Linkoping Studies in Science and Technology

Dissertation No. 611

Anchoring symbols to sensory data
by

Silvia Coradeschi

Department of Computer and Information Science
Link&pings universitet
SE-581 83 Linktping, Sweden

Link6ping 1999

ISBN 91-7219-623-8
ISSN 0345-7524

Printed in Sweden by UniTryck
Linkoping 1999

Abstract

Intelligent agents embedded in physical environments need the ability
to connect, or anchor, the symbols used to perform abstract reasoning
to the physical entities which these symbols refer to. Anchoring must
deal with indexical and objective references, definite and indefinite
identifiers, and a temporary impossibility to perceive physical entities.
Furthermore it needs to rely on sensor data which is inherently affected
by uncertainty, and to deal with ambiguities. In this thesis we outline
the concept of anchoring and its functionalities. Moreover we define
the general structure for an anchoring module and we present an im-
plementation of the anchoring functionalities in two different domains:
an autonomous airborne vehicle for traffic surveillance and a mobile
ground vehicle performing navigation tasks.

Acknowledgments

The conclusion of a PhD gives the unique opportunity to thank the
people that have contributed not only to the thesis itself, but also to
the various tasks and duties accomplished during the PhD period.

First of all I would like to thank Dimiter Driankov, my main su-
pervisor. He has not only greatly contributed to the development of
this research with discussions and useful advice, but he has also taken
great care to create a pleasant working environment screening me from
conflicts and problems. I am greatly indebted also to Alessandro Saf-
fiotti, my co-supervisor. He has been the main inspirer of the work
on anchoring and it is thanks to him that my first ideas and examples
of anchoring have grown into a more systematic generalization of the
anchoring problem.

I would like to heartily thank Erik Sandewall not only for having
given me first the possibility to come to Linkoping University and
to do my PhD, but also for having trusted and supported me in a
risky enterprise such as the organization of the Third Robot World
Cup Soccer Games and Conferences, RoboCup-99. I am also greatly
indebted to Sture Hagglund, Anders Haraldsson, and Janete de Castro
for their help and support in RoboCup-99.

The work presented in this thesis has been developed to great ex-
tent as part of the WITAS project. I would like to thank all mem-
bers of the project and in particular the members of the vision group,
Klas Nordberg, Thord Andersson, Gunnar Farneback, and Johan Wik-
lund for having initiated me in the mysteries of Computer Vision; the
members of the autonomy group Patrik Haslum and Lars Karlsson
for having helped me in the integration with the reasoning layer; and
John Olsson and Tommy Persson for their patience while giving me
technical support.

Lars Karlsson, my partner in work and life, has been near me
during all the period of my PhD sharing with me the good and bad
moments. I want to heartily thank him for his support and under-
standing and especially for having shared with me the heavy burden

of the organization of RoboCup-99. I do not know how I would have
managed without his help.

A number of friends have been close to me during these years; I can
mention just some of them: Partick Lambrix, Tim Heyer, Nahid Shah-
mehri, Simin Nadjm-Tehrani, Mariam Kamkar, Paul Scerri, Marcus
Bjareland, Joakim Gustafsson, Jonas Kvarnstrom and Peter Jonsson.

I would like to thank the administrative staff: Lise-Lott Andersson,
Janete de Castro, Anne Eskilsson, and Anna Maria Uhlin for their
help; Lillemor Wallgren for her support and encouragement; and Ivan
Rankin for correcting the English of this thesis and for the good time
while we where sharing room in the E building.

Finally I would like to thank my parents for having taught me
the importance of study and self development and for supporting and
encouraging me through two masters and a PhD.

This research has been fully supported by the Knut and Alice Wal-
lenberg Foundation. A special thanks also goes to the AASS group at
Orebro University for their support to the work with the mobile robot.

Preface

The work presented in this thesis has been developed to great extent
as part of the WITAS project. Other members of the project have con-
tributed to its realization and part of the thesis has been previously
published as joint work with them. In particular parts of the first two
chapters have been previously reported in the article [13], co-authored
with Alessandro Saffiotti and part of chapter 4 has been reported in ar-
ticles [12], [14], and [2] co-authored with Thord Andersson, Lars Karls-
son, Klas Nordberg, and Alessandro Saffiotti. Moreover we would like
to mention that Gunnar Farneback and Thord Andersson have greatly
contributed to the implementation and design in the WITAS system
of the anchoring of static objects and of the fuzzy-set representation
of visual data respectively. Finally the anchoring in a mobile robot
domain presented in chapter 5 has greatly benefited from the coopera-
tion of Alessandro Saffiotti at Orebro University. Alessandro Saffiotti
has also greatly contributed to the design and implementation of the
fuzzy matching algorithms presented in the thesis.

Contents

1 Introduction

1.1 The anchoring problem
1.2 TIssues related to anchoring
1.2.1 Definite and indefinite references
1.2.2 Indexical and objective references

1.2.3 Recovery of the connection between symbol and
entity Lo o

1.2.4 Uncertainty in the data provided by the sensory
system and in the object description
1.3 Content of the thesis
1.3.1 Contributions 0oL

2 Related work on anchoring
2.1 Architectures for autonomous embedded systems
2.2 Philosophy of language
2.2.1 Indexical and objective references
2.2.2 Deictic relations between objects
2.3 Philosophical foundations of AT

3 The concept of anchoring and its functionalities
3.1 The concept of anchoring
3.2 Functionalities of anchoring
3.3 The computations of anchoring

Contents

3.3.1 The internal representation of descriptor, anchor
and percept L.
3.3.2 Anchoring requests
3.4 Dealing with uncertainty
341 Fuzzysets.,
3.4.2 Representation of properties using fuzzy sets
3.4.3 Fuzzy matching of one feature
3.4.4 Fuzzy matching of several features
3.5 Summary

Anchoring in UAV performing traffic surveillance tasks 53

4.1 Introduction.
4.1.1 The WITAS project
4.1.2 General system architecture

4.2 The Scene Information Manager

4.3 Anchoring of static objects

4.4 Handling of anchoring requests
4.4.1 Representation of properties.
4.4.2 Indefinite references
4.4.3 Definite references
4.4.4 Continuous update of references
4.4.5 Invocation of algorithms in the vision module . .

4.5 Treatment of sensor data
4.5.1 Fuzzy-set representation of visual data
4.5.2 Fuzzy matching of one feature in the SIM
4.5.3 Fuzzy matching of several features in the SIM . .
4.5.4 Answers to the reactive executor

4.6 Handling of object disappearance

4.7 Events, activities and episodes
4.7.1 Request for recognition of events and activities .
4.7.2 Examples of episodes, events, and activities . . .

48 SIMatwork.
4.8.1 Searching foracar..
4.8.2 ... and then followingit

—_8—

53

Contents

4.8.3 Event recognition,
4.9 Openproblems

Anchoring in a mobile robot domain
5.1 Imntroduction.
5.2 The control architecture
5.2.1 The sonar sensors
5.2.2 The map information
5.2.3 The Local Perceptual Space (LPS)
5.2.4 Perception module
5.3 The anchoring process
5.3.1 The object representations used by the anchor-
Ing processo e e
5.3.2 The implementation of anchoring
5.3.3 Compatibility between object representations . .
54 Anchoring at work oL oL L
5.4.1 Anchoring of a corridor in the “normal” case
5.4.2 Anchoring of a corridor with initially incorrect
robot position.
5.4.3 Anchoring a corridor in the presence of incorrect
recognition by the Feature Recognition module .
55 Openproblems

Conclusions and Future Work

6.1 Conclusions

6.2 Futurework oL
6.2.1 Generalization of the anchoring concept
6.2.2 Sensor fusion L.
6.2.3 Anchoring in communication between agents

References

Contents

— 10 —

Chapter 1

Introduction

You are at a friend’s house and your host asks you to go
to the cellar and fetch the bottle of Barolo wine stored at
the top of the green rack. You go down to the cellar, look
around in order to identify the green rack, and visually
scan the top of the rack to find a bottle-like object with a
Barolo label. You see two of them: one is labeled “1968”,
the other “1993”. You decide to pick up the second one,
go upstairs, give it to your friend, and warn him that there
was another Barolo bottle from 1968.

This vignette illustrates a mechanism that we constantly use in
our everyday life: the use of words to refer to objects in the physi-
cal world, and to communicate a specific reference to another person.
This example presents one peculiar instance of this mechanism, one in
which the first person (the friend) “knows” which object he wants but
cannot see it, while the second person (you) only has an incomplete
description of the object, but can see it. Put crudely, the two persons
embody two different types of processes: one who reasons about ab-
stract representations of objects, and one who has access to perceptual
data. One of the prerequisites for successful cooperation is that these
two processes agree about the objects they talk about, that is, that

— 11 —

1 Introduction

there is a correspondence between the abstract representations and
the perceptual data that refer to the same physical object. We call
anchoring the process of establishing this correspondence.

Not unlike our example, an autonomous system needs to incor-
porate processes that reason about abstract representations and pro-
cesses that manipulate perceptual data; hence, it needs to perform
anchoring.

