RoboCup-99 Team Descriptions 150
Middle Robots League, Team ISocRob, pages 150-159
http: /www.ep.liu.se/ea/cis/1999/006/24/

ISocRob — Intelligent Society of Robots

ISocRob

Rodrigo Ventura, Pedro Aparicio, Pedro Lima, Luis Custodio

RV, PA, PL, LC: Instituto de Sistemas e Robotica - Instituto Superior Tec-
nico

Abstract. The SocRob project was born as a challenge for multidisci-
plinary research on broad and generic approaches for the design of a coop-
erative robot society, involving Control, Robotics and Artificial Intelligence
researchers. A case study on Robotic Soccer played by a team of 3 robots
has started two years ago and was first tested last year during RoboCup98.
This experience has clearly revealed that the robotic soccer environment is a
sufficiently rich, complexr and dynamic testbed to study new methodologies
both on Robotics and Artificial Intelligence. Therefore, the SocRob team is
currently working on the SocRob project improvements and intends to com-
pete at the World Cup of Robotic Soccer, RoboCup99, held in Stockholm,
Sweden, in the middle-size league. In this paper the basic aspects of last year
implementation as well as the improvements made meanwhile are briefly re-
called and presented. Naturally, a special emphasis is given here to the novel
solutions proposed for this year implementation, the results obtained and the
expected future developments.

1 Introduction

The Artificial Intelligence and the Intelligent Control groups of the ISR/IST
have started almost two years ago a joint project on Cooperative Robotics,
denominated SocRob, to foster research on methodologies for the definition
of functional, hardware and software architectures to support intelligent
autonomous behavior and evaluate performance of a group of real robots,
either as a society and as individuals.

The area of research concerned with the study and development of multi-
agent systems able to perform in complex and dynamic environments, where
cooperation is the keyword, is becoming more popular everyday. Applica-
tions as virtual training [15], interactive education [11], entertainment [10],
and collective robotics [2], to name but a few, are good examples of the
kind of complex and dynamic domains, in which the creation of multi-agent
systems faces an interesting challenge. In fact, the uncertainty usually as-
sociated with these aplications, and the corresponding environments, raises
problems that could hardly be handled using pre-defined coordination plans
for a set of independent agents [18]. For instance, agents “living” in those

151

environments have to deal with unexpected situations, incomplete informa-
tion about the world and the other agents, differing opinions or perspectives
among the agents, and the impossibility to fulfill their tasks. Most of the
research work on this area has been carried out by people working on Dis-
tributed Artificial Intelligence (DAI) [14]. Moreover, most of the pratical
applications known are developed using virtual environments and virtual
agents, in order to focus research on “high-level” issues, such as communi-
cation protocols, teamwork models, individual and team task planning, dis-
tributed knowledge representation, adequate programming paradigms and
reasoning about others’ beliefs.

The utilization of real robotic agents to perform on real environments, for in-
stance, a robotic soccer game, raises several new questions and perspectives
that turn the development of a multi-agent system a much more difficult
and challenging problem [19]. Given the past experience of both groups
regarding robot development [9] and DAIT [17], it was decided to join forces
to build a team of initially three and now four robots in order to partici-
pate in the RoboCup initiative (the ISocRob Team). Figure 1 shows three
elements of ISocRob team.

Figure 1: Three ISocRob team members.

The robots were developed from scratch, so that both conceptual and im-
plementation issues were considered. Last year, the ISocRob Team efforts
were devoted more to aspects related with building the robots’ mechanical
structure and hardware design and implementation. Given the results ob-
tained in the RoboCup98 and some adjustments and improvements made
mainly on hardware components (e.g., new robot wheels, a self-localization
system, a friendly man-machine interface with the robots, a kicker device,
and proximity sensors based on infrared (IR) technology), the team decided
to focus its research on conceptual aspects of the SocRob project. As such,
special attention was given to:

teamwork models: what kind of structure a multi-agent system control
architecture should have in order to explicitly integrate both team-
work and individual tasks;

cooperation-oriented communication issues: what type of information
must be shared and how to distribute that information among the
agents;

programming languages: which features a programming language should
have in order to be adequate for developing and implementing multi-
agent systems and allowing explicitly representation and reasoning
about teamwork.

