
118RoboCup-99 Team Descriptions

Middle Robots League, Team CS-Sharif, pages 118–126

http://www.ep.liu.se/ea/cis/1999/006/20/

CS-Sharif ROCS99 team in middle-sized robots
league

CS-Sharif

Mansour Jamzad

MJ: Sharif University of Technology, Iran

Abstract. Arvand is a robot specially designed and constructed for
playing soccer according to RoboCup rules and regulations for the medium
size robots. This robot consists of three main parts: mechanics (motion and
kicker), hardware (image acquisition, processing and control unit) and soft-
ware (image processing, motion control and decision making). The motion
mechanism is based on a drive unit, a steer unit and a castor wheel. Robot
machine vision system uses a CCD camera and a frame grabber. Two mi-
crocontroller based boards are specially designed for carrying out the software
system decisions and transferring them to the robot mechanics. The soft-
ware system can perform real time image processing and object recognition.
It implements algorithms for playing soccer. These algorithms are writ-
ten in a high level language ”ArvandLan” specially designed for mobilizing
these robots. By changing the algorithms our robots can play as goal keeper,
attacker or defender. We have constructed 5 such robots and successfully
tested them in a soccer field defined according to RoboCup regulations.

1 Mechanics Architecture

In the following we describe the steps of design and construction of our
special purpose robot for soccer playing.

According to the motion complexity of a soccer player robot, proper design
of its mechanics can play a unique role in simplifying the playing algorithms.
For attaining this goal, there is a need to a mechanism that can easily and
with the most accuracy provide the robot with its motion demands. In this
regard, after performing several experiments on the motion mechanisms of
mobile robots a specific mechanism was designed and implemented that
together with the sensors and control feedbacks, to a good extent, verified
our expectancy. The first experiment in producing Arvand was making a
model car chassis that did not provide us with expected motion capabilities
such as dribbling, penalty kick, intercepting and preserving the ball. For
this reason, the mechanism described below, was designed and implemented.

119

1.1 Motion Mechanism

Arvand consists of two motion units in front of the robot and one castor
wheel in the rear. Each motion unit has a drive unit and a steer unit. The
functionality of drive unit is moving the robot and that of steer unit is
rotating the drive unit round the vertical axis of its wheel. The drive unit
consists of a wheel which is moved by a DC motor and a gearbox of 1:15
ratio [1]. The steer unit uses a DC motor and a gearbox of 1:80 ratio. Drive
unit and steer unit use the same kind of DC motors. For controlling the
steer unit, the optical encoders are mounted on the respective motor shaft
and their resolutions are such that one pulse represents 0.14 degrees of drive
unit rotation. The castor wheel consists of a spherical ball that roles in an
special purpose ball bearing. By this structure Arvand can move in any
direction freely.

This mechanism has the following capabilities:

1. By rotating the drive unit round its vertical axis the rotation center
of the robot changes accordingly and this allows the robot to turn
around any point in the plane. This point can be selected inside or
outside the robot. It is necessary to adjust the speed of two drive
units according to the following formula [2]:

v1.r2 = v2.r1 (1)

In the above formula v1 and v2 is speed of the left drive motor and
right drive motor respectively, r1 is the distance of the left drive unit
from the rotation center and r2 is the distance of the right drive unit
from the rotation center. Therefore, the robot rotation center will
not depend on the robot center of gravity and on the position of
drive units in the robot. For instance if we consider the center of
ball the rotation center, the robot is able to turn around this center
point in a way that it does not lose its sight of the ball and make the
appropriate direction according to the opponent team goal position.
One of the advantages of our design is the possibility of making the
robot rotate around its geometrical center. This kind of rotation
is done in a minimum amount of area which reduces the chance of
accidental bump to wall or other robots.

2. In our software system we can set the drive units to be parallel to
each other and also have a specific angle related to robot front. This
mechanism is useful for taking out the ball when stuck in a wall corner
and also dribbling other robots.

