we are also interested in the indirect
effects. We have started the implementation of a tool which will perform
runtime dependent program flow analysis. This tool will be integrated with an
existing debugger which provides access to the runtime state.

For interprocedural data flow analysis we are going to use the algorithms
described by [Banning-79],

We are using an abstract syntax tree as the internal representation of
programs. The abstract syntax tree has been augmented with control flow
information, represented as arcs between basic blocks. Global information will
be computed once and stored for further use. Some local information will be
recomputed every time it is needed.

The algorithms described in [Hecht-77] for live variables and reaching
definitions, may be replaced by the incremental variants given by [Ghodsi-83],
who also has incremental variants of Banning’s interprocedural algorithms.

106 IDA ANNUAL RESEARCH R E PO R T 1986
The Programming Environments Laboratory

References:

[Banning-79] J.P. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. Conf. record of the Sixth Annual
ACM SIGPLAN/SIGACT Symposium on POPL. January, 1979. pp.29-41.

[Ghodsi-83] V. Ghodsi. Incremental analysis of programs. PhD thesis.
University of Central Florida, 1983.

[Hecht-77] M.S. Hecht. Flow analysis of computer programs. Elsevier
North-Holland, New York, 1977.

[Horwitz-85] S. Horwitz, T. Teitelbaum. Relations and attributes: A symbiotic
basis for editing environments. Proc. of the ACM SIGPLAN 85 Symp. on
Lang. Issues in Programming Environments. Seattle. June, 1985. pp.93-106.

[Tischler-83] R. Tischler, R. Schaufler, Ch. Payne. Static analysis of programs
as an aid to debugging. Proc. of the SIGSOFT/SIGPLAN Software
Engineering Symposium on High-Level Debugging. March, 1983. pp.155-158.

11.2.3 TOSSED, A Token-Based Syntax Sensitive Editor

Rober Bilos

One observation in the work on both ED3 and DICE is that re-scanning is an
expensive operation in an incremental environment. The TOSSED project is
aiming at investigating token based editing. The program is represented as a
sequence of tokens. Text is conventionally entered character by character and
parsed token by token. The main idea in TOSSED is to scan the user input as
it is entered and internally represent the program as a token sequence. This
avoids time consuming re-scanning.

In the implementation of TOSSED some of the functions normally available in
syntax-directed editors have been included such as template instantiation,
automatic indentation and prettyprinting, lexical and syntactic error handling.
At present TOSSED supports editing of Pascal programs. As the parser,
prettyprinter, and the syntactic error recovery mechanism are table-driven,
editors supporting other languages can easily be generated.

The token type has a key role in TOSSED. As soon as a token is recognized,
the scanner checks its type and takes appropriate action. All legal tokens
entered by the user are inserted into the token sequence. Each token type is
associated with certain prettyprinting information.

In TOSSED a lexical error is indicated when a token is entered, and syntax
errors are indicated on the syntax check command. A program in text form
with lexical or syntactic errors can be loaded into the editor.

The program can be parsed on command whenever the user wishes. Automatic
parsing can be turned on and off by the user. The parse state is saved for each

ID A AN N U AL RESEARCH REPORT 1986
The Programming Environments Laboratory

107

interval of 20 lines (screen page length). TOSSED is implemented in Pascal on
DEC-20. For efficient memory usage it has its own garbage collection. The
parser has been generated using an LALR(l) parser generator developed at the
department. The syntactic error recovery routine was implemented already in
1983 for batch use. It will be modified to work in an interactive environment.
If an error is not repairable the cursor is placed on the erroneous token and the
user is asked to correct the error.

We plan to integrate this editor as an alternative front end to the DICE
system. In order to do this, the editor has to record where in the token
sequence updates have been introduced during an editing session. The memory
requirements and the performance of TOSSED will be compared with
conventional text based editors as well as parse tree based ones.

11.2.4 A Structure-Oriented Text Editor for Large Programs

Ola Strömfors

The ED3 editor designed and implemented by Ola Strömfors has been in use
for structured documents in general for several years. It has recently been used
as a template for a powerful language oriented editor-prettyprinter-syntax
checker. The language oriented features are available for Ada and Pascal. The
editor has now evolved to a software product marketed by Programsystem AB,
one the spin-off companies around.

The structure editor in ED3 handles tree structures, which can be thought of
as hierarchical directories of nodes of different types. The structure editor has
commands to walk around in the tree, automatically displaying the current
node and its subnodes, and commands to copy, delete and move subtrees or
individual nodes.

The structure is not used to build parse trees. Instead the user is free to build
any tree he wants. Often the user wants to divide a long sequence of
procedures on the same level into different groups. As head of each tree node
he can put a comment describing this group of procedures. This is useful for
programming languages without nested procedure declarations, such as C or
even assembly languages. Different nodes can even be written in different
programming languages. Dividing the program into text nodes, with for
instance a procedure in each, gives the user a good overview of his program.
The tree structure given by the author may also help others to understand the
program.

The user will also feel more safe editing one procedure at a time. Replace and
delete commands then just affects the current node. Every time the text editor
is entered, a copy is taken of the current node. This makes it possible for the
user to get back the old version or to compare them.

108 IDA ANNUAL RESEARCH R E P O R T 1986
The Programming Environments Laboratory

The node structure also acts as well defined starting points for syntax check
(parsing) and pretty-printing. The speed of the parser and pretty-printer
(between 10 000 and 20 000 lines/minute) will make it possible for the user to
have text nodes with several hundred lines if he wants to. A syntax check will
still take only about one second to perform.

The ED3 editor is implemented in Pascal and Ada on DEC-20, VAX-11 VMS,
and several UNIX systems as SUN-3, Gould Power Node, NCR Tower, and
also on IBM PC.

11.2.5 The PEPSy Project

Johan Fagerström, Bengt Karlstrand, Yngve Larsson, Lars Strömberg

The PEPSy project is a five-year project aiming at understanding and
constructing tools and methods for software development for distributed
systems. During the first phase, ending June 1987, existing methods, tools, and
notions will be investigated.

For our purposes, a distributed system consists of a number of geographically
separated processors that communicate via messages. We do not consider
systems based on shared memory implementations of communication. Critical
applications for this kind of systems can be found in areas such as process
control, telecommunications, defense systems, and office automation.

Distributed, or parallel, systems introduce a number of new dimensions to
system design and programming. For example, designers, and sometimes users,
must take time delays and limited bandwidth into account. This extra
complexity compared to sequential systems must be handled if robust, reliable,
and correct programs are to be constructed.

A goal in PEPSy is to abstract away from system specific details, allowing the
programmer to think in terms of the problem. However, it must be realized
that advanced users will use knowledge of system structures to improve the
performance of their programs. We intend to provide advanced tools for such
expert users. The PEPSy programming environment will include traditional
tools, i.e.

editors
compilers and interpreters
linkers and loaders
runtime support tools

together with tools specially constructed for parallel systems, e.g.

demon editor and linker, a tool for specifying and invoking watch-dog
processes that monitor and influence some part of an application
program on a particular node.
static analyzers, providing extra functionality compared to traditional
tools especially for concurrent processing i.e. deadlock and livelock

ID A AN N U AL RESEARCH REPORT 1986
The Programming Environments Laboratory

109

detection
interface generator, a tool generating a view of a system, since the
complete distributed system will not be visible at one time. This tool
will also act as a metaphor for tool integration
system browser, a tool for browsing through static information in the
system, such as program databases
name server, a tool for keeping track of dynamic objects in the system,
such as processes and logical communication links, and
tracing facilities

Distributed systems introduce a number of new problem sources as well as new
types of bugs. Tracing is complicated by non-determinism and lack of
observability of program states. Debugging is further complicated by the
non-reproducibility of events. In the immediate future, our research will be
focused on the following areas:

Programming paradigms for distributed systems. Traditional languages
such as Pascal and Lisp can be extended with primitives supporting
concurrency. Another approach is to construct new languages designed
for distributed systems such as Argus, Cell and Conic.

During the first part of this project we have studied various languages
and problems related to language design for distributed system. In our
future research we will concentrate on languages with explicit processes
and communication primitives, e.g., Conic, Mesa, or Ada.

Tools supporting debugging. A number of prototype tools based on our
research and experience with existing parallel systems will be
implemented. For example, a trace tool together with intelligent
inspection routines, based on knowledge of data and control
dependencies and system timing of events, will aid the programmer in
detecting subtle bugs introduced by varying time delays.

Management of static and dynamic objects. Naming and addressing of
objects are traditionally difficult in distributed system. The
programmer should be allowed to refer to object by name without
knowing their exact location within the system. At the same time he
must be allowed to specify the object’s whereabouts for performance
reasons. Tools supporting browsing of static and dynamic information
are essential for both program development, testing, and system
maintenance.

User in teraction and program m ing support. A consistent and supportive
user interface is of utmost importance due to large system sizes,
complex states and dynamic behavior in distributed systems.
Therefore, extra efforts must be put into developing a uniform
programming tool interface, based on modern bit-mapped displays and
pointing devices.

110 ID A ANNUAL RESEARCH R E P O R T 1986
The Programming Environments Laboratory

11.3 Industry Related Activities

It is not the purpose of PELAB to participate in the development of software
products for industry. However, we are looking upon our role as a
communication channel between industry and international programming
environment research. Results from PELAB and other groups are available in
the IDA Knowledge Transfer Program, presented elsewhere in this report.

In the PELAB area there are also two spin-off companies: Softlab and
Programsystem. We are working in close contact with these companies and
also with Epitec in the AI area.

During the year we have also actively made two more specific contributions to
the knowledge transfer to industry. The first is a project Future Techniques for
Software Design funded by Mekanförbundet, an association of national industry
in the mechanical, electrical, and electronics fields. The second contribution is
the organization, jointly with ASLAB, of the Software Environment Week at
the department. The components of the week were:

SOFT4 - a two day tutorial on Software Development Environment,
Environments in Use, a one day Ada-in-Sweden seminar
Ada Europe Environment Working Group, a two day meeting
exhibition and social activities at the department during the evenings

During this week there were participants from ten different countries.

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory For Representation o f Knowledge in Logic

111

12.

RKLLAB

The Laboratory for
Representation of Knowledge in Logic

Erik Sandewall
Professor of computer science

The area of interest for RKLLAB is theoretical aspects of knowledge based
systems. The activity of ” knowledge engineering” , or the design of expert
systems and other knowledge based systems, is at this time a rather ad hoc
activity. However, there seems to be good opportunity to apply and extend
logic (and discrete mathematics) so as to strengthen the theoretical basis for
knowledge engineering. It is the objective of RKLLAB to contribute in that
respect.

12.1 Researchers and Projects.

12.1.1 Activities.

The activities in RKLLAB during 1986 have been in the following, overlapping
and interacting areas:

Non-standard logics and their implementations, in particular:
- non-monotonic logic and reason maintenance (NML-RM)
- fuzzy logic (FL)
- constraint programming systems (CPS)

The work in RKLLAB is mainly supported by STU, The Swedish Board for Technical
Development.

112 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

Office systems, in particular:
- theories of office software (ThOS)
- the LINCKS project

Representation of knowledge about machinery and processes, in particular:
- theoretical analysis of action structures (AS)
- laboratory system for intelligent, adaptive machinery (IAM)
- geometrical reasoning (GR)

12.1.2 Laboratory members.

The following researchers have been members of RKLLAB during 1986 (or a
part of the year):

Activities or main interest

Laboratory leadership
Erik Sandewall AS
Lillemor Wallgren, secr.
Ann-Marie Jacobson, secr.

Project leaders and senior graduate students:
Dimiter Driankov FL, LINCKS
Jim Goodwin NML-RM
Jalal Maleki CPS
Lin Padgham LINCKS
Michael Reinfrank NML-RM
Ralph Rönnquist ThOS, LINCKS, AS

Graduate students and masters thesis students:
Johan Andersson LINCKS
Christer Bäckström GR
Patrick Doherty NML-RM
Peter Haneclou NML-RM
Johan Hultman IAM
Stefan Wrammerfors ThOS
Peter Åberg LINCKS

12.1.3 Main current achievements.

The major achievements during 1986, in terms of finished research results,
have been:

a) identification of the greatest lower bound operation with respect to the
relation of ” contains more information” between networks (Rönnquist)

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

113

b) development of a constraint programming system (Maleki)

c) a formal characterization of action-plans for machinery and the conditions
on ’correct’ plans (Sandewall and Rönnquist)

d) completion of work on analysis of recurring cycles and ’pipelining’ of plans
(Sandewall)

e) a formal characterization of reason maintenance operations in terms of
four-valued logic (Haneclou)

f) a characterization, using logic, of admissible states and the effects of
movement operations, in a simple geometrical pseudo-world (Bäckström)

g) implementation and first demonstrations of a high-level programming
system for controlling discrete events in mechanical systems (Hultman)

Also, the on-going and larger LINCKS project has produced several published
reports regarding various aspects of the system being developed (Padgham et
al).

In view of the length of this list, and the space constraints in the present
volume, we shall go into detail for some of the projects only. The publication
list at the end of the chapter gives the references to publications for all the
results.

12.2 Non-standard logics and their implementations.

The term ” non-standard logic” is popularly used for ” everything except first
order predicate logic” . In a more positive vein, we are interested in two kinds
of extensions over the ” standard” :

- special semantics, such as ” fuzzy” semantics and ” multiple world” semantics;

- special reasoning mechanisms, such as default reasoning (where conclusions
are drawn from the absence of certain knowledge) and reason-maintenance
mechanisms (where inference steps are stored in a data base, in such a way
that the property of being a theorem can be turned on and off as logical
support arises and is lost).

There is ample evidence that such extensions are necessary for the further
development of knowledge-based systems.

114 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

12.2.1 Non-monotonic logic and reason maintenance.

One important and specific application of non-monotonic logic is for reasoning
about property inheritance with exceptions. Suppose we have a number of
concepts, such as ” vehicles” , ” personal cars” , ” buses” , ” vehicles manufactured
in Sweden” , ” boats” , ” diesel driven vehicles” , ” vehicles with the driver’s seat
to the left” , etc. There is an obvious specialization ordering between the
concepts, for example ” Saabs are front- wheel drive cars” . This isa relation is a
partial order, where one concept may be a specialization of more than one
other concept.