152

This paper is organized as follows: in Section 2 the details of each robot
Hardware and Software Architectures are briefly described. The Functional
Architecture, presented in Section 3, wraps up the whole picture, relating
conceptual issues to the two physical architectures explained in the previous
section. In Section 4 the project work concerning the development of a pro-
gramming language suitable for multi-agent systems is presented. Finally,
conclusions and foreseen future work are presented in Section 5.

2 Hardware and Software Description

To interact with the real world, a mobile robot must have the ability to
sense the environment, process that information and actuate on the world.
Each robot hardware is divided in four main blocks: sensors, main pro-
cessing unit, actuators and communications. Currently, from the hardware
architecture standpoint, the population is composed of homogeneous mobile
robots. Figure 2 depicts a block diagram of the hardware architecture of
each robot.

RF ‘ . 1sA —‘Mmm Control
Ethernet

1SA
\bumt‘lr\g] \pruxw‘mlty\ \smr"d] [PGTE]
[[|
[botiom] [pover] |

Figure 2: Hardware Architecture.

2.1 The Processing Unit

Each robot has on-board a PC motherboard with a network adaptor, a
video adaptor, a motor control board and interface boards for the sensors.
The main processor is an AMD K6, running at 200MHz. The system has
16Mb of RAM and a 1.2Gb hard drive.

2.2 Sensorial Systems

The sensors available in each robot are those mentioned in last year’s team
report [3]. The pose, bumping and proximity sensors are being implemented
and will be detailed here:

Pose sensor

Depending on the type of application involved, each robot of the
society needs to regularly update its current pose (position and ori-
entation) with respect to a reference frame (e.g., located in the field
center). This may be accomplished based on the triangulation prin-
ciple using for instance a convex mirror for full scene image system
based on a vision camera and a mirror with a special geometry. Since

153

the RoboCup environment has available a sufficient number of vi-
sual landmarks, the SocRob project team decided to experiment the
“mirror” solution. The idea is to allow robots, using only one vision
camera, to acquire images from the mirror, appropriately positioned
above the robot, in order to obtain a global view of the environment.
If images are sufficiently broad to include three different and static
beacons (e.g., goal plus two field corners), robots may apply the tri-
angulation principle to determine their position. A key aspect for the
performance of this type of self-localization systems is image defini-
tion and quality. This is directly influenced by the mirror geometry.
For instance, we would like robots to unambiguously see both near
objects and as far as possible on a RoboCup field. So, one of our
main concerns was the choice of mirror geometry. Based on some
theoretical studies available in the literature, three basic geometries
have been identified as possible options: conical, spherical and hyper-
boloidal. In order to assess image quality obtained for each geometry,
some experiences and simulations were performed. The results have
shown that none of the former geometries is really satisfactory. There-
fore, we decided to investigate which mirror geometry can give the
results we consider adequate for this application. This work is now
underway and we expect to have some final results by the time of the
RoboCup competition.

Bumping Sensors

Bump sensors are the last resort for a mobile robot in the presence
of eminent danger. They detect the collision of the robot with an
obstacle in the environment. In the soccer application, they can also
be used to sense contact with the ball. They are made of micro-
switches, arranged in a serial connection, divided in 4 sets of 2 micro-
switches each.

Proximity Sensor

Proximity sensors are based on IR technology. They allow the mea-
sure of an analog value proportional to the object distance (depend-
ing on the material reflectance). The five emitter /receiver pairs are
equidistantly located around the vehicle, pointing outside, in order to
detect objects in the near vicinity. The typical range of those sensors
goes from 20 cm to 1.5 m.

2.3 The Actuators

Drive

Each robot has a differential drive kinematic configuration. This im-
plies that it has two independent (DC) motors, one for each wheel.
The robot speed and heading are set by independently controlling the
wheels speed. For more details, see [3].

