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Abstract. Dual Dynamics (DD) is a mathematical model of a behav-
ior control system for mobile autonomous robots. Behaviors are specified
through differential equations, forming a global dynamical system made of
behavior subsystems which interact in a number of ways. DD models can be
directly compiled into executable code. The article (i) explains the model,
(ii) sketches the Dual Dynamics Designer (DDD) environment that we use
for the design, simulation, implementation and documentation, and (iii)
illustrates our approach with the example of kicking a moving ball into a
goal.

1 Introduction

In the RoboCup mid-size league, robots have to kick a ball into the right
direction. For many reasons, this is a hard task, which calls for robotic
methods from many fields:

1. The situation on the field changes rapidly and drastically. This sug-
gests a reactive, behavior-based approach to robot control [Brooks,
1991].

2. Kicking a moving ball is a continuous and dynamic task. Methods
from continuous-time robust control (like in [Aicardi et al., 1995]) are
required.

3. The meaning of “. . . into the right direction” also varies dynamically.
A self-organising, dynamical-system realization of goals and motiva-
tions seems appropriate here [van Gelder, 1998].

4. Playing football involves many different kinds of actions, with com-
plex relations and interactions between them. A hierarchical repre-
sentation of actions and action selection control is a natural approach
to handle this complexity [Tyrrell, 1993].
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5. Developing complex robots is done in many iterated design-redesign
cycles, often with substantial modifications both on the hardware,
low-level software, and control program level. State-of-the-art co-
design tools can become critically beneficial [de Micheli and Gupta,
1997].

This list is certainly incomplete, but it demonstrates that designing football-
playing robots is a complex, interdisciplinary challenge. From a traditional
engineering perspective, this cries out for a modularized, hybrid approach,
where different specialized subsystems are designed by different specialists,
with well-defined interfaces between them.

However, there are indications that the classical divide-and-conquer ap-
proach is not fully appropriate for football-playing robots. A fast, au-
tonomous robot in a continuously dynamic environment must continuously
construct a stream of action from a stream of sensor information. This
is connected to, but transcends, the well-known action selection problem
[Maes, 1990]: construction is harder than selection. The imperative of con-
tinuously “doing the right thing” can only be met by an agent that acts
“holistically”, or to use a more modest term, in an integrated fashion. It is
difficult to conceive how a classical modular system can rise to this task, at
least when it consists of subsystems that communicate with each other over
relatively narrow channels according to strict protocols, hiding from each
other most of what is going on inside them. Unfortunately, the notion, “to
act in an integrated fashion”, is as vague as the term “modular”. Practi-
cal examples of robotic systems that more or less successfully construct a
stream of action will help us to advance our understanding.

Building such a robotic system can only be achieved by a team of engineers
that also behaves in an integrated way. At the very least, this means that
there is a close, mutually informed collaboration – information hiding of
any sort stands in opposition to the goal of building a system that can act
in an integrated fashion.

Thus, a fundamental challenge for mobile robotics is to reconcile, (i) the
need for some sort of modular design, which results from the necessity of
bringing together diverse techniques and human specialists, with (ii) inte-
gratedness both in the robot and in the developing process.

At the Behavior Engineering (BE) research group in the GMD Institute of
Autonomous Intelligent Systems (AiS, http://ais.gmd.de) we explicitly ad-
dress this challenge. Our approach rests on two pillars. On the one hand,
we develop a mathematical model of a behavior control system, which to
a certain degree integrates the points 1 – 4 mentioned in the beginning: a
behavior-based approach, robust control, a dynamical systems representa-
tion of actions and goals, and a hierarchical architecture. This is the Dual
Dynamics (DD) model [Jaeger and Christaller, 1998]. On the other hand,
we develop and utilize a design tool that fosters a close collaboration of
engineers, by providing everyone with a unified access to the entire robot
control system under construction. This is the Dual Dynamics Designer
(DDD) tool [Bredenfeld, 1999].