When practical application domains are encoded as such a structure, there is a
frequent need to also admit exceptions in the hierarchy, and to interpret the
isa relation more loosely as ” most A ’s are B ’s” or ” an A is generally a B” . For
example, one would then represent ” Volvo cars are in general gasoline driven”
(using the isa relation), but also to have more specialized concepts which isa
Volvo-cars but which do not isa gasoline- driven.

The logic of the isa relation with exceptions has a number of strange aspects.
In a work which was mostly done during 1985, but which was further extended
in 1986, Erik Sandewall defined a partial semantics and a set of inference rules
for that relation (ref. 11). One of the surprising aspects of this logic is that the
validity of a conclusion does not only depend on whether certain assumptions
are satisfied, but it also depends on whether those assumptions are logically
unrelated or not. - The work was based on a ’functional’ approach to
non-monotonic logic which was developed last year (ref. 18).

It is generally agreed that non-monotonic logics can only be implemented as
reason-maintenance systems (RMS), i.e. systems which keep track of the
logical support for each conclusion, and which is able to retract and
re-establish conclusions as their support is lost and re-gained. Jim Goodwin’s
Ph.D. thesis work in the area of reason-maintenance systems has continued
during 1986.

Also, Peter Haneclou has extended the ’functional’ approach to non-monotonic
logic into a characterization of reason maintenance (ref. 17). His key idea is to
view a proof as a tree-like structure rather than as a sequence. Suppose we
have the specialized inference rules

a => b
b => c
a => d
c,d => e

and we start from {a} as a set of axioms or a belief set. In the previous work,
we considered proof sequences like the ones shown in figure 12.1, where each
step ” upwards” in the sequence represents the use of one more inference rule.
Haneclou considers instead proof structures like in figure 12.2, where inference
rules are applied at the bottom-most position which is possible. The conclusion
set from a proof-” tree” is then the join of the leaf nodes in the tree.

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

115

Figure 12.1. Example o f proof sequence.

Figure 12.2. H aneclou’s proof structures.

The abstract description of the inference ” engine” is now that it gradually
extends a proof ” tree” . Like a reason maintenance system, the proof tree
retains the dependency information for the successive conclusions. If
non-monotonic inference rules are used (like in Reiter’s default logic), a
contradiction may develop in the conclusion set. The appropriate action is then
to remove one branch from the proof tree before proceeding, which is the
formal counterpart of backtracking in the RMS.

Haneclou shows that a well-formed proof tree (where all conclusions are drawn
at a point which is as low as possible in the tree) exists if and only if there is a
proof sequence. He also shows that there are well-defined ” break-points” which
define how to prune the tree when a contradiction has occurred.

During the fall semester, Michael Reinfrank has given a course on
non-monotonic logic and reason maintenance, and prepared lecture notes for
the course. A follow-up course will be given during the spring 1987. He also
advised students who are interested in the area, and continued his own

116 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

research on rule-based non-monotonic deduction systems and related theories.
A first prototype will be available early 1987 (ref. 9).

In October 1986, Michael Reinfrank presented an invited survey paper at eth
Workshop on Truth Maintenance in Berlin, West-Germany (ref. 10) With the
assistance of Christer Bäckström, he organized a Workshop on the Frame
Problem on January 19-20, 1987.

12.2.2 Fuzzy logic.

Dimiter Driankov has continued his research in fuzzy logic during the year,
and has produced several publications (ref. 1-4). We plan to include an account
of his work in next year’s progress report.

12.2.3 Constraint programming systems.

Jalal Maleki has completed his work constraint programming systems, which is
being presented as a licentiate thesis (ref. 19; the licentiate is intermediate
between M.Sc. and Ph.D.) The work includes an implementation of the
constraint system ” engine” and a graphical user interface which makes it easy
to design and understand constraint structures. It also includes a formal
characterization of the constraint ” engine’s” operation. (Also reported in ref. 5)

12.3 Office systems.

Our work on office systems has the following long-term goals:

- development of appropriate representations of office knowledge, i.e. such
knowledge as is processed in office work;

- development of models for ” office procedures” , or representation of knowledge
about office work;

- development of appropriate designs for knowledge based office systems,
particularly through experimental implementations;

- development of a theory which (in an empirical sense) accounts for observed
phenomena in actual office softwaxe.

The first three of these goals are obviously in line with the overall focus of
RKLLAB; the fourth goal is a necessary complement in order to understand
office systems.

During 1986, most of the effort was directed into an experimental
implementation project, the LINCKS project. There was also some theoretical
work on representation issues.

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

117

12.3.1 Office systems vs. end-user operating systems.

The term ’office system’ refers to a particular type of usage environment and a
particular market. From the software engineering point of view, we feel that a
more appropriate term would be ” end user operating system” . We then think
of an operating system as the software which serves the user with a top level
command language, a facility for storage of data (such as the file system), and
the support for navigating between and for coordinating a number of specific
’application’ programs. Instead we de-emphasize the role of the operating
system for administrating time-sharing of the resources in and around the
computer.

Classical operating systems (also including Unix) have been designed with the
needs of the programmer and the conventional programming language in mind.
It is interesting to consider how one should design an operating system in order
for it to be a good substrate for fourth-generation software, expert systems,
and other modern software technology, and in order to be as convenient as
possible for the end user. For example, one might prefer to have a system-wide
data base system (an ” information repository”) instead of a conventional,
directory-oriented file system. The work that we do on office systems, along
both theoretical and practical lines, attempts to answer also such questions.

12.3.2 Theories of office software.

Ralph Rönnquist has continued his work on network structures, a network
being a collection of nodes, and labeled arcs from nodes to nodes. One network
is said to ” contain more information than” another network if there is a way to
increase the information contents of the latter network and obtain the former
one.

Addition of more nodes or arcs to a network is one way to increase its
information contents. In other words, a network contains at least as much
information as any of its sub-structures. Another way to inrease the
information is by identification of nodes. When a network is created for
expressing some amount of information, it may happen that the same ” thing”
in the application, is represented by two or more, distinct nodes in the
network. The addition of information that identifies two nodes as referring to
the same object, is an information increase. Operationally, it results in a
network contraction, i.e. the identified nodes are brought together into a single
node while retaining all their arcs.

Taken together, the extension and contraction operations form a transitive
relation between networks. It defines equivalence classes between networks;
each class consists of networks which are equivalent with respect to
information contents. For example, the networks in figure 12.3 are equivalent
since each may be obtained from the other by operations that ” increase”
information (in the sense of s). Also, the networks in figure 12.4 are equivalent.

118 IDA ANNUAL RESEARCH REPORT 1986
The Laboratory For Representation of Knowledge in Logic

Figure 12.3. Equivalent networks

Figure 12.4. Equivalent networks

Rönnquist has proved that there is a unique member of each equivalence class
which is maximally contracted, and which is then a suitable canonical element.
He has studied the ”contains less information” relation between such
equivalence classes, and proved that it defines a lattice. The join operation in
the lattice is simple: it is obtained by putting two networks side by side
(without connecting them with any arc), and then contracting the resulting,
unconnected network maximally in order to obtain the canonical element.

The meet operation a n b for networks is more complex, but has now been
found. It is obtained by forming a new network by a Cartesian-like operation:
each pair of a node in a and a node in b, constitutes a node in a n b. Two
nodes in a n b are connected by an arc iff there are arcs between their
respective components in a and in b. This is a significant result.

These results are reported in ref. 14.

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory For Representation o f Knowledge in Logic

119

12.3.3 The LINCKS project.

The ” Linköping Intelligent Knowledge Communication System” is being
developed as a prototype next-generation office system or (for the reasons that
were discussed in section 12.3.1) a prototype next-generation end-user
operating system. The project started in late 1985, and is led by Lin Padgham.
The other project members during 1986 have been Johan Andersson, Dimiter
Driankov, Ralph Rönnquist, and Peter Åberg.

The first half of 1986 was devoted to design work, both global design principles
and specification of the basic parts of the implementation. Actual
implementation has dominated since September 1986, and is expected to
continue so until the end of March (1987). After that we expect to go back to
more global design issues.

LINCKS takes as its primary goal to support communication, in the sense of
creating, transmitting, and receiving information. For example, if
communication takes place using a book, then the authoring, publishing, and
reading activities represent those three stages. Each stage may consist of a
number of ” smaller” communication tasks. In the example, the stage of
publishing a book may involve a number of letters between the author and a
publisher; each of those letters represents an embedded and ” smaller”
communication task.

The goal of the LINCKS project is now to build a system which supports
communication in such a way that some of the low-level communication acts
can be automated, using the technology of knowledge-based systems. This goal
determines a number of crucial features in the system:

a. The goal structure, where higher level actions are decomposed into lower
level actions, must be explicitly stored in the computer system. Only then can
the built-in ” expert system” have a chance to ” understand” the context of
what they are supposed to do, and apply whatever ” common sense” they have
been endowed with.

b. The structure for representing information in the system must be sufficiently
rich, so that the user can conveniently express himself in it. At the same time,
it must be sufficiently uniform and clear to allow ” expert system” type
software in LINCKS to manipulate the data base.

The strategy in LINCKS for achieving those two, possibly conflicting
requirements is to use a multi-level structure for office knowledge where one
level is a ” notecard” database. This is a database where each object may
contain attributes, and where typical objects have a ” text content” (also
represented as an attribute) whose length is one or a few paragraphs. A longer
text is constructed as a set of notecards, where links between them are
represented using other attributes. A message in computer mail may be a
single notecard; one user’s mail file will be a structured set of notecards.

120 IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

c. In line with the spirit of both knowledge based systems and conventional
data bases, all information that is stored in LINCKS should be as transparent
as possible and allow ” multiple use” . For example, the goal structure described
in point (a) should not be a special-purpose structure. Instead, there should be
a global facility in the system for storing and manipulating action plans, i.e.
partially ordered sets of event descriptions. This facility could be used by the
user as a planning tool in his or her work, personally or in the organization.
The same facility is also used for internal purposes by the LINCKS system in
organizing its work. This design results in a desirable integration between the
user’s work-plan and the computer system’s work-plan.

d. A communication tool must be available whenever its user wants to
communicate. It can therefore not be restricted to a ” workstation” in the user’s
office; it must be portable and able to travel. This becomes practical through
the present rapid development of truly portable computers. Consequently, the
information repository in LINCKS is designed as a distributed system from the
basic level up.

We expect that the first, small-scale demonstrations of the LINCKS system
shall be made during 1987. Parts of the work which has been done so far have
been reported in ref:ces 6-8.

12.4 Representation of knowledge about machinery and
processes.

Our department has done research on office information systems for almost ten
years. More recently, we have also started to work on the application area of
” machinery” , with the following concrete examples in mind:

- machines that do manufacturing operations automatically
(NC-machines, industrial robots, etc)

- machines that move around - unmanned vehicles or vehicles
with computer assistance to the driver

- machines that lift and move cargoes (cranes, trucks, some
uses of industrial robots)

From a computer science point of view, some of the crucial theoretical issues in
such applications are in action planning and in geometrical reasoning. Also, the
design of high-level programming systems, for use in the control of machinery
with distinct actions, is an open research problem. We are working on all of
those areas.

ID A AN N U AL RESEARCH REPORT 1986
The Laboratory For Representation o f Knowledge in Logic

121

12.4.1 Theoretical analysis of action structures.

The definition of the behavior of a machine consists of two levels. Globally, the
plan specifies which distinct actions are to be performed, and what is required
about the order of those actions in time. The global plan is often best described
by graphical means, for example as in figure 12.5.

Figure 12.5. Graphical description o f action plan.

Locally, each constituent action in the plan also has to be defined. Sometimes
it is appropriate to use nesting of plans, so that an action is defined as a
sub-plan, but at some points one comes to atomic actions. In the engineering
context, atomic actions are often characerized by dependencies between a
number of quantities, and very often by dependencies which achieve a
feed-back in order to control the behavior of the machine and keep it within
the desired bounds. - The use of quantitative dependencies is relatively
unfamiliar in A.I., with its roots in logic, but has of course been carefully
studied in control theory.

Most of our work during 1986 has been concerned with the global level,
although we have also started to study the very crucial issue of how these two
levels can be made to work together. When we use the term ” action plan” we
will refer to the global level of distinct actions.

One concrete example of where such action plans are needed, is for
programming automatic manufacturing cells. Such a cell typically receives a
flow of work-pieces, performs operations on each work-piece, and generates an
outgoing flow of processed work-pieces. There are a few machines which
perform distinct processing steps, and an industrial robot or other agent which
moves workpieces from one point to the next. (Figure 12.6) Typically the time
taken in each of the processing machines is larger than the time required for
moving a workpiece, so that it is natural to ” pipeline” the cell and allow
several workpieces, in successive stages of completion, to be in the cell at once.

In one paper (ref. 11), Sandewall and Rönnquist have developed a formal
characterization of action plans, like the ones needed for such a cell. The
environment of the cell is characterized by a number of ” features” with distinct
values. For each action, it is specified what values the features must have at

122 IDA ANNUAL RESEARCH R E PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

the beginning and at the end of the action (for those features whose value is
changed) or throughout the action (for those features whose value must remain
constant). The paper specifies the criteria which must be imposed on the total
plan, in order to guarantee that the conditions for each action are satisfied.

In a later paper (ref. 20), Sandewall uses those results for defining the
” pipelining” operation on the cell’s program. In other words, given a program
for the manufacturing operation as seen from the individual work-piece, and a
proposed program for the cell that allows it to keep several work-pieces going
at once, the paper defines the criteria for when the proposed cell program
correctly implements the given workpiece program.

Figure 12.6. Moving work-pieces through the cell.

12.4.2 Laboratory system for intelligent, adaptive machinery.

The COPPS system (ref. 16) is being developed by Johan Hultman, and is a
prototype software system for controlling actual machinery. Using COPPS, the
intended behavior of the mechanical system is described on the two levels that
were defined in the previous section. On the upper level, there is a collection of
actions, and a token-passing mechanism which is used both for administrating
the ’resources’ that the actions perform, and for obtaining the correct temporal
ordering between the actions.

On the lower description level, on the other hand, each action is characterized
as a number of connections for continuous update. For example, if an action is
performed as a simple feed- back loop, where the current value of an actuator
is a function of the current value of a sensor, and the given norm value, then
the lower description level will be as in figure 12.7: there is one data object for
the sensor, one data object for the effector, one data object that represents the
action. The arrows in figure 12.7 represent paths for data-streams, where
successive values are fed from one field to the next, and may be numerically
transformed and combined on the way.

