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Abstract. In RoboCup-98, ULM-Sparrows team worked hard just to
get both a simulation and a middle size robot team to work and to success-
fully participate in a major tournament. For this year, we were in a better
position to start some more serious research work. Aside of improvements
in the robot hardware and an extension of the vision processing capabilities,
we implemented a more complete version of our soccer agent architecture
and made some progress in the areas player localization, environment mod-
elling, and basic playing skills. For the latter, we started to apply learning
techniques.

1 Motivation and Research Goals

ULM-Sparrows is a research effort seeking to investigate and solve open
problems relevant to both the RoboCup Challenge [KAK'97] and a local
interdisciplinary research effort called SMART [PK97]!. Some research is-
sues of particular interest to our team include skill learning in continuous
domains, adaptive spatial modeling of highly dynamic environments, and
emergent multiagent cooperation for achieving coordinated team play with-
out explicit communication. We also have a general interest in studying
robot control architectures for soccer agents and neurosymbolic integration,
in particular the integration of symbolic and neural methods in robot con-
trol architectures. See [KES099] for a more detailed account of our goals.
We have both a simulation team and a middle size real robot team to pursue
these goals.

1See www.uni-ulm.de/SMART/ for more information.
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2 Improved Robot Hardware

In RoboCup-98, we used three modified Pioneer-1 robots, a LEGO-based
robot, and a custom-built goalie based on a toy tracked vehicle. The per-
formance of our robot team suffered severely from mechanical problems and
electrical instability. Using the same code as in Paris, but after some modi-
fications improving the stability situation, we could successfully participate
in the VisionCup-98 in September, where we could beat the teams from
Munich and Tuebingen (2nd in Paris) and prove the feasibility and validity
of our approach.

For RoboCup-99, we decided to make further enhancements to our hardware
platform and designed and developed a modular, distributed architecure for
our soccer robots. The principle idea (see [?]) is to locally couple sensors and
actuators with comparatively cheap microcontrollers that perform varying
amounts of processing. A CAN bus connects all smart devices and is used
by smart sensors to deliver preprocessed results and by smart actuators
to receive the required control inputs. This smart device architecture [?]
brings — so to speak — computation closer to where the data is and reduces
communication load while providing an immense amount of modularity and
flexibility. As a result, we could structure the mechanical design of our
soccer robot into several independent modules, which must be connected
by just four pins: two for power supply, and two for the CAN bus.

3 Extended Vision Capabilities

Last year, our robots were only able to see the goals and the ball. This
limitation was due to the small frame resolution and low frame rate which
was caused by the port-based interface between frame grabber and the vision
processing CPU. By replacing the main PC/104 board and frame grabber
with a combination that uses a PCI bus interface, we hope to remedy this
situation and extend our vision capabilities to recognize players as well and
to help us in localization.

The behavior-based structure of the color-tracking vision processing soft-
ware more or less remains the same: we just need to invoke extra behaviors
for tracking different colors.

4 Implementation of Soccer Agent Architec-
ture

Encouraged by the convincing demonstration of its feasibility and — consid-
ering our opponents’ much stronger hardware capabilities — the surpising
success at VisionCup-98, we continued with the implementation of our soc-
cer agent architecture (see Fig. 1 and [KES099] for details), which is applied
both in the simulation and the real robot teams. We implemented a C++
software library that allows to quickly implement and modify the reactive
layer of the architecture. Amongst other things, the library provides be-
havior and arbiter classes, which are easy to instantiate and ensure safe
execution of behaviors and arbiters as parallel threads. The library also
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Figure 1: ULM-Sparrows soccer agent architecture

provides an abstract interface to a soccer agent or a real robot. We are
currently working on extensions to make sensor interpretation, localization
and environment modeling more behavior-oriented and to include appropri-
ate classes in the software library. Furthermore, we are working on software
that allows to construct coherent action patterns in a much simpler way.
The programmer uses a graphical user interface to specify a temporal se-
quence of behavior sets and the required events and resulting signals to
switch between them. From this graphical specification, the program code
can be automatically generated.

