RoboCup-99 Team Descriptions 181
Middle Robots League, Team RMIT, pages 181-188
http: /www.ep.liu.se/ea/cis/1999/006,/29/

RMIT Robocup Team

RMIT

James Brusey, Andrew Jennings, Mark Makies, Chris Keen, An-
thony Kendall, Lin Padgham, Dhirendra Singh

JB, AJ, MM, CK, AK, LP, DS: RMIT

Abstract. The RMIT team consists of a combination of one Pioneer
platform and three custom developed robot platforms. We address the re-
search problems of improved vision, together with the ability to control the
movement of the robot more accurately in a wide variety of conditions. Our
experience of play in this league has taught us that these research problems
of physical agent mobility dominate over the (also important) problems of
coordination and team play. We have concentrated on making our robots
move faster (up to 8m/sec) with better control. To progress development of
the team we have also constructed a software simulator of the robots which
enables our strategy developers to more rapidly test strategies in parallel with
construction of physical robots.

1 Introduction

The basic design of our robots falls into three sections - the robot platform,
the vision system and the strategy module. This fits well with the simple
agent model where vision is the perception system, the robot platform is
the effector system and the strategy module is the decision making engine.
Figure 1 shows the overall architecture, and Figure 2 a view of the robot in
action.

Our experience in developing two prior robot platforms gave us a good un-
derstanding of the important aspects of robot motion and ball control. We
had experienced difficulties in control in both previous tournaments (for
different reasons) and this motivated us to undertake a significant research
and development effort. The advantage of a commercial platform is that it
reduces the cost and time of development enormously and in some cases may
mean that only software developers are needed to create a team. However
many problems in team strategy can be alleviated by innovations in mobil-
ity: the most extreme example being omnidirectional movement, reducing
the complexity of path planning to shortest path detection.

From the viewpoint of strategy development, the robot platform must ap-
pear as an abstract interface. It is of great advantage if a direct movement
command (eg. 30 degrees left at 10 degrees per second) can be executed
by the platform without the need to take into account the weight on the

182

platform (eg. number of batteries), the state of charge of the batteries or
indeed the current friction of the field. So our first decision was to define in
detail a high level interface for control of the platform. For convenience we
attempted to make this interface as close as possible to the Pioneer inter-
face, giving us portability of software across the range of robots we employ
in the team, and allowing us to develop vision and strategy in parallel with
development of the robot platform, by using the Pioneer.

A number of teams have introduced multiple sensor systems, including ad-
vanced laser and sonar systems. We have decided however to continue to rely
on vision as we believe it is of interest to try to obtain acceptable behaviour
using this relatively cheap technology. We have focussed on combining avail-
able techniques to obtain vision which is sufficiently fast and stable for the
comparitively easy vision tasks of colour coded object recognition, and ap-
proximate distance assessment. We have seen this as a necessary first step
to obtain adequate percepts for making sensible decisions about actions.

Within the strategy subsection we have moved from using an agent model,
to using a commercial agent development system, JACK!. Due to the dif-
ficulties of testing on physical systems we have also found it necessary to
develop a simulator for use in initial testing and debugging of behaviours.

2 Platform

The custom designed vehicle is based on differential drive of two motors,
mounted at the centre of the rectangular vehicle. At front and rear there
are slip pads to allow for tight manouvering: we rejected the use of castor
wheels as they restrict motion. We use detailed pulse width modulation to
control the motors based on feedback from wheel encoders([Ark98],[Bor94]).

The process of development was first to extensively test motors both by
simulation and by bench testing. We examined torque, acceleration and
velocity versus battery life: eventually fixing on the 6W MAXON motor and
gearhead. After constructing a prototype of our vehicle we then proceeded
to develop the control system.

Control is based on a full PID controller that has been custom developed.
It makes use of encoders that give 1800 counts per wheel revolution, giving
0.4mm spatial resolution. Input to the controller is a desired (velocity,
angular velocity) setting, and control is effected using these counts. The
PID controller is in assembly language for the 6811 microprocessor and
makes use of only integer arithmetic. Custom functions make use of a
Xilinx XC3090 Field Programmable Gate Array.

We have extensively tested the control system under a wide variety of load
and battery conditions, and with a wide variety of floor surfaces. To achieve
this we constructed a complete remote control system that operates at a
50ms sampling rate. For debugging purposes this operates the same inter-
face that is available to higher level software. In this way we can directly
compare simulator results with the hardware prototype for purposes of cal-
ibration.