In this article, we give a quick introduction to the DD model (Section 2),
describe the DDD tool (Section 3), and demonstrate its application with
the example of kicking a moving ball (Section 4).
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2 The Dual Dynamics model of behavior con-
trol

The Dual Dynamics scheme is a mathematical model of a behavior control
system for autonomous mobile robots. It has grown from three roots: the
behavior-based approach to robotics, the dynamical systems approach to
cognition, and the mathematical theory of self-organizing dynamical sys-
tems. Discussions of these foundational topics can be found in [Jaeger and
Christaller, 1998] [Jaeger, 1998] [Jaeger, 1997]. In the present article we
concentrate on the mathematical and technical aspects of DD.

Behaviors are formalized as dynamical systems, using ordinary differen-
tial equations (ODEs). These dynamical systems interact through shared
variables and certain control relations, yielding an complex control system,
which in its entirety again is a dynamical system. The DD model speci-
fies certain structural and dynamical constraints on admissible interactions
and control relations between the various dynamical subsystems, which will
be informally explained in this section. The formalism is mathematically
specified in [Jaeger and Christaller, 1998].

The basic assumption on which DD rests is that a situated agent can work
in different modes. Modes are coherent, relatively stable “frames of mind”,
which enable the agent to tune into different situations and tasks. Specif-
ically, agents respond to sensory signal differently in different modes. In
defend mode, a football robot would react to a ball quite differently than
when it is in attack mode. The DD approach rests on the assumption
that transitions between modes can be formally captured by bifurcations
of dynamical systems. A direct implication of casting mode changes as bi-
furcations is that such changes are qualitative, discontinuous changes, not
gradual ones. Our football robots do not gradually change from defend to
attack mode, they either defend or attack. However, since these transitions
are regulated by dynamical systems (in contrast to finite state machines),
the decision point is dynamically and continuously tuned by the full wealth
of incoming sensor information.

In the remainder of this section, we explain how this basic idea becomes the
ordering principle for a dynamical systems engineering approach to behavior
control.

The main building blocks of a DD robot architecture are behaviors. They
are ordered in levels (fig. 1a). At the bottom level, one finds elementary
behaviors: sensomotoric coordinations with direct access to external sensor
data and actuators. Typical examples are kick or fixateBall. At higher
levels, there are increasingly comprehensive behaviors. They also have ac-
cess to sensoric information but cannot directly activate actuators. Their
task is to regulate modes. As a first approximation, higher-level behaviors
can be seen as instantiations of modes. An example of a first-level behavior
in our football robots is challenge1, which corresponds to the first video
qualification task of finding a ball and scoring a goal without opponents.
Second-level higher behaviors would be even more comprehensive. For in-
stance, attack would be a second-level behavior which coincides with the
attack mode.

Elementary behaviors are different from higher-level behaviors in that they
are made from two subsystems (fig. 1a), which serve quite different purposes.
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Figure 1: (a) Global structure of a DD behavior control system. At
any time, every behavior has an activation. Activations of higher-
level behaviors (depicted in shaded boxes) act as control parameters
for the activation dynamics of lower levels. The dynamical system
which maintains a behavior’s activation can undergo bifurcations; this
in indicated by depicting these systems as stylized “phase diagrams”
(boxes with irregular partitions). A mode of the entire system is thus
determined by the activations of all higher-level behaviors. (b) The
target and activation subsystems of an elementary behavior.
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This has given the approach its name, “dual dynamics”.

The first of these subsystems is called the target dynamics. It calculates
target trajectories for all actuators which are relevant for the particular
behavior. For this calculation, the target dynamics has access to every rele-
vant sensor information, and typically includes specific sensor preprocessing.
The output of the target dynamics consists of as many variables as there
are motoric degrees of freedom to be controlled.

A requirement for the target dynamics is that this system should not un-
dergo bifurcations. This is what makes elementary behaviors elementary,
and provides a very helpful criterium for deciding which behaviors are, in
fact, elementary. For instance, the target trajectories of kick in our simple
wheeled football robots are likely to remain qualitatively unchanged in dif-
ferent instances of the maneuver. Thus, kick would be a good candidate for
an elementary behavior. By contrast, in an anthropomorphic football robot
it is likely that there will be qualitatively different kicking maneuvers dif-
ferent circumstances. Each of them would thus yield a separate elementary
behavior.