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

123

Figure 12.7. Low level action description

The COPPS system has been implemented on an Apple Macintosh Computer,
and is presently used for controlling a toy model of an industrial robot. The
immediate plans are to extend the model into a more complex one, and to
build a programming environment which supports the design, analysis, and
manipulation of the mechanical programs.

12.4.3 Geometrical reasoning.

Geometry is well known to be a hard problem for knowledge based systems.
Like for programming of machinery, geometrical reasoning requires a synthesis
of qualitative and quantitative operation. Very little work has been done so far
on geometrical reasoning.

For a first attempt to come to grips with this difficult area, Christer
Bäckström defined a very simplified geometrical world, and has studied its
properties using the techniques of logic. His model world is essentially
two-dimensional, with an exception that will soon be described, and it is
populated by rectangles whose sides are parallel to the coordinate axes. Thus
each rectangle can be characterized by two vectors, viz. the position of its
lower left corner, and the diagonal vector.

If two rectangles are positioned side by side, the two adjacent sides can be
” glued together” along the adjacent sides. The operation of moving a rectangle
is defined, in such a way that if two rectangles are glued together and one of
them is moved, the other ones move with it.

Rectangles may have holes, which again must have rectangular shape. A
smaller rectangle may be inserted, fully or partly, into a hole in a larger
rectangle. Figure 12.8 show some examples of configurations which may be
formed in this simple model world. Crossbarred lines (+ + + + + +) mean that
sides have been glued; broken lines (-------) are used to indicate the sides of
holes.

In his paper (ref. 15), Christer Bäckström presents axioms which characterize
the static properties of this world in first-order logic, as well as the axioms

124 ID A ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

Figure 12.8. 2-D representation o f geometrical objects.

which characterize the move operation in the world, using a variant of dynamic
logic. The conclusion of the work is that formalization was possible using this
approach, but some of the resulting axioms are a bit messy. One of the
objectives of the continued work will be to find an alternative approach which
allows ’neater’ axioms.

12.5 References.

The following are those RKLLAB publications referenced in the text above.
For the full set of publications, please refer to the appendix of this progress
report.

Papers in international journals or conference proceedings, published or
accepted since the beginning o f 1986.

1. D im iter D riankov, An outline of a fuzzy sets approach to decision-making with
interdependent goals, Proc. o f the First IFSA Congress, Palma de Mallorca July,
1985. To appear in Fuzzy Sets and Systems, An Int. Journal.

2. D im iter D riankov, Inference with single fuzzy conditional proposition, to appear in
Fuzzy Sets and Systems, (1987).

3. D im iter D riankov, A calculus for belief-intervals- representation of uncertainty. In
Proc o f the Int. Conf. on Information Processing and M anagement o f Uncertainty,
Paris, June 1986.

4. D im iter D riankov, Many-valued logic for belief-intervals: The logical lattice. To
appear in P roc. o f the Second World Congress o f the Int. Fuzzy Sets Association,
Tokyo, July 20-25, 1987.

5. Jalal M aleki: VIVID. The Kernel of a Knowledge Representation Environment
Based on the Constraints Paradigm of Computation. In P roc. o f the 20th Hawaii Int.
Conf. on System Sciences, Kailua-Kona, 1987.

6. Lin P adgham : LINCKS Linköpings Intelligent Knowledge Communication System.
(Revised Version). In Proc o f I.F .I.P . Conference on Methods and Tools fo r Office
Systems, Pisa, Italy, October 22-24, 1986.

7. Lin P adgham , R alph Rönnquist: An Imperative Object Oriented System. Proc.

ID A AN N U AL RESEARCH RE PO R T 1986
The Laboratory For Representation o f Knowledge in Logic

125

o f the 20th Hawaii International Conference on System Sciences, 1987, vol 1, p 516.

8. Lin P adgham , R alph R önnquist: From a Technical to a Humane Environment:
A Software System Supporting Co-operative Work. P roc. o f the G D I International
Conference on USER INTERFACES , Ruschlikon, Switzerland, 20-21 Oct, 1986.

9. M ichael R einfrank, H A rtm ut Freitag: An Integrated Non-Monotonic Deduction
and Reason Maintenance System, In Herbert Stoyan (ed.) P roc. o f the Workshop on
Truth M aintenance, Berlin, 1986. Springer Verlag (to appear.)

10. M ich ael Reinfrank: Reason Maintenance Systems. In Herbert Stoyan (ed.) P roc. o f
the Workshop on Truth Maintenance, Berlin, 1986. Springer Verlag (to appear.)

11. Erik Sandew all, R alph R önnquist: A Representation of Action Structures. In
P roc. o f the 5th National Conf. on Artificial Intelligence, A A A I-86 , Philadelphia,
1986.

12. Erik Sandew all: Non Monotonic Inference Rules for Inheritance with Exception. In
P roc. o f the IEEE, Special Issue on Knowledge Representation. 1986.

13. Erik Sandew all: Specification Environments for Information Management Systems.
Panel position paper in Proc. IFIP Congress 1986.

Departmental reports:
14. R a lp h R önnqu ist: The Information Lattice of Networks Used for Knowledge

Representation. LiTH-IDA-R-86-02

15. C hrister B äckström : Logical Modelling of Simplified Geometrical Objects and
Mechanical Assembley Processes. LiTH-IDA-R-87-05

16. Johan H ultm an: COPPS - A Software System for Defining and Controlling Actions
in a Mechanical System. LiTH-IDA-R-87-06

17. P eter H aneclou : A Formal Approach to Reason-maintenance Based on Abstract
Domains. LiTH-IDA-R-87-07

Other papers referenced above:

18. Erik Sandew all: A Functional Approach to Non-Monotonic Logic, in P roc o f the
Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985 and Computational
Intelligence, vol 1, no 2, pp 80-87, 1985.

19. Jalal M aleki: ICONStraint, a Dependency Directed Constraint Maintenance
System. Licentiate Thesis No. 71, Linköping University (forthcoming).

20. Erik Sandew all: The Pipelining Transformation on Plans for Manufacturing Cells
with Robots. Manuscript.

IDA ANNUAL RESEARCH R E P O R T 1986
The Laboratory For Representation o f Knowledge in Logic

126

ID A AN N U AL RESEARCH RE PO R T 1986
The Administrative Data Processing Group

127

13.

ADP
Administrative

Data Processing

Göran Goldkuhl

13.1 Administrative data processing

Including management information systems analysis and
information systems analysis and design.

The subject area covered by this group deals mainly with social aspects of
design and use of software for administrative applications in private companies
and public services. Essential problems are the transition from natural to
formal languages and vice versa together with prerequisites for, constraints on,
and effects of computerized support for activities where teamwork, personal
judgement and experience traditionally have been, and are expected to be, of
great importance. This topic comprises systems development and tools for
analysis of information requirements and tools for prototyping, the drawing up
of technical requirements specifications and other kinds of user-oriented
documentation and evaluation of effects caused by the use of computerized
systems. It does also contain - from a general point of view - social
methodology for describing administrative professional activities, for
implementation, maintenance and evaluation of user-oriented computerized
support.

The undergraduate study programme for Systems Analysis takes the main part
of the group’s teaching efforts. Beyond that we give separate single-subject
courses to the level of postgraduate studies as well as courses in other study
programmes.

128 IDA ANNUAL RESEARCH R E P O R T 1986
The Administrative Data Processing Group

13.2 Research activities.

Post-graduate and research activities related to the ADP undergraduate
programs have previously mainly covered problems of formalization at the
interface between formal logic and social science, including cognitive
psychology. Through the recent arrival of Göran Goldkuhl and Annie
Röstlinger from Gothenburg, we foresee a strenghtening and an expansion of
research within the ADP group.

The following areas of research will be covered within the ADP group:

Change analysis, i.e. the decision concerning computerization and/or
other change actions in organizations.

Information requirements analysis and the development of professional
languages of different user groups.

Knowledge development during information systems development with
a special emphasis on critical analysis, creativity and authentic
communication.

Utilization of information systems and end users’ language use and
knowledge formation.

Information systems and quality of working life.

Qualitative research methods and humanistic foundations for
information systems science.

There is currently no formal subject-oriented research organization within the
humanities and social sciences faculty (research is organized into
interdisciplinary ” themes”). This explains the present comparatively small size
of research activities within the ADP group. However a graduate study
programme in administrative data processing is currently being proposed.

13.3 Personnel:

Göran Goldkuhl, PhD, senior lecturer
Eva-Chris Svensson, MSc, director of undergraduate studies
Carina Björkman, secretary
Siv Söderlund, secretary

Johan Eltes, assistant
Hans Holmgren, MScE
Rolf Nilsson, BSc, lecturer
Torbjörn Näslund, assistant
Lise-Lotte Raunio, lecturer
Annie Röstlinger, BSc , lecturer
Dan Strömberg, MScE, lecturer (now at Foa)
Roger Zollner, lecturer
Elisabeth Zsiga, assistant
Per Övernäs, BSc, lecturer

Appendix A

Administrative organization

The Department of Computer and Information Science (IDA) at Linköping
University covers three teaching subjects (computer science, telecommunication
and computer systems, and administrative data processing). The Department
was formed in 1983, bringing together groups previously in the Mathematics
and the Electrical Engineering departments. A considerable flexibility was
allowed when the internal organization and routines were to be decided. The
basic idea was to build research within the department upon vital,
autonomous, and cooperating research groups, each with a distinct leader and
about five to ten more teachers, researchers, and employed graduate students.
From the beginning there were four such groups or laboratories. Today there
are ten.

The lab leader is responsible for supervision and guidance of the work in his
group, and also for writing grant proposals and reports to funders. Each lab
also takes responsibility for maintaining competence in its area of research and
some related areas, and to make it available to the rest of IDA in graduate
courses and seminars, as well as in the undergraduate course program. The set
of labs is designed to provide a sufficiently wide basis for a vital computer
science department and also to give the necessary spectrum required for the
undergraduate courses given by the department. At the same time it is
important that research is sufficiently focused and that a group can achieve
critical size in its area of specialization.

Important and general issues regarding research or undergraduate studies are
treated by the research committee or the committee for undergraduate
education respectively. The research committee, headed by Erik Sandewall and
with Lillemor Wallgren as secretary, handles research activities and graduate
education. This committee takes decisions about the annual budget for each
lab, based on grant situation, and can also modify the lab structure by
merging, splitting, creating, or deleting labs and appointing lab leaders.
Admission of doctorate students has to be confirmed by the research
committee. The committee also discusses and takes appropriate actions on
research and equipment strategy in general, and coordinates the lab-based
activities. The philosophy, however, is to support and assist rather than to
control and supervise the labs.

The Committee for Undergraduate Education, headed by Anders Haraldsson
with Barbara Ekman as secretary, is responsible for the organization of
undergraduate courses and continuing education for industry. Most of the
teachers and lecturers are also members of the research labs and the decision
about teaching load for each individual, in terms of percentage, is taken
annually in conjunction with the budget negotiation process. The executive

130 IDA ANNUAL RESEARCH R E P O R T 1986
Administrative organization

Department of Computer
and Information Science

Organization:

Figure A .1. Administrative organization o f the department.

responsibility for undergraduate studies are taken by the directors o f studies,
with Anders Haraldsson responsible for the study programs within the School
of Engineering and Eva-Chris Svensson for those in the School of Arts and
Science.

Formally all significant administrative decisions are taken by the Department
Board, which is prescribed to exist. The board is chaired by Bengt
Lennartsson, with Inger Emanuelson as secretary. Annually the board

ID A AN N U AL RESEARCH REPORT 1986
Administrative organization

131

delegates to the two committees all issues about research and graduate studies,
and about undergraduate education, respectively. The board also handles items
related to both committees, normally by approving their coordinated proposals.

Running economy and personnel issues are handled by Inger Emanuelson, who
is also the leader for the group providing administrative services. The system
support group under Anders Aleryd and Mats Andersson is responsible for
computer systems and services, as well as for other kinds of equipment at the
department. Computer resources and other equipment are normally not
reserved for a specific group or project, but shared as far as possible and
supported at the department level. This allows a good economy for support
costs and effective use of the facilities, although projects needing exclusive
access to a particular equipment of course can be granted that right for a
specific period of time.

The department budget for the fiscal year 1986/87 balances at 23.1 MSEK.
(One MSEK is at present approximately 0.15 USD.) Of this sum, the resources
for undergraduate education supplied by the university amount to 10.4 MSEK,
and corresponding resources for research and graduate education are 3.0
MSEK. The research activities are thus heavily dependent on external sources,
where the Swedish Board for Technical Development, STU, is the main
contributor (86/87: 5.4 MSEK). Additional funds are provided by the
Delegation for Technical and Scientific Information Supply, DFI, (86/87: 0.9
MSEK) and the Natural Science Research Council, NFR, (86/87: 0.1 MSEK).
Occasional sources, such as contributions from companies participating in the
knowledge transfer programme and shorter projects supported by e.g. Sveriges
Mekanförbund, are in the order of 3 MSEK. Commissioned education
programmes for industry are budgeted at about 1 MSEK 1986/87.

Costs for office space and investment in equipment are not included in the
above figures. During 1986 the department installed computer equipment at an
approximate value of 12 MSEK. Thus for instance, the value of the AI
workstations grant from Rank-Xerox Corporation was estimated to be in the
order of 8 MSEK.

Department leadership:

Bengt Lennartsson, department chairman

Erik Sandewall, research committee chairman
Anders Haraldsson, undergraduate education committee chairman
Inger Emanuelson, administrative manager

Administrative office:

Inger Emanuelson, administrative manager
Lillemor Wallgren, secretary of graduate education

Lena Wigh, office assistant

132 IDA ANNUAL RESEARCH R E PO R T 1986
Administrative organization

Technical services:

Anders Aleryd, senior research engineer
Mats Andersson, senior research engineer

Leif Finmo, research engineer
Dimitrios Fotiadis, research engineer
Arne Fäldt, senior research engineer
Claes Illergård, research engineer
Björn Nilsson, senior research engineer
Peter J. Nilsson, research engineer
Katarina Sunnerud, research engineer

Appendix B

Graduate Study Program.

Figure B .l below indicates the levels of degrees in the Institutes of Technology
(i.e. schools of engineering) in the Swedish university system. The figures
indicate the nominal numbers of years for the studies in each step.

Fig B .1. Levels o f degrees

The graduate study program provides the studies from the level of master of
engineering, to the licentiate and/or PhD degrees. The courses given by our
department for the undergraduate education, up to the master’s degree level,
are described in appendix 3.