A typical example of an autonomous system is an autonomous mo-
bile robot who has to provide services in an indoor environment, or an
autonomous flying vehicle performing surveillance missions. An au-
tonomous system senses the environment, processes the sensed data
and on the basis of the acquired information decides what actions to
perform. Such a system needs, therefore, to integrate sensing capabili-
ties with decision-making and acting capabilities. However, a difficulty
arises in the fact that different data representations are used in differ-
ent parts of the system: sensors provide quantitative data, while the
decision making part of the system, which is dedicated to determine
the actions to perform, needs in general more abstract forms of infor-
mation. For instance, the navigation planning subsystem of a robot
can establish that the best way for the robot to reach a specific office
is to follow a certain corridor and to enter a room through the second
door on the left. However, the execution of the planning instructions is
only feasible if the robot can match the navigational landmarks (cor-
ridor, door, etc.) to the data coming from its sensors. If the robot
uses, for instance, sonars, then readings indicating a continuous sur-
face need to be matched with the corridor and readings indicating an
open space need to be matched with an open door.

1.1 The anchoring problem

The need to integrate low-level and high-level data representations
and processes is one of the major challenges of autonomous embedded
systems and it has lead to the recent development of the layered archi-

— 12 —

1.1 The anchoring problem

tectures [21, 3]. In a layered architecture a hierarchy of layers is used
to separate low-level sensory-motor processes using quantitative data
(process layer), processes reacting to events and using discrete and
symbolic data (reactive layer), and high level processes involving plan-
ning, monitoring, and diagnosis and using symbolic data (deliberative
layer). Yet, separating processes of different nature is just half of the
work; an essential part is also to integrate them and make it possible
for them to exchange information at different levels of abstraction.

In this thesis, we focus on the anchoring problem: one particular
aspect of this integration dealing with the connection between the ab-
stract data representations used by the high-level reasoning processes
(reactive and deliberative layers) to denote specific physical objects,
and the data in the low-level processes that correspond to that object.

Saffiotti has given a first definition of anchoring in [39, p. 267]. To
do anchoring means in his definition

to use your perceptual capabilities to:

1) find the object, by matching what you are perceiving
with the description you have been given;

2) acquire new (or more precise) information about the
properties of the object [...].

This definition of anchoring outlines the initial intuition behind the
anchoring process. However just one aspect of anchoring, the finding
of the association the first time, is addressed. An additional issue to
be considered is the keeping of the association between the symbolic
description and the perceived object over time. Moreover issues such
as indexical, definite, and indefinite references and the actual methods
to perform the matching between description and perceived object are
not addressed in the paper originally defining the anchoring concept.
The aim of this dissertation is to thoroughly describe the concept of
anchoring and its functionalities, to define a general structure for the
concrete implementation of an anchoring module and to instantiate
this general structure in anchoring modules used in realistic domains.

13

1 Introduction

The nature of the anchoring problem, in fact, suggests that a general
study of it must be solidly grounded in experiments performed on
different robots. We have validated our research on two experimental
platforms: a wheeled mobile robot, and an autonomous aerial vehicle.

The two experimental platforms share the use of a layered archi-
tecture to integrate abstract reasoning with perceptual and control
processes. However, these platforms differ significantly in terms of
sensory-motoric capabilities and their domains of application. The
UAV is intended for the purpose of traffic surveillance over urban and
rural areas, and it uses vision as its main sensor. The main aspect
of anchoring in this domain is the need to connect the symbols used
by a planner and a plan executor to the sensor data about specific
cars which are provided by the vision system. The mobile robot uses
sonars as its main sensors and moves in an office environment. The
main aspect of anchoring here is the need to link descriptions of static
objects, such as corridors and doors, derived from an approximate map
of the environment, to the sensor data coming from the sonar. In the
rest of the chapter we often refer to examples from these domains to
illustrate the different aspects of the anchoring process.

A number of subtle issues are hidden in the anchoring problem.
First, we need to distinguish between definite descriptions, like “the
bottle of Barolo on the table”, indefinite descriptions, like “a bottle of
Barolo”, and indezical descriptions, like “the bottle on my left”. These
descriptions need different treatments. For instance, if the robot sees
two bottles on the table this is not a problem in the case of an indefinite
description, but could be a problem in case of a definite description.
Second, a perceived object can temporarily disappear from the sensor’s
view, for instance because the object moves, or because the robot’s
gaze is moved in a different direction. The robot needs to maintain a
virtual image of the object in memory and to reidentify this object if
it comes into view again. Third, perceptual information is inherently
affected by uncertainty due to noise in the sensors, to poor observation
conditions, or to errors in the perceptual interpretation. Anchoring
must take this uncertainty into account, for instance to decide to get

14

1.2 Issues related to anchoring

a better view of an object if the perceptual data is too poor.
Summarizing, there are a number of issues that need to be inves-
tigate while tackling the anchoring problem:

e it should be possible to use both definite (the car previously seen)
and indefinite identifiers (a red Mercedes);

e indexical (from the point of view of the observer) and objective
references should be supported;

e it should be possible to handle a temporary impossibility to per-
ceive entities currently referred to;

e uncertainty present in the sensory data and ambiguous situations
where more than one physical object could be the referent of a
symbolic identifier should be handled.

In the rest of this chapter we provide a more detailed description
of these issues.

1.2 Issues related to anchoring

1.2.1 Definite and indefinite references

A definite reference denotes a specific, and in general unique, object
[38], for example “the car I have seen in that position and at that time”.
An indefinite reference denotes an object that satisfies a number of
properties, for example a “small red Mercedes”. An anchoring module
must be able to handle both indefinite and definite references.

The anchoring of indefinite references involves the searching of can-
didate objects, one of the properties, for example color, can be used for
this first selection. Then each of the requested properties is checked
and it is established whether each property can be considered satisfied.

The main difference between definite reference and indefinite ref-
erence is that while in an indefinite reference any object that matches

15

1 Introduction

the properties well enough can be considered the right one, in the case
of a definite reference there is just one object that is the correct one.
One can distinguish two cases of definite references: the object has
never been perceived before, and the object has been perceived before.
In the first case the anchoring is performed as in the case of indefinite
reference, but among the properties requested there is one that makes
the object unique, for example “the small red Mercedes at coordinates
(100, 100)”.

The second case is the more difficult one. In fact an object previ-
ously perceived has a property that makes it unique: it is the object
that has been perceived in that specific location and time, but the use
of this property to reidentify the object is not straightforward. For
example, when a car kept under observation drives under a bridge,
the anchoring between the symbol denoting the car and the percep-
tual image of the car is lost and it has to be reacquired when the car
exits from under the bridge. In this case a number of properties have
to be combined to reidentify the car. A first property is the appear-
ance of the car, but possible changes in perspective and illumination
should be taken into consideration. A second property is the expected
position of the car, calculated by combining static information (road
network) and dynamic information (last seen position and velocity of
the car). Finally, relationships between objects can be used as distinc-
tive properties, for example our car was in front of a green car before
disappearing.

1.2.2 Indexical and objective references

Objective references involve knowledge that is independent of the par-
ticular perspective of the observer. For example “car-1 is on road
3”7 is information that is interpretable by anyone having access to a
map. Indexical references depend on the perspective of the observer.
For instance the objects defined by “the car I am currently tracking”,
“the red car I have seen before” and “the corridor on my left” can
be interpreted only from the point of view of the observer. Indexical

16

1.2 Issues related to anchoring

knowledge is of great help in performing actions. Actions are per-
formed by an agent at a specific place and time and it makes sense
that the knowledge required for performing the action is relative to
the agent’s perspective. For instance a robot that has as a goal to pick
up an object needs to know mainly the relative position of the gripper
and the object and not the objective knowledge about its own position
and the absolute position of the object. Furthermore indexical knowl-
edge can highly improve the computational efficiency of the system by
selecting just the information that is required for determining a course
of action for the agent and that is specific to the task currently being
executed.

Both indexical and objective knowledge are essential for an au-
tonomous agent and so is the possibility to combine them both. For
instance a camera can track a car along a road just using the position
of the car in the image and without knowing on which road the car is
(indexical knowledge). If the car disappears under a bridge the knowl-
edge about the road where the car is and the position along the road
(objective knowledge) can make it possible for the system to realize
the reason for the disappearance and to recover the car at the other
end of the bridge.

Deictic relations between objects

A special case of indexical reference is when an object is selected as
the focus of attention and the other objects are referred to in relation
to it. For example, one car is currently under observation and the
cars around it are referred to using deictic references such as “the car
behind the observed car”, “the car in front the observed car” and so on.
We have used deictic references in the UAV domain while recognizing
episodes involving several cars.

17

1 Introduction

1.2.3 Recovery of the connection between symbol and
entity

In dynamic and complex environments the fact that a symbol has been
successfully anchored does not mean that the anchoring will always
continue to be active. An example is when the camera has a wide
view of an area, the anchoring of several cars is established, then the
camera zooms in on one of the cars to check its shape and the other
cars disappear from the current image. Another example is when a
car that is currently under observation disappears under a bridge.