From an engineering perspective, the target dynamics is just a motor con-
troller for a specific task. DD is not committed to a particular type of
controller – any controller which promises success is welcome. The “no bi-
furcation” requirement, in this perspective, means that one has a uniform
control law. X-Mozilla-Status: 0000

The other subsystem of an elementary behavior is its activation dynamics.
It regulates a single variable, the behavior’s activation. The equation ruling
this variable should be written in a way that the variable displays a dynamic
range between 0 and 1. Intuitively, a value of 1 means that the behavior is
fully active, whereas 0 means that it is completely inhibited. High values
of the activation mean that the target trajectories computed in the target
dynamics are passed through to the actuators (cf. 1b).

The activation dynamics is allowed to undergo bifurcations. The control
parameters which induce these bifurcations are the activation variables of
higher-level behaviors. This is the core idea behind DD.

To illustrate this central point, consider the level-1 behaviors charge (quick
advance with ball) and freeBall (liberate ball which has got stuck at wall
or between robots). Consider an elementary behavior bumpRetract, a pro-
tective reflex which generally means: retract when the robot bumps into
things. Standardly, the activation of bumpRetract jumps to 1 when the
front bumper sensors are hit. However, this dynamical response changes
qualitatively in different modes. Assume that the robot is charging and
pushes the ball in front of itself. The bumper will be frequently hit by the
ball. However, the activation of bumpRetract should not be triggered in
this circumstance. Technically, the high activation of the level-1 behavior
charge works on the activation dynamics of bumpRetract as a control pa-
rameter, pushing this dynamical system into a regime where it does not
respond to bumper signals if the ball is seen directly in front. Now assume,
by contrast, that the robot is trying to get the ball unstuck. Its level-1 be-
havior freeBall should have an activation of about 1. This value is again
passed to the activation dynamics of bumpRetract as a control parameter,
changing the response characteristics of this dynamical system. It should
now indeed retract even when hitting the ball, since it makes little sense
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to try getting a ball unstuck by pushing it further into where it’s been got
stuck. In technical terms, the activation dynamics of bumpRetract under-
goes a bifurcation when the activations of charge and freeBall change in
a certain way.

These bifurcations are mathematically designed in the simplest possible
way. For each relevant higher-level behavior, the activation equation is
equipped with a particular additive term, which is multiplied with the con-
cerned higher-level activation. For instance, the equation for the activation
αbumpRetract would be controlled by the activations αcharge and αfreeBall in
the following way:

α̇bumpRetract = αchargeT1 + αfreeBallT2 + . . .+ decay, (1)

where T1, T2 are hand-designed dynamical laws which yield an appropriate
activation characteristics in the charge and freeBall modes. The decay
term and other details are explained in [Jaeger and Christaller, 1998].

To reiterate, only the activation dynamics subsystem undergoes bifurcations
in a properly designed DD scheme. The fact that bifurcations (which are
inherently difficult to master from a designer’s perspective) are confined
to these single-variable subsystems is critical for the transparency of DD
behavior control systems.

Higher-level activation variables yield control parameters for lower-level ac-
tivation dynamics. Now, in the theory of dynamical systems it is assumed
that control parameters change on a (much) slower timescale than the sys-
tems they control. This implies that behaviors on different levels in a DD
architecture must have different timescales, with higher-level behaviors be-
ing long-term and lower-level behaviors become active/inactive on a short-
term scale. This provides the designer with a formal criterium for level
organization: order higher-level behaviors according to time scales.

We emphasize that an elementary behavior is not “called to execute” from
higher levels. The level of elementary behaviors is fully operative on its
own and would continue to work even if the higher levels were cut off. The
effect of higher levels is not to “select actions”, but to change the overall,
integrated dynamics of the entire elementary level, by inducing bifurcations
in the activation dynamics on that level.

3 The dual dynamics design tool

Programming a football playing robot is a group activity, where different
researchers are occupied with designing different branches and levels of the
overall robot control system. In order to achieve an “integrated” behavior,
the design process must be maximally transparent for all group members.
Essentially, everybody must be able to understand and use, what everybody
else designs. Therefore, we have developed a unified software developing en-
vironment, the “Dual Dynamics Designer” (DDD). Specifically, DDD pro-
vides automated editing, documentation, simulation and code generation
facilities.