Graduate studies in the department of Computer and Information Science are
organized as a program consisting of courses and project participation. The
course program is organized at the department level and consists of basic
courses, each of which is given every third year (if possible), and occasional
courses which depend on the profile and interests of current faculty and
visiting scientists. Thesis projects are always done within or in association with
the laboratories or research groups. Admission to graduate studies is nominally
free for students with the appropriate qualifications, but it is not realistic nor
recommended to start studies without being admitted as a member of one of
the research groups.

134 IDA ANNUAL RESEARCH R E P O R T 1986
Graduate Study Program.

Faculty engaged in graduate study program.

Ahrenberg, Lars, BA. PhD spring 1987,
(previous affiliation Uppsala and Göteborg)
researcher. Group leader, NLPLAB. Natural
language processing, computational linguistics,
user interfaces.

Douglas Busch, PhD (Rockefeller 1973,
associate professor in logic and theoretical
computer science. Previous affiliation Mcquarie
University, Sydney, Australia). Application of
theories from formal logic to problems in
theoretical computer sience and artificial
intelligence; algebraic specification theory,
intuitionistic type theory non-monotonic logic;
philosophical questions in artificial intelligence.

Wlodzimierz Drabent, PhD (Warszawa 1985,
on leave from Institute of Computer Science,
Polish Academy of Sciences). Logic programming,
programming language semantics.

Peter Fritzson, PhD (Linköping 1984),
researcher. (On leave for Sun Micro Systems
1985/86.) Thesis supervision in PELAB. Tool
generation, incremental tools, programming
environments.

IDA ANNUAL RESEARCH REPORT 1986
Graduate Study Program.

135

Göran Goldkuhl, PhD (Stockholm 1980,
previous affiliation Göteborg), senior lecturer.
Group leader in ADP research. Information
requirement analysis, behavioral aspects of
information systems, research methodologies,
information systems and quality of working life.

Anders H araldsson, PhD (Linköping 1977,
previous affiliation Uppsala), senior lecturer and
director of undergrade studies in computer
science. Thesis supervision in PELAB.
Programming languages and systems, pro
gramming methodology, program manipulation.

Roland Hjerppe, (previous affiliation KTH, DFI
and expert mission Tanzania,) researcher. Group
leader, LIBLAB. Library science and systems,
citation analysis and bibliometrics, fact
representation and information retrieval,
hypertext, human-computer interaction and
personal computing.

S ture Hägglund, PhD (Linköping 1980,
previous affiliation Uppsala), docent. Group
leader, ASLAB. Expert systems and artificial
intelligence applications, database technology,
human-computer interaction.

136 IDA ANNUAL RESEARCH REPORT 1986
Graduate Study Program.

Rolf Karlsson, PhD (Waterloo 1984, previous
affiliation Lund), researcher. Data structures,
algorithm analysis, computational complexity,
computational geometry.

Krzysztof, Kuchcinski, PhD (Gdansk 1984, on
leave from Institute of Computer Science,
Politechnika Gdanska), researcher. Group leader,
CADLAB. Computer architecture, CAD,
real-time operating systems, system testing.

Harold W. Lawson J r., PhD (Stockholm,
several previous affiliations, also in industry),
professor of telecommunication and computer
systems. Computer architecture, VLSI,
Computer-aided design, methodology of
computer-related education and training.

Bengt Lennartsson, PhD (Göteborg 1974,
previous affiliation Luleå), researcher. Group
leader, PELAB. Programming environments,
real-time applications, distributed systems.

IDA ANNUAL RESEARCH REPORT 1986
Graduate Study Program.

137

Christos Levcopulos, PhD (Linköping 1987),
researcher. Computational geometry, analysis of
algorithms, data structures.

Andrzej Lingas, PhD (Linköping 1983, previous
affiliation Warszawa and MIT), docent. Group
leader in geometric complexity. Complexity
theory, analysis of algorithms, geometric
complexity, graph algorithms, logic programming,
VLSI theory.

Jan M aluszynski, PhD (Warszawa 1973, several
previous affiliations), acting professor and group
leader in theoretical computer science. Logic
programming, software specification methods.

Kevin Ryan, PhD (Trinity College, Dublin),
guest researcher in ASLAB 1985-86. Software
engineering methods and environments.
Educational and social issues.

138 IDA ANNUAL RESEARCH R E P O R T 1986
Graduate Study Program.

Erik Sandewall, PhD (Uppsala 1969), professor
of computer science. Group leader in RKLLAB.
Representation of knowledge with logic, theory of
information management systems, office
information systems, autonomous expert systems.

B o Sundgren, PhD (Stockholm 1973, previous
affiliation Uppsala, also at Statistics, Stockholm),
adj. professor. Group leader in statistical
information systems. Database design and
database-oriented systemeering, conceptual
modelling, statistical information systems.

Erik Tengvald, PhD (Linköping 1984),
researcher. Group leader, AILAB. Artificial
intelligence, knowledge representation, planning
and problem solving, expert systems.

ID A AN N U AL RESEARCH RE PO R T 1986
Graduate Study Program.

139

Graduate Study Course Program 1985-86

Basic and Occasional Graduate Courses:

Theory of systems development (Göran Goldkuhl)

Non-Standard Logics for Artificial Intelligence (Erik Tengvald)

Software Engineering (Benny Odenteg, Kevin Ryan)

Search structures (Rolf Karlsson)

Computer Architecture / VLSI (Harold W Lawson)

Change analysis (Göran Goldkuhl)

Knowledge organization (Roland Hjerppe)

Analysis and Complexity of Parallel Algorithms (Andrzej Lingas)

Research-Related Courses and Seminars:

Debugging of programs with parallel processes (Bengt Lennartsson)

The A IM project (Erik Tengvald)

The HYPERCATalog project (Roland Hjerppe)

Authority control (Roland Hjerppe)

Expert System Tools - comparative analysis and evaluation (Fall.)
(Sture Hägglund)

A I and software engineering (Spring) (Sture Hägglund)

Statistical Information Systems (Bo Sundgren)

RKLLAB seminars on non-standard logics, office systems and
representation of knowledge about machinery. (Erik Sandewall)

Future CAD Systems (Harold W Lawson)

Logic Programming (Jan Maluszynski)

Complexity of algorithms (Andrzej Lingas)

Robotics o f today and the future (Peter S. Nilsson)

140 IDA ANNUAL RESEARCH R E PO R T 1986
Graduate Study Program.

Special Courses for the Knowledge Transfer Program:

Knowledge Engineering with EMYCIN. (Kristian Sandahl)

Introduction to KEE. (Roland Rehmnert)

Graduate Study Course Program 1986-87

Basic and Occasional Graduate Courses:

Communicating Sequential Processes and Calculus o f Communicating
Systems (Johan Fagerström, Jan Maluszynski).

Non-Monotonic Reasoning: Theories, Systems, and Applications
(Michael Reinfrank)

Informationssystem t Organisationer - seminarieserie (Göran Goldkuhl)

Principles of Database Systems (Sture Hägglund, Bo Sundgren)

Attribute Grammars and Logic Programs (Jan Maluszynski)

Analysis and Complexity of Parallel Algorithms (Andrzej Lingas)

Computational Geometry (Christos Levcopoulos, Andrzej Lingas)

Algorithm Analysis and Design (Andrzej Lingas)

Program Transformation (Anders Haraldsson, Jan Maluszynski)

Constructive Mathematics and Specification Languages (Douglas R
Busch)

Semantiska Modeller för Naturligt Språk - Seminarieserie (Lars
Ahrenberg)

Lower Bound Techniques (Rolf Karlsson)

Amortized Computational Complexity (Rolf Karlsson)

Machine Learning (Jalal Maleki)

ID A AN NUAL RESEARCH REPORT 1986
Graduate Study Program.

141

Research-Related Courses and Seminars:

Kunskapsomgivningar på parallella maskiner (Erik Tengvald)

Informationssystem i organisationer - Seminarieserie (Göran Goldkuhl)

A I and Software Engineering (Sture Hägglund)

Statistiska informationssystem (Bo Sundgren)

HYPERCATalog-projektet (Roland Hjerppe)

Kunskapsorganisation - teknik och metoder (Roland Hjerppe)

Logikprogrammering - seminarieserie (Jan Maluszynski)

X E R O X Development Environment - studiecirkel (Bengt Lennartsson)

Smalltalk -80 - studiecirkel (Lars Strömberg)

Temporal logic - studiecirkel (Patrick Doherty, Dimiter Driankov)

Special Courses for the Knowledge Transfer Program

Introduction to Epitool (Roland Rehmnert)

Issues in A I and Expert Systems (Video lectures, supplemented by
seminars.)

Knowledge engineer training program, fall 1986:

Introduction to A I and expert systems (Arne Jönsson Sture Hägglund)

Discrete mathematics (Karl-Johan Bäckström, dept. of math.)

Mathematical Logic (Erik Sandewall)

Knowledge engineer training program, spring 1987:

A I programming systems (Anders Haraldsson et al.)

A I - cognitive processes (Arne Jönsson)

A I - knowledge representation (Douglas Busch)

Expert systems (Sture Hägglund)

142 ID A ANNUAL RESEARCH R E PO R T 1986
Graduate Study Program.

A Selection of Seminars 1986

General seminars spring 1986

14/1 Bertil Rolf, Lund. Ur logikens historia

20/1 Håkan Jacobsson, IDA. AND/OR parallelism in logic programs without
backtracking

21/1 Seif Haridi, SICS. A constructive theorem prover and its application
in logic programming

30/1 Kevin Ryan, Ida. Report from ToolUse

4/2 Göran Hagert, Uppsala. AI och kognitiv modellering

13/2 Karl-Erik Årzen, LTH. Expertsystem för reglerteknik

18/2 Johan Fagerström, IDA. Simulation and Evaluation of an Architecture
based on Asynchronous Processes

25/2 Jonas Barklund, UPMAIL. En reviderad abstrakt prologmaskin och dess
implementation

3/3 Ulf Nilsson, LiTH. AID, an alternative implementation of DCG

5/3 Vojin Plavsic, FOA3. Optical Computing

11/3 Mark Overmars, Utrecht. Range Searching on a Grid

18/3 Boris Magnusson, Lund. IPDS: Interactive Program Development

21/3 Torbjörn Molin, UPMAIL. Icke-monotona resonemang eller Tweetys hämnd

8/4 Paul O Fredricksson. Highly Parallel Supercomputer

10/4 Jozef Olenski, Warszawa. Statistiska informationsspråk och thesaurus-
baserad utveckling av integrerade metadatabassystem

15/4 Thomas Strothotte, Univ. Stuttgart. Structural Properties of the Heap

21/4 Marek Kubale, Univ of Gdansk. Approximate Scheduling Independent Two-
Processor Tasks with dedicated Processors

21/4 Håkan Jakobsson, IDA. An implementation of AND parallelism

22/4 John McDermott. Where will knowledge acquisition tools lead

22/4 Anna Hart. Dealing with uncertainty - Can we cope?

13/5 Toomas Käer, Bengt Lennartsson, IDA. Programutvecklingssystemet PUS-80

23/5 Tony Larsson, IDA. On the Specification and Verification of VLSI Systems

27/5 Henning Christiansen, Roskilde Univ. Context Sensitive Parsing in full
Prolog

ID A AN N U AL RESEARCH RE PO R T 1986
Graduate Study Program.

143

29/5 Wlodek Grudzinski, Univ. Warszawa. A Database Support System for Prolog

9/6 Henryk Jan Komorowski, Harvard Univ. Declarative Programming Environment

13/6 Peter D Holmes, former TRW Defense Systems. A Method for Explanation
Truth Maintenance and Rule Activation within the ROSIE
Programming Environment

24/6 Vincenzo Ambriola, Pisa. Semantics-directed Compilation using

General seminars fall 1986

12/8 Zbigniew Michalewicz, Wellington, New Zealand. Are Statistical
Databases safe?

19/8 Ludwik Czaja, Computer Science Dept., Univ. of Warsaw, Poland
Cause - Effect Structures.

21/8 Z Ras, Univ. of Knoxville, Tennessee. On Methodologies for Knowledge
Representation and KNowledge Acquisition

4/9 Per-Erik Håll, Rank Xerox. Kontorssystemet Viewpoint

9/9 Peter Fritzson, IDA. Ett och ett halvt år på SUN - Vad händer nu och
i framtiden

9/9 Erik Sandewall, IDA. AAAI ’86 and NMR Theory

19/9 Christos Levcopoulos, IDA. New Results about the Approximation Behavior
of the Greedy Triangulation

22/9 Ola Strömfors, IDA. A Structure Editor for Documents and Programs

23/9 Bo Dahlbom, Göteborgs och Umeå Univ. Datorer, förnuft och etik

30/9 Marek Karpinski, Univ of Bonn and Math. Science Res. Inst., Berkeley
What are the Limits of Superfast Parallelization?

1/10 Marek Karpinski, On Probabilistic Space Complexity

9/10 Douglas Busch, IDA. Combining Logic and Functional Programming

14/10 Brian Clark, Firma Carl Lamm. Unixsystemet Pyramid och en RISC-maskin

21/10 Ken Kahn. Vulcan: Logical Concurrent Objects

29/10 K.G. Wigander. Programators systemutvecklingsmodell ROS

30/10 Keith Geddes, Univ of Waterloo. The MAPLE Computer Algebra System

11/11 Jon-Olof Hugozon, Samhällsvetenskapliga Inst. Hur fungerar en bra
arbetsgrupp

144 ID A ANNUAL RESEARCH R E PO R T 1986
Graduate Study Program.

14/11 Göran Goldkuhl, IDA. Farväl till systemansats och V-grafer

19/11 Östen Dahl, Stockholms Univ. Problem i syntaktisk och semantisk parsning

24/11 Ian Munro, Univ. of Waterloo. Implicit data Structures

27/11 Jörgen Gustavsson, Roger Larsson, IDA. Ada in distributed Systems

3/12 Jerker Wilander, Softlab. Distribuerade databaser, speciellt
frågeoptimering

11/12 Carl-Martin Allwood, Göteborgs och Linköpings Univ. Effekter av
användarnas bakgrundskunskaper vid användning av applikations
program

17/12 Per Svensson, Foa. En systemarkitektur för effektiv utvärdering av
statistiska frågor

Appendix C

Undergraduate Education.