The anchoring module needs to realize whether an anchor currently
referred to is not active anymore. If this is the case the anchoring
module should try to reestablish it whenever possible.

1.2.4 Uncertainty in the data provided by the sensory
system and in the object description

One of the difficulties of the anchoring problem is that the data pro-
vided by the sensory system is inherently affected by uncertainty. This
may result in errors and ambiguities when trying to match these data
to the high-level description of an object. In order to improve the reli-
ability of the anchoring process, this uncertainty has to be taken into
account.

The uncertainty can be due to actual measurements, for example
pixel discretization in an image. It can also be due to the conditions
in which the measurements are taken, for example the measurements
on an object can contain more uncertainty if the object is seen from
a great distance. The possibility to distinguish between these two
kinds of uncertainty can be valuable during the anchoring process.
In fact the first kind of uncertainty is always present, even in the
best measurement conditions, but the second kind can be reduced
by changing the measurement conditions. For example an anchoring
result can be improved by a zooming action.

Moreover the high-level description of the object can be imprecise.

18

1.3 Content of the thesis

For instance linguistic terms such as “small” and “red” can be used in
the description and these terms in general are interpreted as a range
of possible values more than as an exact value.

The anchoring process is based on the matching of an object de-
scription and a perceptual signature. Due to the uncertainty of the
data and the imprecision in the description, it could be appropriate
to define a degree of matching between a perceptual signature and
an object description. Being able to distinguish between objects that
match a given description at different degrees can be helpful in discrim-
inating between perceptually similar objects under poor observation
conditions and can allow several possible anchors to be considered,
ranked by their degree of matching. These degrees of matching can
also be used to reason about the quality of an anchor and to perform
higher-level decision making; for example, we can decide to engage in
some active perception in order to get a better view of a candidate
anchor.

1.3 Content of the thesis

Chapter 2 reviews the literature related to anchoring.

Chapter 3 gives a more detailed description of the anchoring prob-
lem and its functionalities. It also presents the structure of a
general anchoring module that is then instantiated in the next
two chapters in implemented anchoring modules for our two do-
mains.

Chapter 4 presents the anchoring problem in the context of a UAV
system for traffic surveillance using vision as its main sensor.
Anchoring in the domain involves both static objects such as
roads and dynamic objects such as cars.

Chapter 5 illustrates the anchoring problem in the context of a mo-
bile robot performing navigation tasks in an office environment

19

1 Introduction

and using sonars as its main sensors. The aspect of anchoring
that we have developed in this domain is the anchoring of static
objects such as corridors.

Chapter 6: Conclusions and future work.

1.3.1 Contributions

The main contribution of this dissertation is the definition of the an-
choring problem and of the functionalities needed to solve it. Anchor-
ing is a crucial problem in any systems combining symbols and per-
ceptual data. We define the general structure for an anchoring module
and we present an implementation of the anchoring functionalities in
two different domains: an autonomous vehicle for traffic surveillance
and a mobile robot performing navigation tasks. In both domains the
clear statement of the anchoring problem and the use of the framework
offered by the anchoring functionalities have facilitated the integration
of the decision making and the sensory parts of the systems. More-
over uncertainty, error in the anchoring process, and disappearance of
anchored objects have been taken into consideration.

— 20 —

Chapter 2

Related work on anchoring

Anchoring, as we have defined it, must occur in any system where sym-
bolic reasoning about objects in the world is integrated with physical
observations and manipulation of these objects. Yet, little attention
has been given to the anchoring problem per se in the autonomous
robotics and Al literature and in particular no serious systematic stud-
ies have been performed. The general principles behind the anchoring
problem have, however, been investigated in other fields, including
philosophy and linguistics. In what follows, we partition the existing
literature that is relevant to this dissertation into three classes:

e architectures for autonomous embedded systems;
e philosophy of language;

e philosophical foundations of Al

2.1 Architectures for autonomous embedded
systems

Anchoring is a key issue in the integration of symbolic and perceptual
representations, and systems where this integration arises need to deal

— 21 —

2 Related work on anchoring

with it. In most systems the anchoring aspect is, however, buried in
the actual code and it is impossible to examine it explicitly. In only a
few systems are aspects of anchoring explicitly mentioned. One such
system is Saphira in which the anchoring term was originally used. A
description of the Saphira system can be found in chapter 5 where we
present our results in integrating the anchoring principles presented in
this dissertation in the Saphira system.

Aspects of anchoring are found in the SFB 527 project in Ulm
[43], albeit without a specific awareness of the anchoring problem.
The domain used in the project is a mobile robot for natural indoor
environments. The tasks considered are: to locate different objects
such as bottles, balls, doors, and trash cans, for example in the context
of a clean-up procedure and to track and follow a person. The form
of anchoring used in the location of objects is mainly anchoring of
indefinite references. The robot is given the task to locate an object of
a specified kind and color and it succeeds as soon as it finds a matching
object. In the tracking task a simplified form of definite reference is
used. The person to be followed presents himself in front of the robot
and a model of the person is built. The robot can then follow the
person as long as the person is in the image and he is not occluded. If
the person is lost, the robot asks the person to present himself to the
robot again.

Bajcsy and Koseckd [4] consider a problem related to anchoring:
the symbol to signal and signal to symbol transformation. Like us,
they suggest that a hybrid representation of symbols and signals is
needed. Their work, however, takes a direction different from our.
Symbols in their work are limited to the ones that can be considered
abstraction of signals and their main interest is in the selection of such
symbols. Our interest is not in the selection of symbols, but rather in
the connection of symbols already present at the reasoning level with
perceptual data.

Finally the importance of a clear interface between the low-level
perception and the high-level interpretation systems is emphasized in
the designing of the PROLAB2 road vehicle [27]. This vehicle has

— 22 —

2.2 Philosophy of language

been developed in the framework of the Prometheus project and is
equipped with a co-pilot to help the driver in dealing with road obsta-
cles. Using cameras and proprioceptive sensors, the system interprets
traffic situations involving road obstacles and it alarms the driver if an
obstacle (typically another car) can represent a danger. The connec-
tion between the perceptual representation of the obstacles and the
obstacle names used at the interpretation level can be considered a
form of anchoring. In this project, however, the interest in the objects
surrounding the car is limited. The system just needs to recognize if
the object represents a danger for the car or not. Therefore several of
the key aspects of anchoring are absent, such as the identification of an
object as the one the system is looking for and the reidentification of
the object when it disappears for some time. An additional difference
with respect to our work is the use in the PROLAB2 road vehicle of
several sensors and the fusion of their values. We also intend to move
towards the use of multiple sensors; the current experiments have been
performed using just one main sensor.

2.2 Philosophy of language

The problem of connecting linguistic descriptions of objects to their
physical referents has been widely discussed in the philosophical and
linguistic literature. In fact, the term anchor is borrowed from sit-
uation semantics [6]. Situation semantics is a semantics of natural
language that tries to find meanings of sentences in the external world
and in relations between situations rather than in truth values as in
logic-based semantics. In the terminology of situation semantics, an
anchor is an assignment of individuals, relations and locations to ab-
stract objects.

The philosophical and linguistic tradition has also debated another
notion which is of importance to the anchoring problem, namely the
distinction between definite and indefinite reference, and between in-
dexical and objective reference. The distinction between definite and

23

2 Related work on anchoring

indefinite references and the semantical problems associated with def-
inite references have been addressed by Russell [38] and Frege [20]
among others. This distinction, and its impact on anchoring, does not
seem to have attracted much attention in autonomous robotics and
the AI literature. Omne of the few counter-examples is the work by
Shoppers and Shu [45], who consider definite and indefinite references
in a simple block world scenario. Their aim is to differentiate between
goals that could be satisfied by any object of a certain kind as “obtain
a state where a red block is over a blue block” and goal that can be
satisfied just using specific objects as “put that (pointing) red block
over a blue block”. If the goal can be satisfied by any object of a
certain kind the plan executor can take advantage of this opportunity.
For example, if there already is a red block on top of a blue block,
there is nothing that needs to be done to satisfy the goal “obtain a
state where a red block is over a blue block”.

2.2.1 Indexical and objective references

Indexical representations were introduced to the Al community by
Agre and Chapman [1]. In the classical PENGI paper they propose
the use of indexical-functional features as a way to represent and rea-
son about a complex domain while avoiding a combinatorial explosion.
PENGI is an autonomous system playing a video game where a pen-
guin navigates in a maze and pushes blocks while trying to avoid and
kill malicious bees. PENGI plays the role of the penguin. The enti-
ties in the game are not referred to with objective identifiers such as
“block-25 at position (20 50)”; instead they are registered as indexical-
functional entities such as “the block I am pushing” or “the bee that
is closer than me to the block I intend to push”. This representa-
tion is indexical because it depends on the agent perspective and it is
functional because it depends on the agent’s purpose.

The ideas of Agre and Chapman have independently influenced
the AT community involved in formal reasoning and planning and the
computer vision community.