1.2 Kicker Mechanism

Appropriate use of a kicker in robot plays an important role in team play
algorithms and individual technics. Therefore, we have designed a kicker
with controllable kicking power. For instance, it can be applied to passing
in the team play. We tested several kickers using a motor unit and also a
solenoid. The solenoid was selected because of its efficiency in power usage.
The kicker consists of a solenoid and a simple crowbar connected to a kicking
arm. The kicking power is controlled by duration of 24 DC voltage applied
to it.

120

2 Hardware Architecture

The goal of our hardware architecture is to have a kind of hardware control
on the robot that would be independent of software system as much as
possible and also reduce the robots mechanical errors.

Arvand hardware system consists of three principal subsystems which are
described in the following:

2.1 The Image Acquisition Unit

The image acquisition unit output is a digitized color RGB image. For the
first experimental implementation of Arvand, a Connectix Color Quick-
Cam2 was utilized. It could transfer the digitized captured image via
the parallel port. Because of its low resolution and low capture speed,
a faster imaging system was needed. Consequently, we chose a PixelView
CL-GD544XP+ capture card which provides Arvand with images having
a resolution of 704x510 with the frame rate of 30 frames per second. The
camera which we use is a Topica PAL color CCD camera with a 6mm lens.
The PixelView card can be utilized under Linux, Windows and Dos.

2.2 The Processing Unit

The robot main processing unit consists of an Intel Pentium 233 MMX
together with a main board and 32MB RAM. There are two serial ports
onboard that are used as communication means with the control unit. A
floppy disk drive is installed on the robot from which the system boots
and runs the programs. Because of power supply problems and also hit
sensitivity, a hard disk drive could not be applied.

2.3 The Control Unit

The control unit has been designed such that it can sense the robot, can
inform the processing unit of the status and also fulfill the processing unit
commands. Because of reduction in the number of wires which increases the
robot robustness, communication between the control unit and the process-
ing unit is done via two serial ports with RS-232 standard [3]. The control
unit consists of two similar Intel 89C51 microcontroller based boards which
we have designed. For further information about the Intel 89C51 micro-
controller specifications, you can refer to [4]. One control unit board is
represented in figure 1.

As it is shown in the figure 1, an Intel 89C51 microcontroller has been uti-
lized to control the respective motors, kicker, encoder and limit switches.
There are three power amplifiers which amplify the pulses which are gener-
ated by the microcontroller to control the speed of the motors and to drive
the solenoid. The PWM pulse frequency is about 70kHz. The amplifier
output is applied to the respective motor or kicker.

121

Power
Amplifier

-PWM
Direction

Intel

89C51

Microcontroller

- Drive

Unit

�Current

Feedback
ADC ��

-PWM
Direction

Logic

Circuit

Limit

Switches
�

-Power

Amplifier
- Drive

Unit

�

Current

Feedback
�ADC ��

-Power

Amplifier
- Solenoid

'

&

$

%
�

Encoder

&

Make Straight Opto-Interrupter

�

Figure 1: The Arvand control diagram. Each robot has two of these
circuits, one for each side of the robot.

122

As the robot size is limited, drive units must not exceed the robot boundary
limits. Therefore, two limit switches have been devised for each steer unit.
These two limit switches confine the rotation domain of the drive unit by
not allowing the power amplifier to apply any pulses to the steer motor in
the respective directions when the drive unit has reached its limit.

The current drawn by each motor can be sampled by the microcontroller
using an A/D Converter. This gives the microcontroller the capability of
realizing the motors status and informing the processing unit of the robot
status.

As it is mentioned in the mechanics architecture section, the rotation center
point critically depends on the angle of the drive units. For the accuracy of
controlling the angle of a drive unit, an encoder has been mounted directly
on the respective motor shaft. One of the microcontroller duties is counting
the pulses generated by this encoder. Each pulse represents 0.14 degrees of
the drive unit rotation.