Kicker

The kicking ability enables soccer players to move the ball into places
that otherwise would not be accessible. The kicker device is divided
in two main parts: electronic and mechanical structures.

The kicker electronics is composed of a micro-controller, an IR, beam
circuit and a power actuator. The micro-controller runs the control
program and generates a signal modulation to be used in the IR

154

beam. This signal consists of a square wave, rated 40kHz that is fed
to the amplifier powering the IR leds. The 40KHz detector output is
also directly connected to the controller. If an object is obstructing
the beam the demodulator delivers a 0V constant signal, otherwise
should a 40kHz IR beam be received, a 5V constant signal is obtained.
The controller output is connected to the circuitry that drives the
servomotor. This solution can be seen as an instinctive reaction when
the robot senses the ball. However this behavior can be disabled by
the processor unit in order the robot to perform different type of
actions.

The kicker mechanics is based on a automobile door opening servo-
motor, which when powered with opposite polarities moves a piston
in opposite directions. The piston course is approximately 3cm.

2.4 Communications

Communications is a key point in any cooperative robotics society. Depend-
ing on the choices made at this level, different cooperation mechanisms and
strategies can be developed.

A wireless RF Ethernet link (WaveCell from Aaron Tech.) was chosen to
support communications between the robots. The devices work on two pos-
sible switch-selectable frequencies: 2.4GHz and 2.4835GHz. The bandwidth
is 2Mbps, and a range of 150m is covered, inside an office environment.

2.5 Software

Each robot’s software runs under the Linux operating system [1]. The rea-
sons for this choice were: robustness, lightweight multitasking, scalability,
networking facilities, and availability of programming languages compilers,
as well as easy integration of programming languages (e.g., Lisp and C). For
more details about the low-level software see [3].

The top-level software, which is responsible for each robots’ behavior was
initially implemented in an agent programming language — RUBA — de-
veloped in previous work [17]. Briefly, RUBA is a language that implements
a society of agents, that communicate among them and with the exterior,
by the means of a blackboard structure. The whole team is viewed as a
single agent society with a common blackboard (distributed among them,
but considered as being unique).

Since the RUBA language was not originally designed for implementing
teamwork in multi-agent systems it has shown a lack of expressiveness for
more complex agent interactions, mainly in what concerns cooperation ac-
tions and communications, and representation of other agents’ beliefs and
goals. These aspects are essential for implementing an adequate teamwork
behaviour. So, the SocRob project team is now working on a new agent-
based programming language, where those aspects are being taken into ac-
count.

Future work includes the creation of language primitives for implementing a
pre-defined teamwork model. In particular, agents are required to explicitly
have a representation of their common beliefs, teamwork plans and team

155

goals, and an efficient mechanism to reason about teamwork action and
communication [15].

3 Functional Architecture

From a functional standpoint, the whole robot society is composed of func-
tionally heterogeneous robots. In the particular case of soccer robots, the
functionalities correspond to behaviors and currently are Goal Keeper, De-
fender, Midfielder and Forward. The functional architecture is scalable re-
garding the number of robots (or agents) involved. This means that, when
a new robot joins the society, no changes have to be made to the overall sys-
tem. The functional architecture establishes three levels, inspired in [5, 6].
Their description is briefly presented in the sequel (for more details see [3]
and [16]).

Organizational level — This level deals with the issues common to the
whole society. For instance, in the soccer team context, these can be
the state of the game according to the rules, the way the team has to
behave in order to follow them, and the team’s global strategy based
on the current game status.

Relational level — At this level, groups of agents cooperate/negotiate in
order to establish a mutual agreement(commitment) concerning the
execution of a particular action or the achievement of some objective.
The issues involving the formation and termination of (sub-)groups,
the establishment of mutual commitments and the monitorization of
other agents’ task performance are handled at this level. The idea is
to integrate this functional architecture with a model of teamwork,
such as the ones used or presented in [4, 7, 8, 15].

Individual level — The individual level encompasses all the available be-
haviors of each robot. A behavior is a set of purposive primitive tasks
sequentially and/or concurrently executed. These primitive tasks con-
sist of sense-think-act loops, a generalization of a closed loop control
system which may include motor control, ball tracking, ball following,
etc.