24

2.2 Philosophy of language

The main contributions in including indexical references in formal
reasoning are the ones of Subramanian and Woodfill introducing in-
dexicality in Situation Calculus, [47] and Lesperance and Levesque [33]
developing a theory of knowledge and action, based on modal logic
and that handles indexical and objective knowledge. Subramanian
and Woodfill introduce in a restricted version of Situation Calculus!
the possibility to use indexical terms such us “now”, “before”, and
“this-block”. They also perform a computational complexity analysis
attempting to establish the reason for the higher efficiency associated
with the use of indexical references. They reach the conclusion that
indexical references are advantageous if their number is much smaller
than the total number of situations and objects in the domain. In fact
indexical references provide the possibility of quantifying over just the
entities involved indexically and not over all entities of the relevant
type.

Lesperance and Levesque point out that the knowledge needed for
performing an action is often relative to the agent perspective. There-
fore they develop a quantified modal logic that can handle differences
between indexical and objective knowledge and also allows indexical
knowledge in the prerequisites and effects of the actions. The logic
formalizes notions of knowledge, time, action, and historical necessity.
Indexical and objective knowledge can also be related and an example
of this relation is given in a scenario dealing with maps for naviga-
tion. Lesperance’s PhD thesis, [32] offers also a detailed account of
the philosophical literature involving indexical knowledge.

The need for referent identification in planning actions was already
stated by Cohen in [11]. Indexical references have been introduced by
Shoppers and Shu in the Universal Plan formalism [46], mainly to
acquire the ability to manipulate multiple objects. They manage to
manipulate a particular one of several identical objects and several
identical objects simultaneously. Although this work presents some
interesting points, the domain where it has been applied, a simulated

! Just one situation precedes any other situation.

25

2 Related work on anchoring

block world, lacks most of the challenges related to perception.

In the computer vision community the ideas of Agre and Chap-
man have influenced the development of the active or animate vision
paradigm. One of the pioneers of this area is Ballard [5] who has
pointed out that vision is an active process that implies gaze con-
trol and attentional mechanisms. In contrast to traditional computer
vision, active vision implies that the tasks direct the visual process-
ing and establish which parts of the image are of interest and which
features should be computed. By reducing the complexity and ac-
celerating scene understanding, active vision opens up the possibility
of constructing continuously operating real-time vision systems. The
active vision paradigm is now largely used in the computer vision com-
munity, see for instance [26, 36, 19, 48].

The preceding discussion shows that both in the formal reasoning
community and in the computer vision community effort has been put
into integrating the notion of indexicality and task dependency. The
aspect that is still missing is the connection between the indexical
symbols used in the formal reasoning community and the quantitative
data produced by the image processing. The selection of tasks at the
reasoning level of the system must correspond to gaze control and
attentional mechanisms at the processing level. The interest in this
thesis is in creating this connection.

2.2.2 Deictic relations between objects

A special case of indexical reference is when an object is selected as
the focus of attention and the other objects are referred to in relation
to it. For example, one car is currently under observation and the cars
around it are referred using deictic references such as “the car behind
the observed car”, “the car in front of the observed car”, etc.

An interesting study in which focus of attention and deictic point-
ers are used to enhance the performance of the system has been de-
veloped in the Esprit project VIEWS by Buxton, Howarth and Gong
[25, 10, 26]. In this work, video sequences of the traffic flow at a round-

26

2.3 Philosophical foundations of AI

about are examined and events such as overtaking and cars following
each other are recognized. A stationary and pre-calibrated camera
is used, and the system presupposes an intermediate-level image pro-
cessing that detects moving objects and estimates various properties of
these objects. Given this information, and the ground-plane represen-
tation, the system can recognize simple events such as a left turn and
episodes such as an overtaking, which are composed of simple events
using a Bayesian belief net approach.

In our work we use deictic references in the recognition of events
involving more than one car in the traffic surveillance scenario. The
currently anchored car is the car under observation and the other cars
are referred to using deictic references such as “car in front” and “car
beside”. The main difference between our domain and the one used by
Buxton, Howarth and Gong is the possibility to move the camera both
while moving the vehicle and independently from it. However the basic
aspects of the event recognition are common to both domains and we
have been able to use a solution similar to their in the event recognition
part. In the episode recognition part we have not found the need to
use a Bayesian belief approach and we have used a simpler automaton
structure.

2.3 Philosophical foundations of Al

The literature on the philosophical foundations of AI presents a wide
debate on a problem which is related to anchoring: the symbol ground-
ing problem, first stated by Harnard [23] and further discussed by Prem
and Davidsson [35, 16] among others. Symbol grounding is the prob-
lem of how to give a formal interpretation of formal symbol systems
that is based on something other than just another symbol system as in
classical logic semantics. According to Harnard, meanings of symbols
should be grounded bottom-up in non-symbolic iconic and categorical
representations. Icons are sensor projections of the perceived objects,
preserving the “shape” of the object, categorical representations are

27

2 Related work on anchoring

“filtered” icons preserving just the feature of the shape that can be
used reliably to distinguish members and non-members of the cate-
gory. Icons are mainly used to differentiate between similar objects,
for example one car from another, while categories are used to identify
an object, for example to identify a car as such. In Harnard’s opinion,
iconic and categorical representations should be learned using neural
nets.

The study of solutions to the symbol grounding problem in Al
and autonomous robotic has mainly focused on how to automatically
learn basic symbols given perceptual data [24, 9, 44, 34]. This is not
the focus of our work. Put crudely, anchoring is not the problem of
associating symbols to observable properties, but it is the problem of
connecting symbolic representations of specific objects to observable
physical objects.

28

Chapter 3

The concept of anchoring
and its functionalities

3.1 The concept of anchoring

Our definition of anchoring is an extension of Saffiotti’s definition of
anchoring presented in the introduction.

Definition 3.1.1 Anchoring is the connection between the abstract
representations used by the high-level reasoning processes to denote a
specific physical object, and the data in the low-level processes that
correspond to that object. It consists of two functionalities:

1. Ghiven a symbolic description of an object, create an association
(anchor) between this description and an appropriate perceived
object and acquire new (or more precise) information about the
properties of the object;

2. Given an already established anchor, keep the association be-
tween the symbolic description and the perceived object over time
(tracking), and keep an updated record of the values of the prop-
erties of the object.

29

3 The concept of anchoring and its functionalities

The first functionality is mainly used to find an object for the first
time, while the second functionality is used when a regular update of
the properties of the object is needed. The update requires taking into
consideration not only new measurements coming form the sensors,
but also extrapolation of expected properties of the object (position,
velocity, color, etc.) from the last observed properties’ values. The
reason for extrapolating expected properties values from the observed
ones lies in the need to use these properties for decision making and
control even when the properties are not currently perceived. For
instance, a mobile robot using sonar sensors can perceive a doorway,
start crossing it and then not perceive it anymore when it is half-way
through. The extrapolation of the relative position it has with respect
of the doorway can allow the robot to complete crossing through the
door-way successfully. Additionally the expected properties values are
used to check that the currently observed object is the same as the
object previously observed and to recover the anchor if the object
temporarily abandons the sensor range or is occluded.

To clarify the concept of anchoring let us consider the following
example. Suppose that the UAV is given the mission to find a “red
Mercedes” near a specified crossing. When the car has been found,
the UAV should keep it under observation and it should check the
occurrence of various episodes involving this car, such as overtaking
and giving way to another car.

Finding the car implies:

e to point the camera toward the position of the crossing;

e to anchor the crossing map description to the part of the image
corresponding to the crossing;

e and finally to find the objects in the image that are near the
crossing and that best anchor the description of a red Mercedes.

This corresponds to the first anchoring functionality. When an
anchor is established, the second functionality can be used to keep

3.2 Functionalities of anchoring

the car under observation. The properties of the car are regularly
updated and the UAV can follow the car using information about its
position and velocity. The reasoning system can now request to check
the occurrence of episodes involving the anchored car. This can require
the anchoring of cars surrounding the car under observation. These
other cars can be referred to using deictic references such as “the car
beside the followed car”.

3.2 Functionalities of anchoring

As already mentioned, two main functionalities characterize the an-
choring problem: finding an anchor and keeping track of it over time.
They are expressed in terms of three kinds of internal representations
for the same external, physical object.

Descriptor: a symbolic signature of the object in the world that we
are talking about; a descriptor is typically represented by a set
of symbolic properties which are manipulated by the symbolic
layer or by an identifier of a previously perceived object. An
example of a descriptor is the representation of a corridor in the
map used by the mobile robot in our experiments. The corridor
is represented by a name and by properties such as relation with
other map objects, width and orientation.

Percept: a sensor-based description of an object in the world which
is currently perceived by the sensors; a percept is typically rep-
resented by a set of values of continuous variables related to
sensor’s readings. An example of a percept is the representa-
tion of a corridor in terms of position and orientation of the two
perceived walls delimiting the corridor.

Anchor: a reification of the association between a descriptor and a
percept; an anchor gives a sensor-based description of the specific
object in the world that we are talking about. An example of

31

3 The concept of anchoring and its functionalities

an anchor is the association of the descriptor of a corridor with
a percept of a corridor whose perceptual values are compatible
with the properties in the corridor’s descriptor.