Hence, this architecture can provide the robot with the following capabili-
ties:

1. Rotating around a point in the plane (formula 1) can be achieved by
controlling speed of the drive units together with rotating them to an
appropriate angle.

2. Controllable motor speed allows Arvand to move smoothly in the
field. This augments the quality of Arvand individual technics. For
instance, if Arvand can reduce its speed when it approaches a still
ball in the field, the chance of gaining the ball increases. In addition,
controllable kicking power can be useful for team play skills such as
passing and stopping the ball.

3. It has been observed that a mobile robot may bump into barriers in
its work field. It is an advantage for a robot to detect when it is
stuck. Arvand control unit detects when it is stuck and alerts the
processing unit to make an appropriate decision. This is done by
checking the drive motors current feedback.

Finally, we are going to add a communication unit to Arvand which directly
helps the team play algorithms.

3 Software Architecture

Software architecture of Arvand consists of three parts:

� Image Processing

� Motion Control

� Decision Making

In constructing each of the above parts and in linking them together, our
developing approach is based on O.O.P. Consequently, there are three main
classes. As it is described in the hardware architecture section, we could
not use a hard disk. Therefore, we had two choices for our robot operating
system, Linux and Dos. Because there are numerous programming tools in
Dos, we chose the latter.

123

3.1 Image Processing Module

In our system, object detection is based on detecting the object color. We
have experimented RGB 1 and HSI 2 color models [5] and chosen HSI model
because of its advantage in representing approximately each color in a cube
in HSI space. In HSI model a color can be detected by determining its
domain in HSI space. To find all objects in a scene the image matrix is
processed from top to bottom only once. In order to speed up this routine,
instead of examining each single pixel in the image matrix, only one point
from sub windows of size mw ×mh

3 is tested. If this point has the desired
color, then moves upward in one pixel step until hitting a border point.
At this point a clockwise contour tracing algorithm is performed and the
border points of the object are marked. If the object size is larger than a
predefined amount it is recognized as an object, otherwise it is taken as a
noise.

To find the next object the search is continued from the start point from
which the previous object was found. In our search for the next object
the marked points are not checked. At the end of this step, all objects are
detected. A second algorithm will determine which objects are noise and
will eliminate them. A third routine calculates all necessary information
such as object type (i.e. there can be more than one object with the same
color) distance and angle for ”Decision Making Module” [6].

3.2 Motion Control Module

This module is responsible for receiving the motion commands from the
”Decision Making Module” and putting the hardware to work. As it is men-
tioned in the hardware architecture section, the communication between the
processing unit and the control unit is via two onboard PC serial ports us-
ing RS-232. So, just some basic computations are done in this module and
commands are sent via serial ports to the microcontroller. The program
loaded in the microcontroller is responsible for performing them. For ex-
ample, some commands are kick, go(forward), go(backward), rotate(left),
rotate(right), rotate round(left, 10) (this stands for rotation around a point
10 centimeters straight from the Arvand geometrical center) and etc.

3.3 Decision Making Module

Principally, the decision making module is referred to that part of Arvand
software that processes the results of image processing module, decides ac-
cordingly and finally commands the motion control software.

For designing this part, the first work was to develop simple Arvand skills
such as finding an object, move towards an object up to a distinct distance
and etc. After that, for simplifying the high level programming, we de-
signed and implemented ArvandLan high level language. In addition to
the previously implemented skills and also low level skills, some facilities
were devised for creating automata and some other advanced capabilities.

1Red, Green, Blue
2Hue, Saturation, Intensity
3mw and mh can be the sizes of the smallest object

124

The time needed for a frame acquisition and its processing period is called a
time step. The automaton state transition happens at the end of each time
step, if no interrupt node has been executed in that time step.

In ArvandLan there are some instructions that are concisely as follows:

� MakeNode that is used to introduce a new node in our automaton.
Each node can contain a piece of C code that is exactly what is
executed in that node.