The player behaviors already implemented or to be implemented in a near
future are (for more details see [3]):

Goal Keeper — A good goal keeper is essential in a team that wants to
win. Being so, a significant part of our effort has been devoted to the
development of a efficient goal keeper.

Defender — The defender mission is to move the ball from the vicinity of
its own goal to the opponents field.

MidFielder — Like in real soccer, this player should be able to play in a
variety of positions. Its mission is to receive the ball from its own team
field and decide what to do, based on current game status and teamwork in
progress.

Forward — This behavior induces the player to preferentially be in the
opponents’ field. If the ball is into its team field, the forward player mission
is to keep tracking the ball, avoiding to leave its zone. When the ball moves

156

into its influence zone, it must try to take control over it and kick it into
the opponents’ goal.

4 Agent-based Programming Language

The idea beyond the development of a programming language specially ad-
equated for implementing multi-agent systems follows the work previously
done by some members of our team — an agent-based programming lan-
guage called RUBA [17]. The goal is to have a way for defining agents’ ar-
chitecture, creating agents, establishing communication links among agents,
specifying cooperation mechanisms (based on a particular teamwork model),
creating and deleting temporary sub-groups, and removing agents.

The initial version of the computational model for the language consists
of two classes of objects: agents and blackboards. A blackboard is the ba-
sic communication medium among agents, either to communicate among
themselves, or between them and the external world. In what concerns
RUBA, the current language specifications propose several improvements:
extension of the blackboard for a distributed system, efficient blackboard
indexing using a hierarchical name-space, and event-driven programming.

4.1 Distributed Blackboard

Conceptually, a blackboard is a centralized repository of data. The idea of
a distributed blackboard is to distribute the information (data) among the
agents.

Practically, a blackboard is a mapping of symbols (hierarchically organized
in nested name-spaces, e.g. robot0.sensors.collision.2) to variables.
This scheme is supposed to uniformly implement several and different pro-
cesses, such as message passing, shared memory, distributed data and local
variables. A blackboard is implemented with an hash table of names to
variables. Each variable has a set of atributes, such as scope, location, pol-
icy, type and lock. Also, there are a set of primitives to access the variable:
read, write, hook and lambda [16].

4.2 Agent Programming

The syntax of the language is based on LISP. The agent programming is
supported on three elements: (production) rules, states and events. Each
agent has a private set of variables. Each one of these elements are defined
by clauses.

The syntax of a rule is

(:if expression
:then clauses! :go-state state-specl
:else clauses? :else-state state-spec2)

being interpreted as usual — if expression returns true, clauses! is evaluated
while state-specl specifies a state transition. Otherwise, clauses2 and state-
spec2 are taken into account.

157

The state clauses have the syntax:
(:on-state state-cond [clause]*)

which simply takes into account the contained clauses when the state satis-
fies the state-cond condition.

The event concept corresponds to the interactive nature of robotic applica-
tions, which sense-think-act loops are a much more natural approach than
the classical functional recursive decomposition paradigm [13, 12]. The syn-
tax of an event clause is

(:on-event event-spec :do clauses! :scope clauses2)

where the contained clauses are taken into account only when an event
satisfying the event-spec specification occurs.

The execution model is different from that in RUBA, in the sense that the
rules are only scanned once, when the agent is created. These clauses may
trigger state changes, which makes the agent scan other clauses. This can
be understood as an event based model, which is an implicit loop model.

4.3 Low-level Integration

In a real-robot context, the issue of integrating high-level programming and
the hardware interface arises. One possible form of doing so consists of using
an FFI (foreign function interface). However, there is a cleaner alternative,
which avoids the overhead of a cross function calling — a low-level access
to the blackboard. In fact, the low-level interface looks just like any other
agent(s) transacting information with the blackboard, reading and writing
from/to variables in the blackboard.