The first functionality of anchoring is, given a descriptor for an
object, to find the percept that best matches the descriptor. Once the
best match is found, the perceptual properties of the object (position,
color, shape, etc.) need to be stored. They can then be used both
by the process requesting the anchoring of the object and to make it
possible to re-identify the object even if it is going to be out of sight
for a period. The second functionality, tracking, can now take over.
Tracking is needed if the process requesting the anchoring needs a
regular update of the properties of the object. The object is kept in
the sensor range and its properties are regularly checked. In addition,
during tracking the properties of the Anchor are predicted on the basis
of the last observation of the object properties. The prediction serves
two functions: checking that the object is still the same one as in
the previous observation, in particular reidentifying the object if it
temporary leaves the sensor range, and maintaining the possibility to
use the properties for decision making and control even when they are
not currently perceived.

The above functionalities can be summarized as follows.

Find an anchor: given a descriptor for an object, associate it with
one specific percept and build the corresponding anchor. This
functionality can be decomposed into two steps:

1. match the symbolic properties in the descriptor to the per-
cepts which are currently in view, so as to select the appro-
priate one; and

2. build the anchor by associating the symbolic properties of
the object to the actual object’s perceptual signature. By
perceptual signature we intend here the properties that can
be perceived by the sensors and that can be used to identify
the object.

32

3.3 The computations of anchoring

Track the anchor: given an established anchor, keep an updated
record of its properties. Moreover track the expected properties
of the anchor (position, velocity, color, etc.) so that they can
be used by the control and decision making processes; to check
the identity of an object; and to recover the anchor if the object
temporarily abandons the sensor range. This functionality can
be further decomposed into three steps:

1. predict the properties of the anchor on the basis of their
last observed values;

2. match the anchor to the current percept on the basis of
the predicted properties of the anchor and the observed
properties of the percept; and

3. verify that newly acquired properties of an object are still
consistent with the initial properties in the descriptor.

One can notice that the first functionality of anchoring corresponds
in part to the original definition of anchoring given by Saffiotti [39].
The main new aspect is the clear distinction among the three entities
involved in the anchoring process: descriptor, percept, and anchor.
The second functionality, the tracking of an anchored object, is com-
pletely new.

3.3 The computations of anchoring

In this section we describe the architecture for a generic anchoring
module that we then instantiate in chapters 4 and 5 in an anchoring
module for each of our applications.

The relations of the anchoring module with symbolic and subsym-
bolic processes are shown in Fig. 3.1. The anchoring module is inter-
mediate between symbolic and subsymbolic processes. Typical exam-
ples of symbolic processes are planning systems and plan executors.
The subsymbolic processes that interact with the anchoring module

3 The concept of anchoring and its functionalities

Symbolic processes

descriptors

Anchoring Module anchors

processing

control commands percepts

Subsymbolic processes

sensor control
commands feedback

Figure 3.1: The relations of the anchoring module with symbolic and
subsymbolic processes.

sensory data control

3.3 The computations of anchoring

are the ones elaborating sensory data, for instance vision processing.
The anchoring module does not interact with the sensors directly, it
presupposes an intermediate subsymbolic process that recognizes ob-
jects and estimates properties of objects. The result of the elaboration
of the subsymbolic process is a percept, that is, a sensory-based de-
scription of an object.

Symbolic processes request the anchoring module for the anchor-
ing of descriptors. The descriptor can be a description of an object
in terms of symbolic properties (indefinite anchoring request) or an
identifier of a previously seen object (definite anchoring request). The
anchoring module receives percepts from the subsymbolic processes
and it then tries to find among the percepts the one that best matches
the descriptor.

In sensors such as vision it is possible to focus the processing of
the sensory data to extract some specific features and to direct the
sensor toward a specific area. In these case the anchoring module
can also send specific requests to the sub-symbolic processes indicat-
ing where to direct the sensor and what features values calculate. For
other kinds of sensors, for instance sonars, the processing of the data
is in general performed on all data available independently of specific
requests. In our experiments we have considered both kind of sen-
sors. In the WITAS application the vision processing module receives
requests from the anchoring module stating which characteristics the
object of interest has and towards which area or object the camera
should be pointed. In the mobile robot application, the processing of
the sonar data is done on all sonar readings available and all features
are extracted. The anchoring module then selects the percepts that
are of interest in the current anchoring process.

The results of the anchoring process can be used by the symbolic
processes, and also by the subsymbolic processes dealing with the con-
trol of the robot. The WITAS application is an example of the first
case, while the mobile robot application is an example of the second.

3 The concept of anchoring and its functionalities

3.3.1 The internal representation of descriptor, anchor
and percept

In this section we consider in more detail how the three main entities
involved in the anchoring process are represented.

Descriptor

A descriptor can have two forms: a set of symbolic properties that
describe the desired object, or an identifier of a previously perceived
object. The properties can be characterized by giving the actual re-
quested values, for instance the interval in which the width of a corridor
should be included or by a linguistic term such as “red” and “small”.
If values or intervals of values are provided, the anchoring module uses
them directly in the anchoring process. However, if linguistic terms are
provided, the anchoring module needs to translate them to computable
values. This translation table is stored in the anchoring module and
has the following form:

(name description)

Name is the linguistic term identifying the property at the symbolic
level and description is a representation of the property that can be
used by the anchoring module to check if a perceived object has the
property. For instance, in the WITAS application the property of
being red is represented at the symbolic level by the linguistic term
“red”. The description of the property in the anchoring module is in
the form of three fuzzy sets representing each measurable aspect of the
color red: hue, saturation and value.

If the descriptor is the identifier of a previously anchored object,
the properties of the object are stored in the anchor of the object
maintained in the anchoring module. Some of the properties can be-
come outdated. The anchoring module predicts the current value of
the properties and uses them to reidentify the object.

3.3 The computations of anchoring

Anchor

The anchor is a reification of the association between a descriptor and
a percept. It has access to both the information originally present in
the descriptor and to the sensor-based description extracted from the
percept. An anchor is represented as follows:

(identifier description)

Identifier is a unique identifier for the object. In the case of static
objects the identifier is in general the name of the object used at the
symbolic level and extracted from the descriptor. For instance, the
identifier could be the name of the road in a map of the environment.
In the case of mobile objects the identifier is created by the anchoring
module when the object is perceived for the first time and it is then
used at the symbolic level to refer to the object at a later time. For
instance, in the WITAS application the system can first request to find
a car corresponding to a specific description. When a car is found, the
anchoring module creates an identifier and sends it to the decision
making part of the system. At a later point the identifier can be used
as a descriptor to reidentify the car.

The description of the object is a collection of properties that can
be used to identify and reidentify the object and/or that can be useful
at the symbolic level. In particular it contains the perceptual data
extracted from the percept at the latest time the anchoring was estab-
lished. The anchor is also maintained when the anchoring connection
is actually lost, for instance when the object is not in the sensor range
anymore or another object is occluding it. The information in the
anchor is maintained in order to make it possible to still refer to the
object and to reidentify it at a later time point. There is, however,
the need to predict the development over time of the values of the
properties of the object in order to be able to actually use the infor-
mation. For instance, the anchor of an observed car maintains the
information about the last seen position and speed of the car. How-
ever, the expected current position of the car is needed to reidentify

3 The concept of anchoring and its functionalities

it. The anchoring module uses two simple algorithms, one for static
and one for dynamic objects, to update the values of the properties
of the objects not currently anchored. In the case of static objects,
the property updated is the relative position between the object and
the autonomous system performing the anchoring. The update is done
on the basis of the estimated movement of the system. In the case of
dynamic objects, the property updated is the current position of the
object with respect to the autonomous system and the map of the en-
vironment!. The position is calculated assuming that the object moves
at constant speed. Constraints in the environment are used to help
in the calculation. For instance, in the WITAS application the new
position of a car is calculated considering that it is moving along the
road network. There is also the possibility to consider several possible
positions of an object, for example in case a car reaches a crossing. In
case the object needs to be reidentified, the anchoring module handles
alternative positions of an object considering one position after the
other until the object is reidentified.

Percept

A percept is a sensory-based description of an object that is currently
perceived by the sensors. It is the result of processing of sensory data
and it requires the recognition of the actual object on the basis of
the sensory data and the calculation of its properties. For instance
the creation of a percept of a corridor in the mobile robot application
requires the recognition of an object “corridor” on the basis of the
sonar data and the estimation of properties of the corridor such as
width and orientation.

1Other properties could also change over time, for instance the color changes due
to changes in illumination. However these cases are not considered in our work.

3.3 The computations of anchoring

3.3.2 Anchoring requests

The anchoring module receives requests for anchoring descriptors from
the symbolic processes in the system and tries to establish the anchor
of the descriptors with the percepts provided by the sensors. If the
sensor supports active perception, that is, it is possible to focus the
processing of the sensory data to extract some specific features and
to direct the sensor toward a specific area, requests are sent by the
anchoring module to the subsymbolic processes to guide the process-
ing of the data. If the sensor does not support active perception, the
anchoring module simply waits for the next perceptual data provided
by subsymbolic processes. When new percepts are provided, the an-
choring module tries to find among them the one best matching the
descriptor.