1JACK is a java based agent programming system developed by Agent Oriented
Software, www.agent-software.com.au

183

The expected benefits of the new platform are rapid speed (up to 3me-
tres/second) which we currently plan to use at 2.5 metres per second, to-
gether with fine control of movement. Velocity and angular velocity tracking
errors of less than 3% can be achieved in a wide variety of settings. These
advantages can simplify the task of game play construction.

2.1 Kicker

Given that our robots do not have a complete world map of the field, they
will be at a disadvantage compared to other teams that can gain this com-
plete picture. So it is unlikely that our robots will be able to score by
moving slowly towards the goal and positioning carefully to guide the ball
past the goalie. Other teams with world knowledge can move robots to
block well in advance. So to be competitive our robots must be able to
move more quickly than other robots, and be able to control the ball at a
greater distance. This means that we need not just a light kicker, but a
powerful kicker. The kicker is also important for penalty shoot-outs as we
need to defeat goalies that can move quickly and have excellent vision.

In human soccer the balance between the player and the goalie is that the
player in a penalty shoot-out will usually get the ball past the goalie. How-
ever to date the balance in robot soccer is the reverse: in most cases the
goalie will intercept the ball. This motivated us to develop a more pow-
erful kicker. We experimented with a range of mechanisms for propelling
the kicker, including both spring and gas powered kickers. Simply devel-
oping a fast kicker is not enough: we have to ensure an efficient transfer
of momentum between the kicker and the ball, and this requires extensive
testing. Our kicker is electromagnetically driven with spring storage to hold
the kicker ready. Testing of the kicker has established that at full setting
it can kick the ball over 20 metres, with only 5 seconds to recover before it
can kick again.

At present we do not use the kicker in our videotape demonstration, but we
hope to fit the kickers prior to the tournament.

3 Vision

Our vision system uses simple techniques of object detection based on
colour. Despite the simplicity of this it has proved difficult to obtain robust
and reliable object discrimination at an adequate frame rate. One of the
main problems we have experienced was that the straightforward mecha-
nisms of colour determination based on threshold values of red, blue and
green at each pixel often gave multiple classifications of any given pixel.
This was due to the fact that generalising from example data often gave
large and overlapping cuboids in RGB colour space, with no mechanism for
reliably discriminating objects in the overlap areas. One problem was that
the cluster of data points for a particular colour was not always a regular
shape, aligned cleanly to the colour axes.

To address this problem we have used a decision tree approach to generalise
colour and have employed a standard machine learning algorithm known as
C4.5 to obtain a decision tree from training data[Bru99]. Testing indicates
that we are getting about 97% reliability in object identification using these

184

methods as opposed to about 80% reliability using the previous thresholding
approach.

Having determined what the objects are in the visual field of the robot, the
next most important issue is exactly where they are in relation to the robot,
and in particular how far from the robot each object is. The two aspects
of relative location are the angle of the object from the robot’s forward
direction, and the distance from the robot.

Estimating the angle for an object is a nonlinear mapping based on the
horizontal pixel location. Previous distance estimation techniques used the
square root of the pixel size of the object. This however, like the colour
mapping was found to be highly dependent on the lighting. Consequently
we have explored distance calculations using the vertical angle, which has
proved far more successful.

Our goal in working with the vision system was not really to make advances
in vision, but to find the techniques which gave appropriate human-like
behaviour within this domain.

4 Strategy module

The strategy component uses an agent oriented model combining reactivity
to the environment with strategic plans and committment to objectives - an
approach which has proved suitable in a number of realtime applications.
This architecture allows the robot to pursue a number of reasoning tasks
in parallel as it determines which commands to send to the motor control
module. The strategy module is developed in JACK [Bus99], a Java based
agent development language allowing the programmer to develop plans or
strategies for various situations.

As each frame is made available the strategy software enters a decision mak-
ing process to determine how it should be responding. Once that decision
is made (at a high level) a behaviour management process either allows the
robot to remain committed to its current behaviour, or if appropriate to
change to another behaviour to take advantage of or react to, a change in
circumstances.

As a frame is processed a world model module within the strategy code
interprets the information seen, combined with other world model infor-
mation, to update aspects of a world model, which attempts to maintain
knowledge beyond what is currently seen. Part of our research effort is in
exploring how useful it is to have a symbolic model of the world about which
the robot can reason, as opposed to simply reacting to what it can currently
observe. We are also working on how to maintain an adequate world model
in an environment that necessarily produces errors.

The use of plans, as opposed to purely reactive behaviours based on visual
input at each time point, is important in order to be able to have some level
of committment to a particular sequence of actions. For instance suppose
the robot is on its way to the ball and another robot comes between it and
the ball. A purely reactive system would presumably turn the robot to
avoid collision, then notice that the ball was lost, and initiate a behaviour
to find the ball. A plan based system can initiate a sequence of moves to
go around the robot (if appropriate), in which case it will then again have

185

the ball in sight. Of course any plan which is committed to must have the
ability to be aborted if certain new information is received. The important
point is the ability to commit to a sequence of actions, without visual cues
at each step.