1. Undergraduate teaching in the School of Engineering

The group for undergraduate teaching (the UDD-group) is responsible for
courses in the two subjects Computer Science and Telecommunication and
Computer Systems given in the undergraduate study programs in School of
Engineering, Linköping University. These study programs, and number of
students accepted annually, are:

Computer Science (C) for 30 students
Computer Science and Technology (D) for 120 students
Industrial and Management Engineering (I) for 180 students
Mechanical Engineering (M) for 120 students
Applied Physics and Electrical Engineering (Y) for 180 students

These study programs run over 4 - 4.5 years and lead to a Master of
Engineering or (for the C-program) a Master of Science degree.

There are also single-subject courses given as part-time and evening courses,
and external courses given directly to companies and organizations. A program
for ” continuing education” in computer science has also started. This program
has been developed by IDA in cooperation with Oktogonen, a Swedish
engineering industry group. A first 2 year course has started during 1985 for 20
students at Ericsson, Stockholm.

Courses. During 86/87 IDA will give a total of approx 75 (70) different
courses. In parentheses the figures from 85/86. In the engineering study
programs IDA gives 51 (50) courses with a total of 3300 (3500) students, 10
(10) single-subject courses, and about 14 (10) external courses for industry
with about 500 (400) participants. Due to the reorganization of the engineering
programs to run over 4.5 years, a number of courses are postponed to the next
year. This explains the decrease in number of students. All engineering
programs have at least one introductory course in computer science and
programming.

In the C- and D-programs and in the variants towards computer science in the
M- and Y-programs (which students can choose after the second year) there
are courses in

- programming methodology
- assembly programming
- data structures

146 IDA AN NUAL RESEARCH R E P O R T 1986
Undergraduate Education

- data bases
- compiling techniques
- principles of programming languages
- concurrent programming
- operating systems
- artificial intelligence
- computer networks
- computer architecture
- computer aided design of electronics
- discrete simulation

The C-and D-programs include two software projects. One done individually
during the first year and one in a group during the third. In the projects both
oral presentations and written reports are required.

In the C-program a number of human-oriented courses are given:

- linguistics, introductory course
- computational linguistics
- psychology, introductory course
- psychology of communication
- interactive systems

There are also courses in theoretical computer science;

- logic, introductory course
- formal languages and automata theory
- programming theory
- logic programming

and courses in artificial intelligence:

- introduction to A I
- A I programming
- Knowledge representation
- Natural language processing

Computer facilities. A variety of computer systems are available to our
students. Most courses use a DEC-20 computer running the TOPS-20
operating system and supporting about 60 terminals.

There are two UNIX computers (one PDP-11/70 and one Gould PN6000) for
teaching purposes with totally 25 terminals, two PC laboratories with
Macintoshes and Ericsson PC’s, and one laboratory with eight Xerox LISP
machines.

ID A AN N U AL RESEARCH RE PO R T 1986
Undergraduate Education

147

There are 11 terminal rooms (8-9 terminals per room) and a network for
connecting terminals to the various computer systems available for educational
purposes.

Staff. The teaching is done by full or half time employed lecturers, by other
persons with research appointment, by graduate students having teaching
assistantships, and by the students themselves as part-time course assistants.

During 86/87 the staff consists of

6 full time and 1 half time senior lecturers (associate professors)
7 full time and 2 half time lecturers (assistant professors)
9 other persons, professors and research assistants
about 40 postgraduate students with 25% - 50% teaching assistantships
c. 6 teachers from other subjects and from industry
c. 40 part-time course assistants

Personnel.

Anders Haraldsson, PhD, associate professor in computer science,
director of undergraduate studies

Barbara Ekman, secretary

The following persons from IDA are teaching one or more courses:

Lars Ahrenberg, B.A. (PhD, spring 87)
Rober Bilos, MSc
Douglas Busch, PhD
Nils Dahlbäck, B.A.
Patrick Doherty
Wlodek Drabent, PhD
Johan Fagerström, MSc
Björn Fjellborg, MSc
Göran Goldkuhl, PhD
Christian Gnosspelius
Anders Haraldsson, PhD
Sture Hägglund, PhD
Arne Jönsson, MSc
Rolf Karlsson, PhD
Christian Krysander, MSc
Krzysztof Kuchcinski, PhD
Bengt Lennartsson, PhD
Peter Loborg
Jalal Maleki, MSc
Jan Maluszynski, PhD
Magnus Merkel, B.A.
Henrik Nordin. MSc
Kerstin Olsson, MSc

148 IDA ANNUAL RESEARCH R E P O R T 1986
Undergraduate Education

Tommy Olsson, MSc
Mikael Patel, MSc
Zebo Peng, MSc
Ivan Rankin, BSc
Roland Rehmnert, MSc
Kevin Ryan, PhD
Erik Sandewall, PhD
Nahid Shahmehri, MSc
Ola Strömfors, MSc
Katarina Sunnerud, MSc
Eva-Chris Svensson, BSc
Lars Wikstrand, BSc
Olle Willén, BSc
Mats Wiren, MSc
Per Övernäs, BSc

Listing of Undergraduate Course Program 1986/87

Course (in Swedish) Teacher

Databaser (D3, I4) Christian Krysander
Databaser (C3, Y3, Y4, Md4) Christian Krysander
Programmeringsspråk (C4, D4) Tommy Olsson
Orientering datateknik och datorutrustning (C1, D 1) Christian Gnosspelius
Programmering i Ada(C4, D4) Tommy Olsson
Programmeringsmiljöer (C4, D4) Bengt Lennartsson
Systemutveckling, teori och tillämpning (C4, D4) Göran Goldkuhl
Al-programmering (C4) Jalal Maleki
Logik, grundkurs (C l, D4) Erik Sandewall
Psykologi grundkurs (C2) Kjell Olsson,

Dept of Education and Psychology
Naturligt språkbehandling (C4) Mats Wiren
Operativsystem (D3tk, D4, Y4, I4) Ola Strömfors
Algoritm och komplexitetsteori (C4) Rolf Karlsson
Programmerung Y, fortsättningskurs (Y3, Y4) Kristian Ernstsson
Kompilatorer och interpretatorer (Y4, I4) Nahid Shahmehri
Programmeringsteori II (C4) Douglas Busch
Administrativ databehandling (Y4, I4) Eva-Chris Svensson
Cobol (Y4, I4) Per Övernäs
Logikprogrammering (C3, D4) Jan Maluszynski
Programmeringsteori (C3) Wlodek Drabent
Processprogrammering (D3pv, D4, Md4, Y4, I4) Mikalel Patel
Operativsystemteori (C3, D3pv, M4d) Ola Strömfors
Programmering och projektarbete i Pascal (C1, D1) Peter Loborg
Lagringssstrukturer (C2, D2, Md3) Kristina Ernstsson
Assemblyprogrammering (C2, D2, Md3, I4) Rober Bilos
Programutvecklingsmetodik (D2, Md3) Christian Krysander
Programutvecklingsmetodik och programmeringsprojekt D (D3) Christian Krysander
Programutvecklingsmetodik M (Md3) Olle Willén
Programutvecklingsmetodik och programmeringsprojekt C (C3) Henrik Nordin
Data och programstrukturer D (D3) Anders Haraldsson
Data och programstrukturer C (C2) Roland Rehmnert
Distribuerad problemlösning (D4, C4) Johan Fagerström

ID A AN N U AL RESEARCH RE PO R T 1986
Undergraduate Education

149

Datorer och datorutrustning (II) Christian Gnosspelius
Fördjupningskurs i komplexitetsteori (D4) Rolf Karlsson
Datorspråk (C3, D3, I4) Rober Bilos
Artificiell intelligens C (C3) Arne Jönsson
Artificiell intelligens D (D4) Arne Jönsson
Programutveckling (II) Olle Willén
Datastrukturer och programutvecklingsmetodik (I2) Arne Jönsson
Datalingvistik (C2) Lars Ahrenberg
Programmering i inkrementellt system (C1) Anders Haraldsson
Programmering i inkrementellt system (D1) Anders Haraldsson
Interaktiva system (C 1, D3pv, D3tk) Sture Hägglund
Lingvistik grundkurs (C 1) Magnus Merkel
Formella språk och automatateori (C2) Douglas Busch
Kommunikationspsykologi (C3) Nils Dahlbäck

Diskret simuleringsteknik (D3, Y3) Zebo Peng
Datornät (D4, Y4, I4, Md4) Björn Fjellborg
Datorarkitektur (D4, Y4) Krzysztof Kuchinski
Datorstödd elektronikkonstruktion (D4, Y4, I4) Bengt Magnhagen, DIGSIM AB

Datalogi 1 - baskurs (enstaka kurs Linköping) Kerstin Olsson
Datalogi 2 - Programmeringsprinciper (enstaka kurs Linköping) Tommy Olsson
Programmering i Ada (enstaka kurs Norrköping) Olle Willén
Programmering i LISP (enstaka kurs Linköping) Patrick Doherty
Artificiell intelligens(enstaka kurs Linköping) Ivan Rankin

2. Undergraduate teaching in the School of Arts and
Science

The group for administrative data processing (the ADB-group) is responsible
for the courses given by IDA in the undergraduate Systems analysis study
program in the School of Arts and Science, Linköping University.

The program for systems analysis ranges over three years of fulltime studies. It
aims at professional activities of design, evaluation and implementation of
computer-based information systems. ADP-systems analysis dominates the
program but nevertheless great importance has been attached to other subjects
in order to give the program the necessary breadth and also to ensure that the
students will become aware of the complexity of the community where
computers can be used.

The first two years of the program constitute a common core of basic studies
for all students. Within the subject of ADP-systems analysis there are courses
in systems development and systems theory as well as courses in programming
and computer science. The courses about systems development and systems
theory deal with formal methods and prototyping. For the programming
courses Pascal has been chosen as the main language but, other languages are
taught as well. Within the field of computer science the students take courses
in database design, development of interactive systems, communication,
evaluation of computer systems, programming methodology, etc. Other

150 ID A ANNUAL RESEARCH R E P O R T 1986
Undergraduate Education

subjects given within the common core of basic studies are:

- business economics and management, to get basic knowledge about the
organization of corporations and public services and their
” commonday” routines.

- human factors, industrial and social psychology, including ergonomics,
work environment, co-determination and participative management,
group dynamics etc.

There are also courses in practical Swedish language for professional use, social
science, matematics and statistics. The second year ends with about five
months of on the job training.

During the last year the students can choose one of the following three
specializations:

- Methods for data analysis (data analysis), aimed at statistical
methodology and statistical analysis methods. This specialization
includes documentation and presentation of projects where storage and
retrieval of data are crucial.

Development of computer programs and program systems (program
development) aimed at program development, methodology and
technology. This specialization contains courses about operating
systems, compilers, interpreters etc.

Development of information systems (systemeering), aimed at
methodology for design and evaluation of information systems. The
program includes in-depth studies of budgeting and accounting and
their relation to project management and systems budgeting.

All three specialisations end with a term-paper reporting the development and
implementation of an individual project.

Appendix D

Computer Facilities.

The department has a policy of giving high priority to the supply of
appropriate computing resources for research and education. We have also
during the years been able to modernize and keep in pace with the rapid
development in the area, e.g. regarding the emergence of powerful workstations
with high-resolution graphics and high-performance CPU. Our orientation
towards experimental computer science makes such a policy especially
important and we believe that adequate computer equipment is essential for
the quality of research and education.

Our main computer resources for research are a DECsystem-2060 (there are
additional systems for undergraduate education), a VAX 780 (which is shared
with the Physics department) and a Xerox Ethernet with twentysix
1108/1109/1186 Lisp Machines, file servers and laser printers.

We have also recently acquired seven SUN 3 workstations. In addition there
are lots of smaller computers (MicroVax, PD P-ll:s, Macintoshes and other
PC:s of various kinds.) There is also special purpose equipment, especially for
text processing or for specific research projects.

A large part of the work station equipment was made available through the
Xerox Corporation / Rank Xerox University Grants Programme. Our
department was awarded 18 Xerox 1186 AI work stations, together with
additional services, such as printers and file servers. The application included 6
projects, ranging from knowledge-based application systems to programming
environments and use in undergraduate courses. The Linköping Grant was the
largest awarded in Europe.

The schematic picture on the next page shows the local network and the
accessible computer systems.

N
et

w
or

k
vi

si
bl

e
fro

m
ID

A
LiU

86

12
19

152 ID A ANNUAL RESEARCH R E PO R T 1986
Com puter Facilities

Appendix E

Publications

D ISSE R TA TIO N S:

(Linköping Studies in Science and Technology. Dissertations.)

No 14 Anders Haraldsson: A Program Manipulation System Based on Partial
Evaluation, 1977.

No 17 Bengt Magnhagen: Probability Based Verification of Time Margins in Digital
Designs, 1977.

No 18 Mats Cedwall: Semantisk analys av processbeskrivningar i naturligt språk, 1977.

No 22 Jaak Urmi: A Machine Independent LISP Compiler and its Implications for Ideal
Hardware, 1978.

No 33 Tore Risch: Compilation of Multiple File Queries in a Meta-Database System,
1978.

No 51 Erland Jungert: Synthesizing Database Structures from a User Oriented Data
Model, 1980.

No 54 Sture Hägglund: Contributions to the Development of Methods and Tools for
Interactive Design of Applications Software, 1980.

No 55 Pär Emanuelson: Performance Enhancement in a Well-Structured Pattern
Matcher through Partial Evaluation, 1980.

No 58 Bengt Johnsson, Bertil Andersson: The Human-Computer Interface in
Commercial Systems, 1981.

No 69 H. Jan Komorowski: A Specification of an Abstract Prolog Machine and its
Application to Partial Evaluation, 1981.

No 71 René Reboh: Knowledge Engineering Techniques and Tools for Expert Systems,
1981.

No 77 Osten Oskarsson: Mechanisms of Modifiability in Large Software Systems, 1982.

No 94 Hans Lunell: Code Generator Writing Systems, 1983.

No 97 Andrzej Lingas: Advances in Minimum Weight Triangulation, 1983.

No 109 Peter Fritzson: Towards a Distributed Programming Environment based on
Incremental Compilation, 1984.

No 111 Erik Tengvald: The Design of Expert Planning Systems. An Experimental
Operations Planning System for Turning, 1984.

No 155 Christos Levcopoulos: Heuristics for Minimum Decompositions of Polygons,
1987.