The requests are of different kinds depending on whether they in-
volve a definite or an indefinite reference and whether they require a
continuous update of the properties of the referenced objects. In the
next sections we consider the different kinds of requests.

Indefinite reference

An indefinite reference denotes an object, in general not unique, that
satisfies a number of properties, for example a small red Mercedes. In
a request for an indefinite reference the descriptor is a set of symbolic
properties that describe the desired object. The anchoring module
needs to find a percept that matches the description of the object. In
the case where active perception is supported, the anchoring module
sends a request to the subsymbolic processes specifying the proper-
ties characterizing the desired object in quantitative terms and waits
for the result of the request. The properties stated in the anchor-
ing requests from the symbolic processes can be described in terms
of quantitative values or in linguistic terms. In this second case the
anchoring module uses the description of the properties to elaborate
a quantitative description of the desired object that can be used in

3 The concept of anchoring and its functionalities

the request to the subsymbolic processes. For instance, if the request
for finding a ‘red’ car is sent to the anchoring module in the WITAS
application, the anchoring module uses the fuzzy set representation
of ‘red’ to elaborate a quantitative description that is suitable for the
vision processing module. If the properties are represented in terms of
quantitative values, they can in general be used directly in the request
to the subsymbolic processes.

When percepts relevant to the requests are provided, the anchoring
module matches them with the descriptor and establishes a degree of
matching for each of the percepts. If more than one percept is a good
candidate for the anchoring, the anchoring module selects in general
the best matching one. In some cases all possible candidates are sent
back as an answer ordered with respect to the degree of matching.

Definite references

A definite reference denotes a specific, and in general, unique object.
One can distinguish two cases of definite references: the object has
never been perceived before, and the object has been perceived before.
In the first case the anchoring is performed in the same way as an
indefinite reference. However, it is assumed that among the properties
requested there is one that makes the object unique, for example “the
small red Mercedes at coordinates (100, 100)”.

In the second case previously recorded data about the object are
used for the reidentification. In the case of active perception the an-
choring module retrieves information about the object and sends it to
the subsymbolic processes for the purpose of reidentification. When
percepts are provided, the anchoring module matches the descrip-
tion of the object with the percepts and selects the percept that best
matches the description. Two difficulties can be encountered: no per-
cept matches the description to a high degree and several percepts
match the description to a high degree?. The strategies that can be

2The fact that several percepts match the description to a high degree can be
a problem because an object denoted by a definite reference should in general be

3.3 The computations of anchoring

used to solve these cases are very much application-dependent and they
are influenced by considerations about the need of certainty in the an-
chor, the possibility and the need to inform the symbolic processes of
the difficulty encountered, and so on.

Indexical references

An object is said to be referred to indexically when the reference de-
pends on the perspective of the observer or on the relation between
the object and other objects (deictic references). Examples of the first
case are: “the car I am currently tracking”, “the red car I have seen
before”, “the corridor on my left”. Examples of deictic references are:
“the car behind the observed car”, “the car in front the observed car”.

Indexical references are treated in our work as a special case of
definite and indefinite references in which the properties characterizing
the object are indexical. The handling of indexical properties requires
the storing of these properties in the anchor. For instance in the
WITAS application there is the possibility to store in the anchor of
a car object additional information about the cars surrounding it. In
this way references to a car beside, behind and so on can be easily
handled.

Continuous update of references

The anchoring requests considered in the previous sections involve the
first functionality of anchoring, that is to create an anchor between
the symbolic description of the object and the perceived object. The
second functionality of anchoring is to keep an updated record of the
properties of an already established anchor (tracking). The anchoring
module updates the property values maintained in the anchor every
time new percepts are provided. If the sensor supports active percep-
tion, the anchoring module can request the subsymbolic processes to
direct the sensor towards the object of interest. For instance, in the

unique.

41

3 The concept of anchoring and its functionalities

WITAS application the vision module can move the camera in such a
way that the car of interest is maintained in the center of the image.

The anchoring module needs to take into consideration the cases
in which the tracked object disappears. The disappearance of the ob-
ject is detected when no percept matches the description of the object
stored in the anchor. The anchoring module extrapolates the expected
values of the properties on the basis of the previously recorded values
and it compares them with the values in the new percepts, if any are
reported. If the difference between the values overcomes a specified
threshold or no percept is reported, the anchoring module examines
the possibility that the object has disappeared or, in some cases, the
possibility that the previous anchor was incorrect. The anchoring mod-
ule checks if, according to the knowledge about the environment, there
is an object that can be occluding the tracked object. If this is the
case and if active perception is supported, the anchoring module can
direct the sensor towards the next visible position of the object. For
instance, in one of the examples presented in chapter 4, the car disap-
pears under a bridge and the anchoring module directs the camera to
the area where the car is going to reappear. If the object disappears
and then reappears again, the anchoring module needs to anchor the
object again. The anchoring is performed on the basis of the informa-
tion stored about the object before the disappearance in the same way
as for a definite reference.

A case in which the anchoring module recognizes that the descrip-
tor has been wrongly anchored is presented in chapter 5. In this case
the anchoring module first anchors a corridor descriptor to a percept.
The perceptual data of this percept had, however, been wrongly clas-
sified as belonging to a corridor by the subsymbolic processes. When
a new percept is provided, this time one of the actual corridor, the
anchoring module anchors correctly this new percept with the descrip-
tor.

42

3.4 Dealing with uncertainty

3.4 Dealing with uncertainty

One of the difficulties of anchoring descriptors to percepts is the in-
herent uncertainty in the measurements of perceptual data and im-
precision in the definition of the properties used to characterize the
descriptor.

The uncertainty of measurements is dependent on the degree of ac-
curacy that the methods used to estimate the measurements have and
on the conditions in which the measurements are taken. It is therefore
in most cases unavoidable. The imprecision in the definition of the
properties used to characterize the descriptor is due to the fact that
the properties describe an object using linguistic terms and linguistic
terms do not refer in general to a unique numerical value.

In our system we represent both measurements and properties us-
ing fuzzy sets. The reason why we have selected fuzzy sets as repre-
sentation is the possibility that they support representing information
at the level of precision which is available. In fact they can represent
equally well precise and complete information (crisp sets) and impre-
cise, vague or unreliable information [40].

The anchoring process is based on the matching of a descriptor with
a percept. The matching depends on the matching of the properties
characterizing the descriptor and the measurements of the respective
properties in the percept. Due to the uncertainty in the measurements
of the perceptual data and the imprecision in the definition of the
properties used to characterize the descriptor, the matching is in gen-
eral better characterized by a number indicating the degree by which
the measurements and the properties match. The degree of matching
of a descriptor with a percept is computed combining the degrees of
matching between the fuzzy sets representing the measurements and
the fuzzy sets representing the desired properties.

Properties are represented in our system using fuzzy set. Therefore
we briefly introduce in the next section some basic concepts of fuzzy set
theory extracted from [17]. In the following section we then introduce
the use of fuzzy sets for the representation of the actual properties and

3 The concept of anchoring and its functionalities

describe how the degree of matching is calculated.

3.4.1 Fuzzy sets

In classical set theory a set C' can be defined by a characteristic func-
tion peo : U — {0,1}, that for every element of a universe of discourse
U establishes whether the element belongs to the set or not. The main
difference between a fuzzy set and a ‘normal’ set is that the elements
of the universe belong to a fuzzy set just by a degree. The charac-
teristic function of classical set theory is generalized to a membership
function that assigns to each element in the universe a value in the
interval [0, 1] establishing the degree to which the element belongs to
the set.

Definition 3.4.1 (Membership function) The membership func-
tion ur of a fuzzy set F is a function

/LFZU—>[0,1]

Let us introduce two concepts that we will use in the rest of the chap-
ter. The support of the fuzzy set F is the set of all the elements of F
with non-zero degree of membership.

Definition 3.4.2 (Support) The support of a fuzzy set F defined on
the universe U is defined by:

S(F) = {u € Ulup(v) > 0}

The core of a fuzzy set F is the set containing all the elements of F
with 1 as degree of membership.

Definition 3.4.3 (Core) The core of a fuzzy set F defined on the
universe U is defined by:

S(F) = {u € Ulur(u) = 1)

3.4 Dealing with uncertainty

Although the membership function of a fuzzy set can have a number
of different shapes, in this work we consider just trapezoidal fuzzy sets,
that is, fuzzy sets with trapezoidal membership function. Examples of
fuzzy sets with trapezoidal membership functions are given in Fig 3.2.

Definition 3.4.4 (Trapezoidal fuzzy set membership function)
the membership function pp : U — [0,1] of a trapezoidal fuzzy set F is
a function with four parameters defined as:

0 U < o
(u—a)/(f—a) a<u<f

pr(u;a, B8,7,0) =< 1 b<u<a
(y—u)/(0—7) v<u<s
0 u >0

The reason for choosing trapezoidal fuzzy sets is the computational
efficiency of set-theoretic operations performed on them. The use of
trapezoidal fuzzy sets does not represent a limitation in our domain
as they allow an easy representation of all the properties we need.
Finally, let us define a number of operations over the fuzzy sets.