The plans that we use currently are only for very simple basic behaviours,
such as finding the ball, avoiding an obstacle, ascertaining which direc-
tion to approach the ball from and kicking the ball. We are concentrating
on refining and stabilising the basic behaviours, attempting to make them
fully robust, before moving on to more challenging behaviours involving co-
ordination between robots. However it is important that the framework we
have chosen allows for adding new and more complex plans in a modular
way.

One of the problems that we were finding in developing the strategy code
was that testing on physical systems is very expensive in terms of time,
as well as being difficult to set up (it needs sufficient space, good lighting,
etc.). Due to these difficulties we decided to concentrate considerable effort
on building a simulator system to aid in initial testing of strategy software.

4.1 Simulator

Our aim with the simulator was not to accurately simulate the vagaries
of the physical environment, as no matter how good a simulator is, it is
no substitute for thorough testing in the physical world. What we did
want to do was provide an environment where we could do initial testing of
interrelationships between behavioural plans, as well as having more control
over the testing environment. It is considerably easier to stop the simulator
and observe via the debugging windows what exactly is going on, than it
is to stop the robot and try to determine from the logfile what exactly was
happening in a situation. The simulator also allows us to experiment with
situations where we have multiple robots which we are not yet able to do
physically.

The design of the simulator is that it produces information about objects
that are in the vision cone of each robot and passes this to the strategy code
being tested in the same format as it comes from the vision subsystem. The
simulator also implements the Vehicle Control Interface of the real robots,
so commands from the strategy module result in appropriate movements in
the simulated world.

The simulator has proved extremely successful in speeding up code devel-
opment time. Some routines that we had been having problems with for
months were largely fixed over a weekend, once the simulator was available.
The simulator has also allowed us to detect some unforeseen situations with
interactions of behaviours. One example of this was a situation where the
robot got caught in an oscillation between looking for the ball, and avoiding
an object. The behaviour that looked for the ball attempted to turn the
robot in the direction where the ball was last seen. If the robot had lost the
ball because it needed to move off course in order to avoid another robot,
it could in some situations get stuck in an oscillation between these two
behaviours.

We have also built in a batch testing capacity in the simulator that allows
us to turn off graphics and run set files of vision input to produce files of

186

vehicle control output commands. This will provide the basis for us to do
regression testing to ensure that addition of new plans and actions does not
cause problems in situations that have previously been tested.

5 Conclusions

At the time of writing we have a working prototype of the first of our
three custom made robots and so are about to go into an integration phase
where we refine and test the vision and strategy systems together with the
specialised robot platform.

We are also in the process of setting up a practice field which will allow us
to more adequately test out our robot team before Stockholm.

References

[Ark98] R.Arkin: Behavior-Based Robotics: Intelligent Robots and Au-
tonomous Agents MIT Press

[Bor94] Johann Borenstein: ”Where Am I? Sensors and Methods for Au-
tonomous Mobile Robot Localization” Technical Report, The University
of Michigan UM-MEAM-94-21, December 1994.

[Bus99] P.Busetta, R.Ronnquist, A.Hodgson, A.Lucas: "JACK Intelligent
Agents - Components for Intelligent Agents in Java” AgentLink Newslet-
ter, Jan. 1999

[Bru99] J.Brusey, L.Padgham: ” Techniques for obtaining robust, real-time
colour based vision for robotics” Robocup Workshop, Stockholm 1999

Lapt op Computer

187

Upper Level Software (LILS) Ciperating System =
T
Wision Module Parallzl & o | Parallel
Interface ' Fort
Camera
% —
Strategy Madule Metwok = E
Interface % o
= —
=L | Wireless
Wehicle Control Serial L&K
Irterface Interface
Serial
Sochot Vehicle [5B Fort
Wehicle Control Module (USSR
Microprocessarn FPGA:

MEEHZ11F1

Fower & Confrol
Electronics

Eall Cantrol L Touch
Fingers Sensars

Hiliree X C2090.4

Compass:
Wegtor W2

[

[

Left Right
fotor & | hlotor &
Encoder Encoder

Kidiing -

Device | [
I Crive Train
Fawer | Camera (Gearbox
System [Servo and Wheek)

Figure 1: Architecture of soccer robot. For the goalie, a standard
Pioneer substitutes for the Socbot but uses the same software

188

Figure 2: View of Socbot in action