(Thesis by IDA member published elsewhere.)
Lars Ahrenberg: Interrogative Structures of Swedish: Aspects of the Relation
between Grammar and Speech Acts. (Reports from Uppsala University Department
of Linguistics No. 15, 1987).

154 IDA ANNUAL RESEARCH R E P O R T 1986
Publications.

LIC E N T IA T E THESES:

(Linköping Studies in Science and Technology. Theses.)

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic
Memory. 1983.

No 28 Arne Jönsson, Mickael Patel: An Interactive Technique for Communicating
and Realizing Algorithms. 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator. 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation
and Teaching. 1985.

No 52 Zebo Peng: Steps towards the Formalization of VLSI Design Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of an Architecture based on
Asynchronous Processes. 1986.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems. 1986.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs. 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behaviour of the
Greedy Triangulation. 1986.

E X T E R N A L PUBLICATION S 1980-

(Papers published in books, journals or international conference proceedings.)

1. Lars A hrenberg: Lexikalisk-Funktionell Grammatik på svenska. In Papers from the
Fifth Scandinavian Conference o f Computational Linguistics, University of Helsinki,
Dept of General Linguistics pp. 1-12, 1986.

2. R ob er B ilos: A Token-Based Syntax Sensitive Editor. Proc o f the Workshop on
Programming Environments - Programming Paradigms. Roskilde, 1986.

3. Sham sul C how dhury: Expert System Aid in Statistical Analysis and
Interpretation of Data. In Proc. o f the Society o f Reliability Engineers, Outaniemi,
1986.

4. Jam es A . D ean, A ndrzej Lingas and Jörg R . Sack: Recognizing Polygons or
How to Eavesdrop. In Proc. o f the Allerton Conference on Communication, Control,
and Computing, Urbana, Illinois, 1986.

5. P io tr D em binski, Jan M aluszynski: And-Parallelism with Intelligent
Backtracking for Annotated Logic Programs, in Proc o f the IEEE Symposium on
Logic Programming, pp 29-38, Boston 1985.

6. P ierre D eransart, Jan M aluszynski: Relating Logic Programs and Attribute
Grammars. Journal o f Logic Programming, vol 3, No. 2, pp 119-158, 1985.

7. P ierre D eransart and Jan M aluszynski: Modelling Data Dependencies in Logic
Programs by Attribute Schemata. Published as INRIA, Report R R 323, 1984.

8. W lodzim ierz D rabent, Jan M aluszynski: Proving Run-Time Properties of Logic
Programs. To appear in Proc. o f TAPSOFT 87, Pisa, 1987.

9. D im iter D riankov, An outline of a fuzzy sets approach to decision-making with
interdependent goals, Proc. o f the First IFSA Congress, Palma de Mallorca July,
1985. To appear in Fuzzy Sets and Systems, An Int. Journal.

10. D im iter D riankov, Inference with single fuzzy conditional proposition, to appear in
Fuzzy Sets and Systems, (1987).

11. D im iter D riankov, A calculus for belief-intervals- representation of uncertainty. In
Proc o f the Int. Conf. on Information Processing and M anagement o f Uncertainty,
Paris, June 1986.

12. D im iter D riankov, Many-valued logic for belief-intervals: The logical lattice. To

ID A AN N U AL RESEARCH REPORT 1986
Publications.

155

appear in P roc. o f the Second World Congress o f the Int. Fuzzy Sets A ssociation,
Tokyo, July 20-25, 1987.

13. Johan E lfström , Jan G illqvist, Hans H olm gren, Sture H ägglund, Olle
R osin , O ve W igertz : A Customized Programming Environment for Patient
Management Simulations. Proc. o f the 3rd World Conf. on M edical Inform atics,
Tokyo, 1980.

14. P ä r E m anuelson, A nders Haraldsson: On Compiling Embedded Languages in
Lisp. P roc. o f the 1980 LISP Conf., Stanford, Calif, 1980.

15. P är E m anuelson: From Abstract Model to Efficient Compilation of Patterns. Proc.
o f the 5th Int. Conf. on Programming, Turin, 1982. Revised version accepted for
publication in Science o f Computer Programming.

16. Johan F agerström : Experiences with Occam: A Simulator for Asynchronous
Processes. Proc 19th Hawaii Int. Conf. on System Sciences, Hawaii, Jan. 1986, pp.
95-102.

17. Johan F agerström : Tradeoffs in an Architecture based on Asynchronous Processes.
In Proc 2nd Nordic Symposium on VLSI in Computers and Communications, 1986.

18. Johan F agerström , M ikael R .K . Patel: High-level Simulation of Systolic
Architectures. In Proc o f the International Workshop on Systolic Arrays, Oxford, 2-4
July, 1986.

19. Johan F agerström , Y ngve Larsson and Lars S tröm berg : Debugging
Techniques for Distributed Environments. In Proc. o f the Workshop on Compiler and
Increm ental Compilation in Bautzen, East Germany, October 11-18, 1986 and the
P roc. o f the Workshop on Programming Paradigms and Programming Environments
in Roskilde, Denmark, October 22-24. 1986.

20. P eter F ritzson : A Systematic Approach to Advanced Debugging through
Incremental Compilation. Proc o f the A C M SIGSOFT/SIGPLAN Symposium on
High-Level Debugging, Pacific Grove, CA., March 1983.

21. P eter Fritzson : Symbolic Debugging through Incremental Compilation in an
Integrated Environment. The Journal o f Systems and Software 3, 285-294, (1983).

22. P eter Fritzson : Preliminary Experience from the DICE System - A Distributed
Incremental Compiling Environment. Proc. o f the A C M SIGSOFT/SIGPLAN
Symposium on Practical Software Development Environments, Pittsburgh, PA. April
1984.

23. P eter Fritzson : The Architecture of an Incremental Programming Environment
and some Notions of Consistency. In Proc. o f the G TE Workshop on Software
Engineering Environments for Programming-in-the-large, Harwichport, MA. June
10-12, 1985.

24. P eter Fritzon : Systems and Tools for Exploratory Programming. Overview and
Examples. In Proc. o f the Workshop on Programming Environments - Programming
Paradigms, Roskilde University Centre, Denmark, October 22-24, 1986.

25. P eter Fritzson : A Common Intermediate Representation for C, Pascal, Modula-2
and Fortran-77. In Proc. o f the Workshop on Compiler Compilers and Incremental
Compilation, Bautzen, DDR, October 12-17, 1986.

26. Jam es W . G oodw in : Why Programming Environments Need Dynamic Data
Types. IEEE Trans. Software Eng., vol SE-7, no 5, 1981. Also in Barstow et al.
(eds.) Interactive Programming Environments, McGraw-Hill, 1984.

27. Jam es W . G oodw in and U we Hein: Artificial Intelligence and the Study of
Language. Journal o f Pragmatics, 6, pp 241-280, North-Holland, 1982.

28. Jam es W . G oodw in : WATSON - A Dependency Directed Inference System, In
P roc. o f the A A A I Workshop on Non-M onotonic Reasoning, New Palz, NY, 1984.

29. Jam es W . G oodw in : A Process Theory of Non-Monotonic Inference, in P roc. o f
the Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985.

30. Sture H ägglund: Dialogue Models for Human-Computer Communication. A
Practitioner’s View, in Proc. o f the Workshop on Models o f Dialogue: Theory and
Application. Linköping 1981.

31. Sture H ägglund, Johan E lfström , Hans H olm gren, Olle R osin , Ove
W igertz : Specifying Control and Data in the Design of Educational Software.
Computers & Education, vol 6, no 1, 1982.

156 IDA ANNUAL RESEARCH R E P O R T 1986
Publications.

32. Sture H ägglund, and R oland Tibell: Multi-Style Dialogues and Control
Independence in Interactive Software. In Green et al. (eds.) The Psychology o f
Computer Use, Academic Press, 1983. Previous version in Proc. o f the 1st European
Conf. on Cognitive Engineering, Amsterdam, 1982.

33. Sture H ägglund: On the Design of a Query Environment for Office Use. Proc. o f
the 2nd Scandinavian Seminar on Information Modelling and Database Management,
Tampere, 1983.

34. U w e H ein: Interruptions in Dialogue. Also in D. Metzing (ed), Dialogmuster und
Dialogprozesse. Hamburg, Buske, 1981.

35. U w e H ein: Natural and Artificial Communications. - Some Reflections -. in Proc.
o f the Workshop on Models o f Dialogue: Theory and Application. Linköping 1981.

36. U w e Hein: Constraints and Event Sequences. Proc o f the N AT O symp. on Artificial
Intelligence, Lawrence Erlbaum, 1982.

37. U w e H ein: PAUL - A Programming Language for Knowledge Engineering
Applications. P roc. o f the International Conference on Artificial Intelligence,
Leningrad, October 1983.

38. R olan d H jerppe: What artificial intelligence can, could, and can’t, do for libraries
and information services. Proc. 7th IOLIM, Learned Information Ltd. London.
December 1983.

39. R olan d H jerppe, B irgitta Olander, K ari M arklund: Project ESSCAPE -
Expert Systems for Simple Choice of Access Points for Entries: Applications of
Artificial Intelligence in Cataloging. IFLA 51st Conference, Chicago, 18-24 August,
1985.

40. R olan d H jerppe: Project HYPERCATalog: Visions and preliminary conceptions of
an extended and enhanced catalog. Published in Intelligent Information Systems for
the Information Society, B C Brookes. Ed.Proc. IRFIS 6 Conference (International
Research Forum in Information Science), Frascati, Italy, 15-18 Sept. 1985, Elsevier
Science Publishers B.V. (North-Holland), 1986. pp.211-232)

41. R olan d H jerppe: Electronic Publishing: Writing Machines and Machine Writings.
The impact of computers on text. Published in Annual Review o f Information
Science and Technology, vol. 21, 1986, M Williams. Ed. Knowledge Industry
Publications Inc pp. 123-166.

42. R olan d H jerppe: Knowledge Organizing, Collection Derived, and User Established
Structures. Published in Online Public Access to Library Files:Second National
Conference. J Kinsella Ed. Elsevier International Bulletins, Oxford 1986 pp.
101- 110).

43. M ariam K am kar, N ahid Shahm ehri: Runtime Dependent Program Flow
Analysis. In Proc. of the Workshop on Programming Environments - Programming
Paradigms, at Roskilde University Centre, Denmark, October 22-24, 1986.

44. H ans K arlsson, R oland Lindvall, Olle R osin , Erik Sandew all, Henrik
Sörensen and Ove W igertz: Experience from Computer Supported Prototyping
for Information Flow in Hospitals. Proc. o f the A C M SIGSO FT Second Software
Engineering Symposium: Workshop on Rapid Prototyping, Columbia, Maryland,
April 19-21, 1982.

45. H ans (K arlsson) G ill, B ertil Kågedahl, Erik Sandew all, H enrik Sorensen,
Lennart Tegler, and Ove W igertz: A Notation for Information Flow Models
Supporting Interactive System Development. Proc o f the 6th Annual Symposium on
Computer Applications in Medical Care, Washington DC, nov 1982.

46. R o lf G . K arlsson, Ian M unro, Proximity on a Grid, in the P roc. o f 2nd
Symposium on Theoretical Aspects o f Computer Science (1985), Springer-Verlag
Lecture Notes on Computer Science 182, 187-196.

47. R o lf G . K arlsson, Ian M unro, Ed R obertson , The Nearest Neighbor Problem
on Bounded Domains, in the Proc. o f 12th Int. Colloquium on Automata, Languages
and Programming (1985), Springer-Verlag Lecture Notes on Computer Science 194,
pp 318-327.

48. R o lf G . K arlsson: Point Location in Discrete Computational Geometry. Proc. 6th
Brazilian Congress on Computing, 1986, 561-569.

49. H Jan K om orow sk i, Jan M aluszynski: Logic Programming and Rapid

ID A AN N U AL RESEARCH RE PO R T 1986
Publications.

157

Prototyping. Also Published as report TR-01-86, Harward University, Aiken
Computation Laboratory. To appear in Science o f Computer Programming.

50. H . Jan K om orow sk i: QLOG - The Software for Prolog and the Logic
Programming. Proc. o f the Logic Programming Workshop, Debrecen, Hungary, 1980.
Also in Clark, T ärnlund (eds.) Logic Programming, Academic Press, 1982.

51. H . Jan K om orow sk i: Partial evaluation as a means for inferencing data structures
in an applicative language: a theory and implementation in the case of Prolog. Proc
o f the Symp. on Principles o f Programming Languages, Albuquerque, 1982.

52. H . Jan K om orow sk i: An Abstract Prolog Machine. Proc. o f the European Conf.
on Integrated Interactive Computing Systems, Stresa, 1982.

53. H . Jan K om orow sk i: A Prototype Compiler for Prolog. Poster version presented
at the 6th Int. Conf. on Software Engineering, Tokyo, 1982.

54. K rzy sz to f K uchcinski and Z ebo Peng: Microprogramming Implementation of
Timed Petri Nets, Proc. 2nd Nordic Symp. on VLSI in Computers and
Communications, Linköping, Sweden, June 1986.

55. T on y Larsson: Semantics of a Hardware Specification Language and Related
Transformation Rules Proc. 2nd Nordic Symp. on VLSI in Computers and
Communications, Linköping, Sweden, June 1986.

56. T on y Larsson: Semantics of a Hardware Specification Language, M icroprocessing
and Microprogramming, Vol. 18, Nos 1-5, 1986, pp. 335-340.

57. H arold W . Law son Jr.: New Directions in Micro- and System Architecture in the
1980’s, in Proc. o f the National Computer Conference, NCC-81, Chicago, 111., 1981.

58. H arold W . Law son Jr.: An Approach to Improving Computer Literacy, in
Teaching Informatics Courses: Guidelines for Trainers and Educationalists, (ed. by
A.L.W. Jackson), North-Holland, 1982.

59. H arold W . Law son Jr.: The Holistic Approach in Introducing Computer Systems,
in The Computing Teacher, vol 10, no 7, October 1982. Also in Japanese translation
in Nikkei-Computer, Niekkei-McGraw-Hill, Tokyo, 1982.

60. H arold W . Law son Jr.: An Architecture-Based Strategy for Improving Computer
Education, in Proc. o f the Euromicro 82 Symposium, Brussels, September 1982.

61. H arold W . Law son Jr.: Some Consequences of Tomorrows Electronics CAD
Systems, in Proc. o f Mantech 88, Discoveries Int. Symp., London, 1983.