Definition 3.4.5 (Equality) Two fuzzy sets are equal (A = B) if
and only if their membership functions are identical, i.e.,

Ve e U: pa(z) = pp(z)

Definition 3.4.6 (Subset) A is a subset of B (A C B) if and only
if

Vo €U : pa(z) < pp(z)
The interpretation of union and intersection in fuzzy set is not as

simple as in classical set theory. This is due to the fact that graded
characteristic functions are used.

3 The concept of anchoring and its functionalities

Definition 3.4.7 (Union) A triangular co-norm or S-norm o de-
notes a class of binary functions that can represent the union oper-
ation. It satisfies the following criteria:

aob="boa;

(aob)oc=ao(boc);

a<candb<dimpliesaob<cod;

aol0=a.

The membership function of the union of two fuzzy sets in our
system s defined as:

pauB(z) = pa(z) o pp(x)

A common choice of S-norm in the literature is the maz operation.
Triangular norms (T-norm and S-norm) can be considered as the most
general intersection operator.

Definition 3.4.8 (Intersection) A triangular T-norm x denotes a
class of binary functions that can represent the intersection operation.
It satisfies the following criteria:

axb=bxa;

(axb)*xc=ax(bxc);

a<candb<dimpliesaxb<cxd;

ax1l=a.

The membership function of the intersection of two fuzzy sets is
defined as:

pan(z) = pa(z) *x pp()

A common choice of T-norm in the literature is the min operation.

3.4.2 Representation of properties using fuzzy sets

Anchoring requests can identify the properties which describe an ob-
ject in terms of linguistic terms like ‘red’ and ‘small’. These linguistic
terms do not refer to a unique numerical value and they are inherently

— 46 —

3.4 Dealing with uncertainty

‘small’ ‘small-Mercedes’

(R s e s
60 120 180 34 5 6 7 8 910 11 12 13 14 15
Hue (degrees) Area (meters)

Figure 3.2: Fuzzy sets for representing the hue characterization of the
symbols ‘red” and the area of a ‘small-Mercedes’.

imprecise. Fuzzy sets are commonly considered to be an adequate
representation of linguistic terms [53, 30], so in our system we have
chosen to map each symbol of this kind to a fuzzy set over the rel-
evant universe. For example, we associate the term ‘red’ with three
fuzzy sets: one for the hue characterizing the tint of color, one for the
saturation characterizing the purity of the color, and one for the value
characterizing its intensity. Fig 3.2 (left) shows the fuzzy set for the
hue. This fuzzy set is interpreted as follows: for each possible value of
hue h, the value of red(h) measures, on a [0, 1] scale, how much A can
be regarded as ‘red’.

A linguistic term is represented by a set of fuzzy sets over the space
of the possible values of its properties. For instance the linguistic term
‘small-Mercedes’ is represented by a set of fuzzy sets over the space of
the possible values of length, width and area of the car. Fig 4.3 (right)
shows the fuzzy set for the area.

Fuzzy sets can be interpreted intuitively as follows. The values
that are mapped to 1 are the values that without doubt belong to the
property and that can be considered a typical example for the property,
for instance, the areas of cars that can be considered without doubt
proper to a small Mercedes. The values that are mapped to 0 are
the ones that do not belong to the property. Finally the values that
are mapped to an intermediate value are the ones that belong to the
property just to a certain degree. The value to which they map can

3 The concept of anchoring and its functionalities

establish an order among the objects with respect to how they satisfy
the property. For instance several areas can be considered more or less
typical for a small Mercedes.

The data coming from the subsymbolic processes are in the form
of fuzzy sets, each representing a property of the perceived objects.
How these fuzzy sets are calculated is dependent on the kind of sensor
used. In Section 4.5.1 we show how fuzzy sets are built by the vision
module used in the WITAS application. The fuzzy sets are used by the
anchoring module to select the objects that constitute the best answer
to the anchoring request and are subsequently stored. When an object
needs to be reidentified the same fuzzy sets are utilized again.

3.4.3 Fuzzy matching of one feature

The computation of the degree of matching is done using fuzzy set
operations. This choice is justified in our case since fuzzy sets can be
given a semantic characterization in terms of degrees of similarity [37].
There is however a subtle difference between the notion of similarity
and our intended notion of matching. Consider two fuzzy sets A and
B over a common domain X which respectively represent the observed
data and the desired description. The degree of matching of A to B,
denoted by match(A, B), is the degree by which the observed value
A can be one of those that satisfy B. Thus, matching implies some
sort of overlap between A and B, but it does not require that A and
B have a similar shape. Moreover, matching is not required to be
commutative.

Once the sensors have reported to the anchoring module the se-
lected objects and their properties in terms of fuzzy sets, the anchor-
ing module can compute the degree of matching between each of the
fuzzy sets given by the vision module and the desired description. The
desired descriptions can be the descriptions of properties such as “red”
or descriptions previously recorded for the object.

In our work, we have tried two different definitions for a degree of
matching. In the first one, we measure how much A and B intersect

— 48 —

3.4 Dealing with uncertainty

A B | AB

0.7 [

Z) 77 ’/% %/
Ak AN A\

match; = 0.7 match; = 1.0 match; = 1.0
matchy = 0.4 matchy = 0.8 matchy = 1.0

Figure 3.3: Three examples of partial matching between a set A and
a reference set B.

by measuring the height of AN B. This gives us the following degree:
match; (4, B) = sup min{A(z), B(z)} (3.1)
zeX

In the second definition, we measure of how much A is a (fuzzy) subset
of B by comparing the area of AN B and the area of B:

f;z:eX min{A(z), B(z)} dx
f:cEX B(:L‘) dzx
Different definitions can be obtained using T-norm operators other

than min.

The degrees of matching defined by equations (3.1) and (3.2) be-
have in two essentially different ways. Match; only depends on the
existence of some common elements in A and B, while matchs com-
pares how much of A is inside B with how much of A is outside B.
The difference is graphically illustrated in Fig. 3.3. When the cores
of A and B have no common points (left), both definitions provide a
degree of matching less than 1. As soon as the cores intersect (mid and
right), match; always sanctions total matching, while matchs gives us
only a partial degree whenever A is not entirely contained into B. In a
sense, definition (3.1) tells us how much the observed value may satisfy
B; while definition (3.2) tells us how much the observed value must
satisfy it.

Measure (3.2) is more discriminating, and it has provided supe-
rior empirical results in our experiments. We have thus adopted this

matchs (A, B) = (3.2)

3 The concept of anchoring and its functionalities

Figure 3.4: Trapezoidal fuzzy set.

measure in our system. For computational reasons, however, we ap-
proximate (3.2) by the ratio between the area of the inner trapezoidal
envelope of AN B and the area of B. These areas can be computed
very easily when A and B are trapezoidal fuzzy sets.

Calculation of match,

Let us consider how matchy is calculated in practice.

We represent trapezoidal fuzzy sets by a list of four points (a, b,
¢, d) where a and b are the extremes of the support of the fuzzy set
and b and c are the extremes of the core Fig. 3.4.

The trapezoidal envelope of AN B and the degree by which A is a
subset of B is calculated using the following algorithm where A = (a,
b, ¢, d) and B = (a’, b’, ¢’, d’) >

If the supports of the sets are disjoint (d < a')

then the degree of intersection is equal to 0 and the trapezoidal enve-
lope of AN B is empty

else if the cores are disjoint (c < V')

then degree of intersection (deg) = %

3The algorithm presupposes that A is always to the left of B, that is, b < ¥'. If
this is not the case A and B can be switched.

3.4 Dealing with uncertainty

trapezoidal envelope of ANB = (max{a, a’}, (d— (deg*(d—c))), min{d,

d})
else (the cores intersect)
the degree of intersection is !

the trapezoidal envelope of ANB = (maz{a, a’}, maz{b, b’}, min{c, c’},
min{d, d’}

The matchs measure is then calculated as following:

__degreeof intersectionx(area trapezoidal envelope of ANB)
matchs (A, B) = (area B)

3.4.4 Fuzzy matching of several features

Once we have computed a degree of matching for each individual fea-
ture, we need to combine all these degrees in order to obtain an overall
degree of matching between descriptor and percept. The simplest way
to combine our degrees is by using a conjunctive type of combina-
tion, where we require that each one of the properties of the percept
matches the corresponding part in the descriptor. Conjunctive com-
bination is typically done in fuzzy set theory by T-norm operators
[50, 30]. Most used instances of these operators are min, product, and
the Lukasiewicz T-norm maz(z +y — 1,0). In our experiments, we
have noticed that the latter operator provides the best results. (See
[8] for an overview of alternative operators.)