The primary graphical user interface for designing a DD model is shown in
Fig. 2. It includes icons of sensors, sensor filters and intermediate sensor
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Figure 2: The primary DDD user interface. The example shows a
basic roam behavior with bumper-based obstacle avoidance. Sensor
filters and intermediate representations are on the left, higher-level
behaviors (only roam in this case) are on the right upper part, and
elementary behaviors on the right lower part of the screen.

representations, elementary and higher-level behaviors. Important global
variables and constants (time constants, especially) appear highlighted be-
sides the concerned icons. By clicking on the icons, context-sensitive editor
windows pop up in which equations and/or ODEs can be specified in an
intuitive syntax.

After designing the network of behaviors and preprocessing filters, a syntax
check, global and local variable detection and checking for cyclic dependen-
cies between equations is performed in a compilation step. Cyclic dependen-
cies (which are unavoidable in coupled dynamical systems) are highlighted
in the graphical representation on the screen. It is left to the designer to
schedule a processing order for cyclically connected variables, which s/he
can do by simply rearranging the icons from left to right.

By hitting the C, Java, and Robot buttons, executable standard C code,
Java code, and robot C++ code is generated. The Java code can be fed
into a simulation engine, which currently simulates the interaction of a sin-
gle robot and a ball in an empty arena. The simulator provides a number of
diagnostic traces of activations and target variables, as well as a graphical
rendering of the robot’s doings in the arena. We find the simulation of ines-
timable value in detecting “dynamo-logical” misconceptions in the designed
activation and target dynamics.

The DDD tool is based on a proprietary object-oriented behavior represen-
tation, which is taken as common source for all target code generators (C,
C++, Java, HTML). Therefore, the C++ code generated for our robots’
onboard PCs, exactly mirrors the Java code used in the simulation. The
generated documentation is common for all targets and hides language de-
pendent implementation and syntactical details from the behavior designer.
The documentation of the sensor preprocessing and DD control program al-
lows a convenient inspection of all parts of the robot control system, ordered
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by various aspects.

The DDD tool itself is constructed with the Rapid Prototyping Environment
APICES [Bredenfeld, 1998]. Readers interested in software engineering as-
pects can find more details on the software architecture and development
process of the DDD tool in [Bredenfeld, 1999].

An exemplary control program (sketched in the next section), the simulator,
and the documentation are available on our web server at
http://ais.gmd.de/BE/ddd/, and can be run on Web browsers that support
Java (tested on Netscape).

4 Kick a moving ball: a case study

In this section we sketch a DD behavior control system for achieving the first
RoboCup-99 video qualification task. This task for a single robot consists
in finding a stationary ball and scoring a goal without opponents. We made
this task a bit more difficult by using a ball that rolls about while the robot
tries to find and kick it.

We employ a team of custom-built 2 degree of freedom,
1-PC-3-microcontroller equipped robots that rely on the well-known New-
ton Lab’s Cognachrome system for ball and goal detection, infrared-based
distant obstacle avoidance and otherwise standard bumper ring sensors and
odometry. The robots do not have concavities to guide the ball. Instead,
they hit the ball with their straight front portion and rely on billiard-like
ball reflection. A more detailed description of our robots is given in [Kuth et
al., 1998].

The difficult part of this task is kicking the moving ball into the right
direction after it has been spotted. This implies hitting the ball with some
appropriate (underconstrained) combination of angle, velocity and position,
grounded on rather noisy estimates of ball state. This problem lies well
beyond the powers of classical approaches to motor control.

We approached the task by breaking it up into various elementary behaviors,
each of which comes with its own sensor-motor control strategy. The overall
goal is solved by an appropriate chaining, superposition, and inhibition of
the participating activation dynamics.