5 Environment Modelling

We apply multi-layered spatial representations for modeling the environ-
ment. In our soccer agents, we currently employ a two-layer approach that
is derived and adapted from the dynamo spatial representation architecture
(see [KCES99]) developed in the smart project.

The lower layer consists of an egocentric representation. Contrary to smart,
where we use two-dimensional probabilistic occupancy maps, we use multi-
ple feature-based maps in robocup (see Fig. 2). Relevant features include
position and/or distance of the ball, both of the goals, other robots, and
field landmarks (flags in simulation; corner bars, wall markings, and possi-
bly logos of advertisement in real robots). A focus of attention window is
attached to the map to model the limited view of soccer agents. Updating
of this representation is based upon sensory input in the focus of atten-
tion, while model-based extrapolation is applied to the remainder (this is
currently available in simulation only). The egocentric representation is
mainly used by low-level behaviors for rapid action selection.

The upper layer of the environment model is an allocentric spatial repre-
sentation, which is constructed and maintained by integrating over time
information present in the egocentric representation. Due to differences in
the information available, the mechanisms differ in the simulation and robot
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Figure 2: Egocentric feature map representation for soccer agents

teams: In the simulation league the soccer server almost always delivers
sufficient information on global landmarks (flags) but provides essentially
no odometry information. Because the position of flags is a priori known,
the robot’s position on the field is determined first. Then other players
are mapped based on relative position information provided by the soccer
server. The robots, however, do deliver odometry data but have a much
more limited field of view; as a result, they often detect little or no global
landmark information. Therefore, in the real robots the environment model
must rely somewhat more on extrapolation based on odometry data and a
more elaborated mechanisms for integrating localization and updating the
environment model must be applied.

6 Player Localization

In the simulation league localization is an almost trivial problem, because
almost always sufficient information is available to localize the agent with
respect to a global reference frame. As pointed out above, the situation is
quite different in real robots. We apply an approach called Monte Carlo
localization, which was originally developed by Dellaert et al. [DFBT99]
and was locally adapted to suit our needs in robocup. In the Monte Carlo
localization approach a probability density function (PDF) is used to model
the robot’s location. Assuming a given PDF at some time step ¢, the update
of the PDF to time t¢; is divided into the two steps prediction and update.
In the prediction phase, the current PDF is changed according to the robot
motion since the last update phase. Formally, the new state xj is only
dependent on the previous state xx_1, and a known control input ui_1. In
the update phase the PDF is adapted based on sensory input received after
the command has been performed.

The information we actually exploit as control input is not the command
send to motor controllers, but the data provided by odometry sensors.
Thereby we avoid the error made by the controller, but still have the error
made by odometry. In Dellaert et al. the sensor input consists of laser or
sonar scans. We apply this approach to feature maps extracted by the vi-
sion module (see above). In order to do this, we must be able to estimate
feature maps given a specific position on the field, and we must have a simi-
larity measure between feature maps. Update of the PDF is then performed
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based on sampling positions based on the predicted PDF and computing a
similarity measure between the estimated and the sensed feature map.

7 Learning Basic Skills

As demonstrated very convincingly e.g. by CMUnited-98, it is absolutely
necessary to provide robust low level behaviours. Although behaviors can
be handcrafted, this is a very tedious process that must possibly be redone
every time some system parameter changes. Such parameter changes have
occurred almost every year in both leagues we compete in, e.g. in the soccer
server the size of the physical agent and stamina model parameters haven
been changed, as well as the field size and lighting conditions in the middle
size league.

All our behaviors so far have been hand-crafted, but we are now starting
to apply reinforcement learning techniques to this problem. Definite results
are not yet available but will be included in the final version.

8 Conclusions

ULM-Sparrows team development follows the lines of research set out in our
initial team description paper [KES099]. We hope to make some substantial
progress without endangering system stability, and hope to perform well in
RoboCup-99.
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