� TransitionFile that shows the file that contains the automaton tran-
sitions. Each transition determines the source and target node and
the condition under which it is applied.

� MakeGlobalNode that is used to define a global node which is a
node that has an execution condition and is executed every time its
condition is satisfied (independently of the automaton status). For
instance, a usage of these nodes is when the robot sees a fixed object
in the field and resets its position variables.

� MakeInterrupt which defines an interrupt node that has some exe-
cution conditions and is executed when its conditions are satisfied. If
an interrupt node is executed during one time step then the automa-
ton transition will not happen at the end of that time step. These
nodes can be used for handling exceptional conditions. For example,
when the robot is stuck.

The following example is a simple program using ArvandLan. By this
program, Arvand will first find the ball then catch it (move towards the
ball) and finally carry it ahead.

// Sample Program

/MakeNode find_ball in Free.Nde

/MakeNode follow_ball in Ball.Nde

/MakeNode adjust_ball in Ball.Nde

/MakeGlobalNode chng_str in ChStr.Nde

/MakeNode init_node in Free.Nde

/MakeInterrupt go_out in Free.Nde

/TransitionFile Test.Trn

/Define DefTest 132

/GlobalVariable {Begin}

float g1;

int g2, s0, s1;

unsigned long g3;

/GlobalVariable {End}

/Define {Begin}

DFN 0

FRW 1

/Define {End}

/GlobalVariable double strv, temp_chk;

125

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

Follow-Ball

Adjust-Ball

Find-BallInit-Node -
�

U

M
?

6

bh > 0

bh = 0

bh > 0�
�

�
�Chng-Str

�
�

�
�Go-Out

-

-bc > 10

bh = 0 ∧ bd > 200

|ba| ≥ 6

|ba| < 6

Figure 2: A sample program

// Sample Transition Function

[find_ball, ball_hist == 0, adjust_ball]

[adjust_ball, ball_hist > 0, find_ball]

[adjust_ball, abs(ball_angle) < 6, follow_ball]

[follow_ball, ball_hist > 0, find_ball]

[follow_ball, abs(ball_angle) >= 6, adjust_ball]

[,(ball_hist == 0) && (ball_dist > 200), chng_str]

[init_node, true, find_ball]

[,ball_cte > 10, go_out]

To put it in a nutshell, we omit details about modules which are called in
each node. Figure 2 represents the scheme of this example (To simplify the
figure we use abridged names for variables).

4 Conclusion

Arvand is the 2nd generation of robots constructed by our team. The 1st
generation participated in RoboCup 98 in Paris. This new version is more
advanced because of its image acquisition system, real time image process-
ing, microcontroller based controller boards, the kicker mechanism and also
its specially designed high level programming language. One advantage of
Arvand is its mechanics capability to rotate around any point in the plane.
This makes it possible for the robot to rotate around ball center while find-
ing the goal position. In practice, this capability enabled us to implement
special individual playing technics in dribbling, coming out when stuck and

126

taking out the ball from a wall corner. Another advantage of our robot is its
use of MS/DOS operating system. Because it can be executed on a floppy
disk which is a reliable device on a mobile robot. Our robots showed a good
performance in real test games and we are going to improve our software
algorithms based on individual technics and team play. A wireless LAN sys-
tem is under construction which enables our robots to communicate with
each other and perform team play.

References

[1] Shigley, J.E., Mechanical Engineering Design, McGraw-Hill, 1986.

[2] Meriam, J.L., Dynamics, John Wiley, 1993.

[3] Mazidi, M.A., and Mazidi, J.G., The 80x86 IBM PC and Compatible
Computers, Volume II, Prentice Hall, 1993.

[4] MacKenzie, I.S., The 8051 Microcontroller, Prentice Hall, 1995.

[5] Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-
Wesley, 1993.

[6] Jamzad, M., and others, An Autonomous Mobile Soccer Player Robot,
Submitted to RoboCup, 1999.