5 Conclusions and Future Work

Currently, our robots are capable of simple but essential behaviors, com-
posed of primitive tasks, such as following a ball, kicking a ball, scoring goals
and defending the goal, using vision-based sensors and the other available
sensors. Our current and future work is centered on i) development of the
self-localization system based on a vision camera and a mirror, ii) update
and tuning of the low-level software, iii) design and implementation of an
agent-based programming language suitable for multi-agent systems, iv)
study and development of a teamwork model and its integration with our
functional architecture.

The work has been carried out in a bottom-up fashion, since we believe that
many conceptual issues can be raised from and are strongly constrained by
the actual implementation problems. Nevertheless, the basic framework
described in the paper, concerning hardware, software and functional archi-
tectures, was defined in the beginning of the project and has been essentially
kept unchanged so far.

158

References

[1]
2]

3]

Linux online. URL: http://www.linux.org, 1998.

R. Alamis, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-robot
Cooperation in the MARTHA Project. IEEE Robotics and Automation
Magazine, 5(1), March 1998.

P. Aparicio, R. Ventura, P. Lima, and C. Pinto-Ferreira. ISocRob
- Team Description, chapter In Minoru Asada and Hiroaki Kitano,
editors, RoboCup-98: Robot Soccer World Cup II. Springer-Verlag,
Berlin, 1999.

P. Cohen and H. Levesque. Teamwork. Technical Report 504, Center
for the Study of Language and Information, SRI International, March
1991.

Alex Drogoul and C. Dubreuil. A distributed approach to n-puzzle
solving. In Proceedings of the Distributed Artificial Intelligence Work-
shop, 1993.

Alex Drogoul and J. Ferber. Multi-agent simulation as a tool for mod-
eling societies: Application to social differentiation in ant colonies. In
Actes du Workshop MAAMAW’92, 1992.

B. Grosz and S. Kraus. Collaborative plans for complex group actions.
Artificial Intelligence, 86:269-358, 1996.

N. R. Jennings. Controlling cooperative problem solving in indus-
trial multi-agent systems using joint intentions. Artificial Intelligence,
75:195-240, 1995.

P. Lima and C. Cardeira. The MiniRobot Project: Learning from
Building Small Mobile Robots. IST Science € Technology, 3, December
1998.

Michael Mateas. An oz-centric review of interactive drama and be-
lievable agents. Technical Report CMU-CS-97-156, Carnegie Mellon
University, 1997.

A. Paiva, J. Self, and R. Hartley. Externalising learner models. In
International Conference on Artificial Intelligence in Education, 1995.

Lynn Andrea Stein. Preaching what we practice: How ai is changing
the concept of computation. AAAI-97 Invited Presentation, July 1997.

Lynn Andrea Stein. Interactive Programming In Java. Morgan Kauf-
mann, 2001. (to appear).

Peter Stone and Manuela Veloso. Multiagent Systems: A Survey from
a Machine Learning Perspective. Technical Report CMU-CS-97-193,
CMU, School of Computer Science, Carnegie Mellon University, May
1997.

M. Tambe. Towards Flexible Teamwork. Journal of Artificial Intelli-
gence Research, 7:83-124, 1997.

R. Ventura, P. Aparicio, and P. Lima. Agent-based programming lan-
guage for multi-agent teams. Technical Report RT-701-99, RT-401-99,
Instituto de Sistemas e Robética, IST-Torre Norte, March 1999.

[17]

159

Rodrigo M. M. Ventura and Carlos A. Pinto-Ferreira. Problem solv-
ing without search. In Robert Trappl, editor, Cybernetics and Systems
’98, pages 743-748. Austrian Society for Cybernetic Studies, 1998. Pro-
ceedings of EMCSR-98, Vienna, Austria.

Mike Wooldridge and Nick Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2), 1995.

Alex S. Fukunaga Y. Uny Cao, Andrew B. Kahng, and Frank
Meng. Cooperative Mobile Robotics: Antecedents and Di-
rections. In hittp://www.cs.ucla.edu:8001/Dienst/UI/2.0/Describe/-
nestrl.ucla_cs %2f950049%abstract=Cooperation, December 1995.