62. H arold W . Law son Jr.: Computer architecture education, a chapter in Tiberghien
(Ed.): New Computer Architectures, pp 224-285, Academic Press, 1984.

63. H arold W . Law son Jr.: Impact of CAD and Integrated Circuit Developments on
Telecommunication. Proc. o f the EUTECO Conference, Oct 1983, Varese, Italy.

64. H arold W . Law son Jr.: Ingrediants and Implications of Tomorrows CAD Systems.
Integrated Circuit Seminar, July 18-22 1983, Singapore.

65. H arold W . Law son Jr.: Architecting VLSI Systems. Integrated Circuit Seminar,
July 18-22 1983, Singapore.

66. H arold W . Law son, Jr.: Addressing Fundamental Problems in Computer Related
Education and Training. In Proc. o f the 4 th World Conf. on Computers in
Education, Norfolk, 1985.

67. H arold W . Law son Jr., B ryan Lyles: An Architecturial Strategy for
Asynchronous Processing, in Concurrent Languages in Distributed Systems:
Hardware-Supported Implementation, (ed. by Reijnsand, Dagless), North-Holland,
1985.

68. H arold W . Law son, B ryan Lyles: An Architectural Strategy for Asynchronous
Processing. IFIP Workshop, March 26-28, 1984, Bristol.

69. B en gt Lennartsson: Programming Environments and Paradigms - Some
Reflections. In Proc. o f the Workshop on Programming Environments - Programming
Paradigms, Roskilde, Denmark, October 1986.

70. C hristos L evcopou los, A ndrzej Lingas: Covering Polygons with Minimum
Number of Rectangles, Proc. o f the STACS Symposium, Paris (1984), Lectures Notes
in Computer Science, vol 166, Springer Verlag.

71. C hristos L evcopou los: On Covering Regions with Minimum Number of
Rectangles, Proc. o f the Workshop on Parallel Computing and VLSI, Amalfi, Italy,
(1984) North-Holland Publ. Co.

158 ID A ANNUAL RESEARCH R E P O R T 1986
Publications.

72. C hristos L evcopou los, Andrzej Lingas: Bounds on the Length of Convex
Partitions of Polygons, in the Proc. o f the 4 th FST-TCS Conference, Bangalore,
India, (1984), Lectures Notes in Computer Science, vol 181, Springer Verlag.

73. C hristos L evcopou los, Minimum Length and ” Thickest-First” Rectangular
Partitions of Polygons, in the Proc. o f the 2Srd Allerton Conf. on Com m ., Control
and Computing, Illinois, October 1985.

74. C hristos L evcopou los, A Fast Heuristic for Covering Polygons with Rectangles, in
the Proc. o f 5th Int. Conf. on Foundations o f Computation Theory, GDR, (1985),
Lectures Notes in Computer Science, vol 199, Springer Verlag.

75. C hristos L evcopou los: Fast Heuristics for Minimum Length Rectangular Partitions
of Polygons. In Proc o f the 2nd A C M Symposium in Computational Geom etry,
Yorktown Heights, June 1986.

76. C hristos L evcopou los: An Omega (square root(n)) Lower Bound for the
Non-Optimality of the Greedy Triangulation. To appear in Information Processing
Letters, (1987).

77. C hristos L evcopou los, A ndrzej Lingas: On the Approximation Behavior of the
Greedy Triangulation for Convex Polygons. To appear in Algorithmica, 1987

78. A n drzej Lingas: Heuristics for Minimum Edge Length Rectangular Partitions of
Rectangular Partitions of Rectilinear Figures, Proc o f 6th G I Conference on
Theoretical Computer Science, Dortmund (1983), Lectures Notes in Computer
Science, Springer Verlag.

79. A n drze j Lingas: An Application of Maximum Bipartite C-Matching to Subtree
Isomorphism, Proc. o f the 8th Colloquium on Trees in Algebra and Programming,
L’Aquila (1983). Lectures Notes in Computer Science, vol 159, Springer Verlag.

80. A n drzej Lingas: A Note on Complexity of Logic Programs, P roc. o f the Logic
Programming Workshop, Aldeia das Acoteias, Portugal (1983).

81. A n drzej Lingas: The Greedy and Delauney Triangulations are not bad in the
average case and Minimum Weight Geometric Triangulation of Multi-Connected
Polygons is NP-complete, Proc. o f the International Conference on Foundations o f
Computation Theory, Borgholm (1983), Lecture Notes in Computer Science, vol 158,
Springer Verlag. See also Information Processing Letters, vol 22, pp 25-31, (1986).

82. A n drzej Lingas: A Linear-Time Heuristic for Minimum Weight Triangulation of
Convex Polygons. Proc. o f the Allerton Conference on Communication, Control, and
Computing, Urbana, Illinois 1985.

83. A n drzej Lingas: Subgraph Isomorphism for Easily Separable Graphs of Bounded
Valence. P roc. o f the 11th Int. Workshop on Graphtheoretic Concepts in Computer
Science, Castle Schwanberg, Wuerzburg, Germany, June, 1985.

84. A n drzej Lingas: On Partitioning Polygons. Proc o f the 1st A C M Symposium on
Computational Geom etry, Baltimore, Maryland, June 1985.

85. A n drzej Lingas, Subgraph Isomorphism for Biconnected Outerplanar Graphs in
Cubic Time, in the Proc. o f 3rd Symposium on Theoretical A spects o f Computer
Science, January, 1986, Orsay, France, Lecture Notes in Computer Science, vol 210,
Springer Verlag.

86. A n drzej Lingas: On Approximation Behavior and Implementation of the Greedy
Triangulation for Convex Planar Point Sets. In Proc o f the 2nd A C M Symposium in
Computational Geom etry , Yorktown Heights, June 1986.

87. J. B ryan Lyles: CAD Approaches for an Asynchronous Architecture. In Proc. o f
the Nordic Symposium on VLSI in Computers and Communications, June 13-15,
1984, Tampere, Finland.

88. J. B ryan Lyles, Zebo Peng, Johan Fagerström : Naming Services in a
Distributed Computer Architecture. In Proc. o f the Nordic Symposium on VLSI in
Computers and Communications, June 13-15 1984, Tampere, Finland.

89. Jalal M aleki: VIVID. The Kernel of a Knowledge Representation Environment
Based on the Constraints Paradigm of Computation. In P roc. o f the 20th Hawaii Int.
Conf. on System Sciences, Kailua-Kona, 1987.

90. Jan M aluszynski, Jorgen Fischer Nilsson: A Comparison of the Logic
Programming Language Prolog with Two-Level Grammars. P roc. o f the 1st Logic
Programming Conference, Marseille-Luminy, 1982.

ID A AN N U AL RESEARCH RE PO R T 1986
Publications.

159

91. Jan M aluszynski, Jorgen Fischer Nilsson: A version of Prolog based on the
notion of two-level grammar. Proc. o f the Prolog Programming Environments
Workshop, Linköping, 1982.

92. Jan M aluszynski, Jorgen Fischer N ilsson: Grammatical Unification.
Information Processing Letters, vol 15 pp 150-158, (1982).

93. Jan M aluszynski: Towards a Programming Language based on the Notion of
Two-Level Grammar. Theoretical Computer Science, vol 28, pp 13-43, North-Holland
(1984).

94. Jan M aluszynski, H . Jan K om orow ski: Unification-Free Execution of Logic
Programs, in P roc o f the IEEE Symposium on Logic Programming, Boston 1985.

95. M in ton , C arbonell, K n ob lock , K uokka and H enrik N ord in , Improving the
Effectiveness of Explanation-based Learning, in Proc. o f the Workshop on Knowledge
Compilation, Sept. 24-26, Oregon State University, 1986.

96. U lf N ilsson: AID: An Alternative Implementation of DCGs. New Generation
Computing, vol 4, No 4 pp 383-399, 1986.

97. H enrik N ord in : Using Typical Cases for Knowledge-Based Consultation and
Teaching. In Proc o f the 3rd Annual Conf. on Applications o f Expert Systems,
Orlando, Fla., 1986.

98. Ludm ila Ohlsson: A Computer Model for Domain Dependent Systems. Proc o f 7th
Int. A L L C Symp. on Computers in Literary and Linguistic Research , Pisa, 1982
(North-Holland).

99. Lin P adgham : LINCKS Linköpings Intelligent Knowledge Communication System.
(Revised Version). In Proc o f I.F .I.P . Conference on Methods and Tools fo r Office
Systems, Pisa, Italy, October 22-24, 1986.

100. Lin P ad gham , R alph R önnquist: An Imperative Object Oriented System. Proc.
o f the 20th Hawaii International Conference on System Sciences, 1987, vol 1, p 516.

101. Lin P adgham , R alph R önnquist: From a Technical to a Humane Environment:
A Software System Supporting Co-operative Work. P roc. o f the G D I International
Conference on USER INTERFACES, Riischlikon, Switzerland, 20-21 Oct, 1986.

102. M ikael P atel, A rne Jönsson: An Interactive Flowcharting Technique for
Communicating and Realizing Algorithms, in Proc o f the 19th Annual Hawaii Int.
Conf. on System Sciences, HICSS-19, 1986.

103. M ikael P atel: A Threaded Interpretive Language Supporting Programming in the
Large. P roc. o f the 6th Rochester Forth Conference, June 11-14, 1986, Univ of
Rochester, Rochester, N Y.

104. Z ebo P eng: A Formal Approach to the Synthesis of VLSI Systems from their
Behavioral Descriptions,Proc 19th Annual Hawaii Int. Symp. on System Sciences,
Hawaii, Jan 1986, pp 160-167.

105. Z ebo P eng: Synthesis of VLSI Systems With The CAMAD Design Aid. In P roc. o f
the 23rd ACM /IEEE Design Automation Conference, Las Vegas, June 1986.

106. Z ebo P eng: Integration of VLSI Design Tools by a Unified Design Representation.
Published as a part of the Proc o f the 2nd Nordic Symposium on VLSI in Computers
and Communications, June 2-4, 1986.

107. Z ebo P eng and K K uchcinski: Synthesis of Control Structures From Petri Net
Descriptions, M icroprocessing and Microprogramming, Vol.18, Nrs 1-5, 1986, pp.
335-340.

108. Z ebo P eng: Construction of Asynchronous Concurrent Systems From Their
Behavioral Specifications, Proc. 10th World Computer Congress IFIP-86, Dublin,
Ireland, Sept. 1986, pp.859-864.

109. Ivan Rankin: SMORF - An Implementation of Hellberg’s Morphology System. In
Papers from the Fifth Scandinavian Conference o f Computational Linguistics,
University of Helsinki, Dept of General Linguistics, pp 161-172.

110. G unter R iedew ald , Jan M aluszynski, P iotr D em binski: Formale Beschreibung
von Programmiersprachen, R. Oldenburg Verlag, Munchen, Wien, (1983).

111. R olan d R eh m n ert, K ristian Sandahl: Knowledge Organization in an Expert
System for Spot-Welding Robot Configuration. In Proc. o f the 5th Int. Workshop on
Expert Systems and Their Applications, Avignon, 1985.

112. M ichael R einfrank, H A rtm ut Freitag: An Integrated Non-Monotonic Deduction

160 ID A ANNUAL RESEARCH R E P O R T 1986
Publications.

and Reason Maintenance System, In Herbert Stoyan (ed.) Proc. o f the Workshop on
Truth M aintenance, Berlin, 1986. Springer Verlag (to appear.)

113. M ichael Reinfrank: Reason Maintenance Systems. In Herbert Stoyan (ed.) Proc. o f
the Workshop on Truth Maintenance, Berlin, 1986. Springer Verlag (to appear.)

114. O lle R osin , H ans H olm gren, Sture H ägglund, Implementing Tuning and
Feedback Facilities in a System for Patient Management Simulations, Proc. 3rd.
Congress on Medical Informatics Europe, Toulouse, 1981.

115. P io tr R u dn ick i, W lodzim ierz D rabent: Proving Properties of Pascal Programs
in MIZAR 2, Acta Informatica, vol 22, pp 311-331, 1985.

116. K ristian Sandahl, Sture H ägglund, Jan-O lof H ildén, R olan d R ehm nert,
Lars R eshagen: The Antibody Analysis Advisor and its Migration into a
Production Environment. In Proc. o f the 1st Int. Conf. on Expert Systems, London
1985.

117. K ristian Sandahl: The Migration of Expert Systems into Production
Environments. P roc. Nord-Info Seminar on Knowledge Engineering, Köpenhamn,
1986.

118. Erik Sandew all et al: Provisions for Flexibility in the Linköping Office Information
System, P roc. o f the National Comp. C onf, Los Angeles, 1980.

119. Erik Sandew all, Claes Ström berg, Henrik Sorensen: Software Architecture
Based on Communicating Residential Environments. Proc. o f the 5th Int. Conf. on
Software Engineering, San Diego, 1981. Also in Barstow et al. (eds.) Interactive
Programming Environments, McGraw-Hill, 1984.

120. Erik Sandew all, Henrik Sorensen, Claes S tröm berg: A System of
Communicating Residential Environments. Proc. o f the 1980 LISP Conf., Stanford,
Calif, 1980

121. Erik Sandew all: Unified Dialogue Management in the Carousel System. Proc. o f
the A C M Conference on Principles o f Programming Languages, Albuquerque, NM,
1982. Appeared in print in N. Naffah (ed .) Office Information Systems, North
Holland, 1982.

122. Erik Sandew all: An Environment for Development and Use of Executable
Application Models. Presented at the seminar ” Software factory experiences” , Capri,
May 3-7, 1982.

123. Erik Sandew all, Sture H ägglund, Christian G ustafsson, Lennart Jonesjö,
Ola Ström fors: Stepwise Structuring - A Style of Life for Flexible Software. Proc.
o f the National Computer Conference, Anaheim, 1983.

124. Erik Sandew all: Formal Specification and Implementation of Operations in
Information Management Systems. In: Jan Heering and Paul Klint (eds.), Colloquium
Programmeeromgevingen, MC Syllabus, Mathematisch Centrum, Amsterdam 1983.

125. Erik Sandew all: A Functional Approach to Non-Monotonic Logic, in Proc o f the
Int. Joint Conf. on Artificial Intelligence, IJCAI, 1985 and Computational
Intelligence, vol 1, no 2, pp 80-87, 1985.

126. Erik Sandew all, R alph Rönnquist: A Representation of Action Structures. In
P roc. o f the 5th National Conf. on Artificial Intelligence, A A A I-86, Philadelphia,
1986.