Fig. 3 lists the relevant behaviors (a) and depicts a typical search–intercept–
kick episode (b). The latter diagram was obtained from an simulation im-
plemented in Mathematica in the early stages of the DDD development.
Initially the robot does not see the ball, having a vision field of only ± 33
degrees. When ignorant of the ball position, the robot falls into search

mode. Besides some obstacle avoidance behaviors, this mode basically com-
prehends only the elementary behavior whirl. The motor commands issued
by whirl consist of a simple alternation of straight move-forwards and cir-
cles. This pattern is active until the ball is seen after a half left turn. Seeing
the ball, the robot falls into challenge1 mode. The elementary behaviors
behindBall, turnToBall, position, and kick can now potentially become
activated. It depends on the situation and history which behavior is trig-
gered. In the example in Fig. 3(b), behindBall is activated first. Its control
law says: “move toward own goal at max velocity until robot is well behind
ball”. The next behavior is turnToBall (“turn into direction where ball
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Figure 3: (a) The behaviors involved in the first qualification video
task (several obstacle avoidance behaviors are omitted). (b) A suc-
cessful (simulated) search – intercept – kick episode. The diagram
shows head view of arena, opponent’s goal on the right side. Ball
(thick black line) starts at lower left corner with velocity 95 cm/sec.
Robot (narrow black line) starts at lower right corner. Dotted lines
connect equitemporal points on robot and ball trajectory every sec-
ond. Shaded lines indicate activation periods of elementary behav-
iors.
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is expected”), followed by position (“move to a position from which ball
can be kicked into goal”) and finally, kick (“bump into ball with velocity
that makes it billiard-bounce toward goal”). During this sequence, there
are also two activation periods of fixateBall. This is a mode-independent
(technically: root-mode) elementary behavior, which tries to keep the ball
inside the vision cone for about 1 sec – the time needed for sampling enough
video frames for a useful estimate of the ball vector. Finally, there is a brief
activation of noSelfGoal (“if in danger of kicking ball into own goal, avoid
the ball”), which however in this case has no motor effects since the robot
quickly calculates that it avoids the ball anyway.

The sensor-motor control laws of these behaviors range from trivial to tricky.
For instance, the motor target trajectories generated by whirl are actually
entirely precoded and independent of sensor input. The target dynamics
of position, by contrast, includes mechanisms of ball prediction and a
position evaluation.

The powers (and difficulties) of the DD approach, however, lie in the activa-
tion dynamics rather than in the target dynamics. Several mechanisms, all
of which are locally coded into the activation dynamics laws of the behav-
iors, control the interaction and trigger pattern of these activations. The
most important mechanisms are:

Sensor conditions. Activate or inhibit a behavior when certain sensor
input conditions are satisfied. Example: kick gets active “oppor-
tunistically” when ball is seen roughly in line with goal.

Chaining. Activate a behavior when certain other behaviors become deac-
tivated. Example: kick gets active when the activation of position
goes down.

Inhibition. Inhibit a behavior by the activation of others. Example: most
behaviors are inhibited by obstacle avoidance behaviors.

Furthermore, these activations can be gradual (e.g., fixateBall’s activation
grows with the uncertainty of ball estimates) or almost binary (standard
case); they can have a fast dynamics (typical example: protective reflexes)
or a slow one (useful for behaviors whose motor trajectors blend into one
another, for example the transition from position to kick is relatively
slow).

Interested readers can inspect all equations of the behavior system presented
here in the automatically generated DDD documentation at
http://ais.gmd.de/BE/ddd/chall1.html.

5 Conclusion

Identifying and coding appropriate dynamical activation schemes is decisive
for the performance of a DD control system. Specifically, a simple switch-on
/ switch-off chaining of behaviors (like in classical action selection literature)
is insufficient for a motor control task as complex and dynamic as the one in
RoboCup. The phenomenology of dynamic onset, offset, and superposition
of behaviors is rich and only dimly understood. We also believe that the elu-
sive “integratedness” of situated motor control, which we mentioned in the
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introduction, is somehow connected to the problem of shaping appropriate
activation patterns. Currently the DD framework does not spell out how
the terms T in activation equations (cf. eqn. (1)) have to be written. How-
ever, certain standard terms in the activation equations begin to evolve in
the BE group’s everyday work. One of our major current research topics is
to develop a systematic repertoire of such activation schemes, and integrate
them into the DDD tool. Other robotics goups with whom we collaborate
[Steinhage and Schöner, 1998] have started to work along the same lines.
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