127. Erik Sandew all: Non Monotonic Inference Rules for Inheritance with Exception. In
P roc. o f the IEEE, Special Issue on Knowledge Representation. 1986.

128. Erik Sandew all: Specification Environments for Information Management Systems.
Panel position paper in Proc. IFIP Congress 1986.

129. P io tr Siem ienski: A specialized VLSI CAD DATABASE. Nordic Symposium on
VLSI in Computers and Communications, June 13-15 1984, Tampere, Finland.

130. D an S tröm berg , P eter Eritzon: Transfer of Programs from Development to
Runtime Environments. BIT, vol 20, no 4, 1980.

131. Ola S tröm fors, Lennart Jonesjö: The Implementation and Experiences of a
Structure-Oriented Text Editor. Proc o f the A C M SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10, (SIGPLAN NOTICES, vol 16, no 6)
1981.

132. Ola Ström fors, Editing Large Programs Using a Structure-Oriented Text Editor. In
P roc. o f the Int. Workshop on Advanced Programming Environments. Trondheim,

ID A AN N U AL RESEARCH RE PO R T 1986
Publications.

161

Norway June 1986.
133. Ola S tröm fors A Structure Editor as a Template for Programming Environment

Functions. In P roc . o f the Workshop on Programming Environments - Programming
Paradigms, at Roskilde University Centre, Denmark, October 22-24, 1986.

134. B o Sundgren: How to Satisfy a Statistical Agency’s Need for General Survey
Processing Programs. Proc. o f the 4 5th Session o f the International Statistical
Institute, Amsterdam, Aug 12-22, 1985.

135. Erik T engvald , Reducing Design Complexity, or Why does AI Work, P roc. o f the
AIM SA-84 Conf., Varna, Bulgaria, (1984).

136. O ve W igertz , Johan E lfström , Sture H ägglund and Olle R osin :
Computer-Assisted Training in Patient Management and Clinical Decision Making,
in Pages et al. (eds.) M eeting the Challenge: Informatics and M edical Education,
North-Holland, 1983.

137. Jerker W ilander: An interactive programming system for Pascal. B IT , vol 20, 2,
1980. Also in Barstow et al. (eds.) Interactive Programming Environm ents,
McGraw-Hill, 1984.

138. Y osh ikazu Y am am oto , M ats Lenngren: Graphic Model Building System, in
Proc o f the 16th Annual Simulation Symposium, Tamppa, Fla., 1983, and in Proc o f
the IM ACS Symp. on Simulation in Engineering Sciences, North-Holland, Nantes,
1983.

D E P A R T M E N T A L REPORTS 1986-
(Reports in the series LiU-LIBLAB-R-86- are listed in chapter 8)

LiTH-IDA-R-86-01 Christos Levcopoulos: Minimum Length and ” Thickest-First”
Rectangular Partitions of Polygons. Also in P ro c .o f the 28rd Annual
Allerton Conference on Communication, Control and Computing,
Monticello, Illinois, October 1985.

LiTH-IDA-R-86-02 Ralph Rönnquist: The Information Lattice of Networks Used for
Knowledge Representation.

LiTH-IDA-R-86-03 Christos Levcopoulos: A fast Heuristic for Covering Polygons by
Rectangles. Also in Proc. o f Int. Conf. on Fundamentals o f
Computation Theory (F C T ’85), Cottbus, GDR, September 1985 and
Lecture Notes in Computer Science Nr 199.

LiTH-IDA-R-86-04 Arne Jönsson Mikael Patel: An Interactive Flowcharting
Technique for Communicating and Realizing Algorithms. Also in Proc.
o f the 19th Annual Hawaii International Conference on System
Science, Jan. 8-10, 1986.

LiTH-IDA-R-86-06 Harold W. Lawson, Jr: The DATASAAB Flexible Central
Processing Unit.

LiTH-IDA-R-86-07 Lars Ahrenberg: Lexikalisk-Funktionell Grammatik på svenska.
Finns i proc från Föredrag vid de nordiska datalingvistikdagarna 1985,
Helsingfors universitet, inst för lingvistik.

LiTH-IDA-R-86-08 Christos Levcopoulos. Fast Heuristic for Minimum Length
Rectangular Partitions of Polygons. Also in P roc o f the Second A C M
Symposium on Computational Geometry, June 2-4, 1986, Yorktown
Heights, New York.

LiTH-IDA-R-86-09 Harold W . Lawson: An Asynchronous Approach to
Microprogramming.

LiTH-IDA-R-86-10 Andrzej Lingas: Subgraph Isomorphism for Biconnected Outerplanar
Graphs in Cubic Time. Also in P roc. o f the 3rd Symposium on
Theoretical Aspects o f Computer Science, January 1986, Orsay, France
and Lecture Notes in Computer Science, Springer Verlag.

LiTH-IDA-R-86-11 Andrzej Lingas: The Greedy Trianagulation Heuristic for Minimum
Weight Triangulation of Convex Polygons Approxiamtes the
Optimum. Also in Proc o f the 2nd A C M Symposium on Computational

162 IDA ANNUAL RESEARCH R E PO R T 1986
Publications.

Geometry, Yorktown Heights, New York, June 1986.
LiTH-IDA-R-86-12 Dimiter Driankov: Inference with Consistent Probabilities in Expert

Systems.
LiTH-IDA-R-86-14 Dimiter Driankov: Uncertainty Calcus with Verbally Defined

Belief-intervals. Also in International Journal o f Intelligent Systems.
LiTH-IDA-R-86-15 Dimiter Driankov: Inference with a Single Fuzzy Conditional

Proposition. Also in International Journal for Fuzzy Sets and Systems.
LiTH-IDA-R-86-16 Dimiter Driankov: An Outline of Fuzzy Sets Approach to Decision

Making with Independent Goals. Also in International Journal for
Fuzzy Sets and Systems.

LiTH-IDA-R-86-17 Dimiter Driankov: A Calculus for Belief-intervals Representation of
Uncertainty. Also in International Conference on Information
Processing and Management o f Uncertainty in Expert Systems, Paris
30 June - 4 July, 1986.

LiTH-IDA-R-86-18 Lin Padgham: LINCKS Linköpings Intelligent Knowledge
Communication System. (Revised Version). In Proc o f I.F .I.P .
Conference on Methods and Tools for Office Systems, Pisa, Italy,
October 22-24, 1986. Also presented at Interaktiva Administrativa
System Konferens, Are, 14-16 April 1986.

LiTH-IDA-R-86-19 Björn Fjellborg: A Simulation Study of Four Binary Tree Structures.
LiTH-IDA-R-86-20 Henryk Jan Komorowski, Jan Maluszynski: Logic Programming

and Rapid Prototyping. Also published as report TR-01-86, Harward
University, Aiken Computation Laboratory.

LiTH-IDA-R-86-21 Johan Fagerström, Yngve Larsson, Lars Strömberg:
Distributed Debugging - Collected Ideas.

LiTH-IDA-R-86-22 Johan Fagerström: Tradeoffs in an Architecture based on
Asynchronous Processes. Accepted for 2nd Nordic Symposium on VLSI
in Computers and Communications, 1986.

LiTH-IDA-R-86-23 Wlodzimierz Drabent, Jan Maluszynski: Proving Run-Time
Properties of Logic Programs.

LiTH-IDA-R-86-24 Johan Fagerström, Mikael R .K . Patel: High-level Simulation of
Systolic Architecture. Also in Proc o f the International Workshop on
Systolic Arrays, Oxford, 2-4 July, 1986.

LiTH-IDA-R-86-25 R olf G. Karlsson: Greedy Matching on a Grid.
LiTH-IDA-R-86-26 R olf G. Karlsson: Point Location in Discrete Computational

Geometry. A preliminary version appeared in ” P roc. 6th Brazilian
Congress on Computing”, July 1986.

LiTH-IDA-R-86-27 R olf G. Karlsson, J. Ian M unro: Proximity on a Grid under L ̂
and L Metrics. A preliminary version appeared in "2nd Symposium
on Theoretical Aspects o f Computer S cience” , 1985, Springer-Verlag,
LNCS, 182, 187-196.

LiTH-IDA-R-86-28 Zebo Peng: Synthesis of VLSI Systems with the CAMAD Design Aid.
Also published as part of the Proc o f the 28rd ACM /IEEE Design
Automation Conference, Las Vegas, June 29 - July 2, 1986.

LiTH-IDA-R-86-29 Zebo Peng: Integration of VLSI Design Tools by a Unified Design
Representation. Published as a part of the Proc o f the 2nd Nordic
Symposium on VLSI in Computers and Communications, June 2-4,
1986.

LiTH-IDA-R-86-30 R olf G. Karlsson, Mark H. Overmars: Scanline Algorithms on a
Grid.

LiTH-IDA-R-86-31 Magnus Merkel: A Swedish Grammar in D-PATR. Experiences of
working with D-PATR.

LiTH-IDA-R-86-32 Bengt Lennartsson: Programming Environments and Paradigms -
Some Reflections. Appeared at the Workshop on Programming
Environments - Programming Paradigms” , Roskilde, Denmark,
October 1986.

LiTH-IDA-R-86-33 Ivan Rankin; SMORF User’s Guide.
LiTH-IDA-R-86-34 Ivan Rankin; SMORF - an Implementation of Hellberg’s

ID A AN N U AL RESEARCH RE PO R T 1986
Publications.

163

System.
LiTH-IDA-R-86-35 Johan Fagerström , Y ngve Larsson and Lars S tröm berg :

Debugging Techniques for Distributed Environments. Accepted for the
Workshop on Compiler and Incremental Compilation in Bautzen, East
Germany, October 11-18, 1986 and the Workshop on Programming
Environments - Programming Paradigms, Roskilde University Centre,
Denmark, October 22-24, 1986.

LiTH-IDA-R-86-36 P eter Fritzson: Systems and Tools for Exploratory Programming.
Overview and Examples.

LiTH-IDA-R-86-37 R o lf G K arlsson, M ark H O verm ars: Normalized Divide and
Conquer: A Scaling Technique for Solving Multi-Dimensional
Problems.

LiTH-IDA-R-86-38 P eter Fritzson: A Common Intermediate Representation for C,
Pascal, Modula-2 and Fortran-77. Also presented at the Workshop on
Compiler Compilers and Incremental Compilation, Bautzen, DDR,
October 12-17, 1986.

LiTH-IDA-R-86-39 Ola Ström fors: A Structure Editor as a Template for Programming
Environment Functions. This paper was presented at a Workshop on
Programming Environments - Programming Paradigms, at Roskilde
University Centre, Denmark, October 22-24, 1986.

LiTH-IDA-R-86-40 M ariam K am kar, N ahid Shahm ehri: Runtime Dependent
Program Flow Analysis. This is a revised version of paper presented at
a Workshop on Programming Environments - Programming
Paradigms, at Roskilde University Centre, Denmark, October 22-24,
1986.

LiTH-IDA-R-86-41 Jam es A . D ean, A ndrzej Lingas, J org -R . Sack: On Recognizing
Polygons, or how to Eavesdrop. Also in Proc o f the Allerton
Conference on Communication, Control, and Computing, Urbana,
Illinois, 1986.

LiTH-IDA-R-86-42 N ils D ahlbäck, Arne Jönsson : A Method for Studying
Human-Computer Dialogues in Natural Language.

LiTH-IDA-R-86-43 Ola Ström fors: Editing Large Programs Using a Structure-Oriented
Text Editor. Also presented at the International Workshop on
Advanced Programming Environments, Trondheim, Norway,June
16-18, 1986.

LiTH-IDA-R-87-01 W lodzim ierz D rabent: Do Logic Programs Resemble Programs in
Conventional Languages?

LiTH-IDA-R-87-02 R ober B ilos: A Token-Based Syntax Sensitive Editor. Also presented
at the Workshop on Programming Environments - Programming
Paradigms, Roskilde, Denmark, October 22-24, 1986.

LiTH-IDA-R-87-03 M ikael R .K . Patel: A Threaded Interpretive Language Supporting
Programming in the Large. Also in Proc. o f The sixth R ochester Forth
Conference, University of Rochester, Rochester, New York, June 11-14,
1986.

LiTH-IDA-R-87-05 Christer Bäckström : Logical Modelling of Simplified Geometrical
Objects and Mechanical Assembley Processes.

LiTH-IDA-R-87-06 Johan H ultm an: COPPS - A Software System for Defining and
Controlling Actions in a Mechanical System.

LiTH-IDA-R-87-07 Peter H aneclon: A Formal Approach to Reason-maintenance Based
on Abstract Domains.

Diskussion & Debatt:
LiTH-ID A-R-87-04 A rja V ainio-Larsson: Datavetenskap: Teknik och Vetenskap.

FURTH ER IN FO R M ATIO N

LABORATORY LEADERS. Secretaries names are given in italics.

Unit Leaders

Graduate Studies Programme, general Erik Sandewall
Lillemor Wallgren

281408
281480

Undergradutate Studies Programme, general Anders Harldsson
Barbara Ekman

281403
281410

Lena Wigh 282492

Laboratories:

Administrative Data Processing Group Göran Goldkuhl
Carina Björkman

281452
281458

AI Environments Erik Tengvald
Lisbeth Linge

281470
281472

Application Systems Sture Hägglund
Gunilla Lingenhult

281431
282297

CAD of Digital System Harold Lawson
Britt-Marie Ahlenbäck

281314
281318

Complexity of Algorithms Andrzej Lingas
Bodil Mattson Kihlström

281938
281652

Knowledge Representation in Logic Erik Sandewall
Anne-Marie Jacobson
Lillemor Wallgren

281408
281975
281480

Library and Information Science Roland Hjerppe
Siv Söderlund

281965
281426

Logic Programming Jan Maluszynski
Bodil Mattsson Kihlström

281483
281652

Natural Language Processing Lars Ahrenberg
Britt-Marie Ahlenbäck

282427
281318

Programming Environments Bengt Lennartsson
Gunilla Lingenhult

281427
282297

Admittance of foreign graduate students Jan Maluszynski 281483

Administration Lillemor Wallgren 281480

M AILIN G ADDRESS Department of Computer and Information Science
Linköping University
S-581 83 Linköping
SWEDEN

T E L E PH O N E 013 - 281000 or directly to the numbers above
T E L E F A X int+46 13 14 22 31
T E L E X 8155076 LIUIDA S