The overall degree of matching is used by the anchoring module to
select the best anchor among the candidate objects provided by the
subsymbolic processes. For each candidate, the anchoring module first
computes its degree of matching to the intended description; then it
ranks these candidates by their degree of matching. Having a list of
candidates is convenient if the currently best one later turns out not
to be the one we wanted. Also, it is useful to know how much the
best matching candidate is better than the other ones: if the two top

51

3 The concept of anchoring and its functionalities

candidates have similar degrees of matching, we may decide to engage
in further exploratory actions in order to disambiguate the situation
before committing to one of them.

3.5 Summary

The first part of this chapter gives a detailed definition of anchoring
problem and of the functionalities characterizing it: finding an anchor
and tracking it over time.

In the second part of the chapter we introduce a general structure
for and anchoring module. The description addresses the issues pre-
sented in Chapter 1 as essential while tackling the anchoring problem.
Definite, indefinite and indexical references are explicitly treated in the
section presenting the anchoring requests. Moreover cases where it is
temporary impossible to perceive entities currently referred to is con-
sidered in the section presenting the continuous update of references.
Finally the treatment of uncertainty using fuzzy logic in presented in
the last section.

52

Chapter 4

Anchoring in UAV
performing traffic
surveillance tasks

4.1 Introduction

In the previous chapter we have defined the notion of anchoring and
we have outlined a number of functionalities needed in an anchoring
module. In this chapter we present an actual implementation of an
anchoring module, the Scene Information Manager (SIM).

The SIM has been created in the context of WITAS, a long-term
project with the aim of developing autonomous system technology and
in particular an Unmanned Airborne Vehicle (UAV) for traffic surveil-
lance.

The primary aim of the project is developing a decision-making
system able to both react to sudden changes in the current status of
the world and use deliberation, in particular planning, for achieving
complex goals. The architecture of the decision-making system is a
classical three-layered architecture: deliberative, reactive, and process
layer. The SIM is part of the reactive layer and handles the anchoring

4 Anchoring in UAV performing traffic surveillance tasks

of symbolic identifiers used in the reactive and deliberative layers to
sensory data produced in the process layer, and in particular in its
vision processing component.

The rest of the chapter is organized as follows: Section 4 presents
the WITAS project; Section 4.1.2 introduces the general architecture
of the system; Section 4.2 provides a general overview of the SIM
functionalities; Section 4.3 explains how static objects such as roads
and crossings are anchored; Section 4.4 describes how anchoring re-
quests are sent to the SIM, while Section 4.5 describes the treatment
of sensor data using fuzzy matching. The handling of ambiguities and
disappearance of objects under observation is considered in section
4.6. Section 4.7 presents on-going work in event and episode recog-
nition. Finally Section 4.8 outlines a number of examples illustrating
the issues described in the chapter.

4.1.1 The WITAS project

The WITAS project is a research cooperation project between four
groups at Linkoping University: computer vision, autonomous decision
making, computer architecture, and software tools and simulation.

The project, initiated in January 1997, is devoted to research on
information technology for autonomous systems, and more precisely
for unmanned airborne vehicles used for traffic surveillance. The ve-
hicle is to be equipped with a camera system for observation of traffic
scenes, and the images will be processed online and used for the vehi-
cle’s decision-making !.

The first three years of the project have resulted in methods and
system architectures to be used in UAVs. The next four years will be
dedicated to the development of an actual prototype of the vehicle.

However, the focus of the project is not in the development of
the flying vehicle itself; the intention is to actually acquire a vehicle
already able to take-off, fly and land autonomously. The aim is on the

! Additional sensors such as infrared camera and radar may be included in the
system.

4.1 Introduction

Figure /.1: A view of the simulated environment.

development of a decision-making system capable of making complex
decisions and to pursue long term goals.

Because of the safety-critical nature of the work most of the testing
has being made using simulated UAVs in simulated environments, even
though real image data has been used to test the vision module. In a
second phase of the project, however, the testing will be made using
real UAVs.

For additional information about the WITAS project see [52].

4.1.2 General system architecture

The general architecture of the system is a standard three-layered ar-
chitecture consisting of:

4 Anchoring in UAV performing traffic surveillance tasks

e A deliberative layer which at run-time generates probabilistic
high-level predictions of the behaviors of agents in the environ-
ment, and uses these predictions to generate conditional plans.

e A reactive layer which performs situation-driven task execution,
including tasks relating to the execution of plans generated by
the deliberative layer. The reactive layer has access to a library
of task and behavior descriptions, which can be executed by the
reactive executor. For this purpose, a new reactive language has
been developed, which has some similarities to Firby’s RAPS
[18], but is also related to real-time and systems modeling lan-
guages such as ESTEREL [7] and StateCharts [22]. The Scene
Information Manager is also part of the reactive layer and deals
with anchoring of symbols to sensory data.

e A process layer which performs vision processing, sensor data
acquisition and flight control.

The system is implemented and operates in a simulated environ-
ment. Figure 4.1 shows a view of the simulated environment.

4.2 The Scene Information Manager

The Scene Information Manager (SIM), is part of the reactive layer and
it implements the anchoring process. Anchoring requests are sent by
the reactive executor to the SIM. Some of the requests come directly
from the reactive executor and some are actually requests from the
deliberative layer that are transmitted through the reactive executor.
A request concerns the anchoring of a specific unique object (definite
request) or of a generic object satisfying a number of properties (in-
definite request). We examine the two kinds of requests more closely
in Section 4.4.

The requests are processed by the SIM and as a result certain
image analysis procedures are activated in the vision module in order

4.2 The Scene Information Manager

GPS position requests
SIM Reactive Executor
road results
GIS data
skill configuration vision
calls data
Vision

Figure 4.2: Overview of the Scene Information Manager and its inter-
actions with decision-making and vision.

to acquire the necessary data. The SIM also supplies the appropriate
parameters used by the procedures in the vision module.

In the case of indefinite requests, the parameters are calculated,
mapping the symbolic properties provided in the anchoring request to
visual representations. For instance, the color “red” is translated to
more primitive color data such as HSV? values, and car models such
as “Mercedes” are translated to geometrical descriptions. The visual
representations are in the form of fuzzy sets to take into account the
imprecision of linguistic terms like “red” and “small”. In Section 4.4.1
the fuzzy sets used are described.

In case of definite requests, the parameters are retrieved, extract-
ing information from the internal model of the current scene under
observation. This model is maintained in the SIM and includes names
and properties of objects in the scene, such as cars and roads, and
relations between objects, for instance that a car is in a position on a
specific road or one car is behind another car. It also includes infor-

2Hue, saturation and value of a colour.

4 Anchoring in UAV performing traffic surveillance tasks

mation about the previously observed properties of the object and the
previous information, such as the last observed position of a car, can
be extrapolated to current expected values.

When the SIM receives data from the vision module it processes it
and stores the information in the internal model. The uncertainty of
the data is handled using fuzzy matching (Section 4.5). The SIM rec-
ognizes ambiguities, that is, cases in which more than one object could
be the anchor of a symbol (Section 4.5.4) and it handles simple vision
failures, in particular temporary occlusion and errors in car reidenti-
fication (Section 4.6). Moreover the SIM deals with event recognition
involving one or more cars, Section 4.7.

The anchoring process considered in this section concerns anchor-
ing of dynamic objects. The successful anchoring of dynamic objects
depends on the identification of where the objects are in the environ-
ment, in our case the road network. This information is required by
the reactive and deliberative layers, for instance in order to follow the
object. It is also used by the SIM for reidentification of an object that
has been out of view. The identification of object position is done
by a process that constantly anchors roads and crossings descriptions
stored in a GIS with the parts of the image corresponding to them. In
the next section the anchoring of static objects is described.

4.3 Anchoring of static objects

The information stored in the SIM is mainly the result of anchoring
request; objects that are not in the focus of some request will simply
not be registered. The only anchoring process going on continuously
without requiring an explicit anchoring request is the identification
of roads and crossings, based on information about the positions and
geometries of roads extracted from the GIS. This information is used
to find the parts of the image corresponding to specific roads, which
enables determining of the position of cars relative to the roads. This
is the most important example of integration of static and dynamic

4.4 Handling of anchoring requests

knowledge in the system. The anchoring of static objects is concep-
tually part of the SIM functionality, but for efficiency reasons it is
currently implemented in the vision module. The vision module pro-
vides, for every object reported to the SIM, on which road it is and at
what distance with respect to the beginning of the road.

The anchoring of static objects can be implemented in several ways,
and two quite different approaches have been tested. One is based on
tracking landmarks with known world coordinates and well-defined
shapes which are easily identified in an aerial image. From the world
coordinates and the corresponding image coordinates of all landmarks,
a global transformation from image to world coordinates (and vice
versa) can be estimated assuming that the ground patch which is cov-
ered by the image is sufficiently flat. A second approach uses the
shape information about each static object, e.g., roads, and measure-
ments of the position and orientation of the UAV’s camera to generate
a “virtual” image. This image “looks” the same as the proper image
produced by the camera, but instead of intensity values each pixel con-
tains symbolic information, e.g., road names, position along the road,
etc. The virtual image works as a look-up table which is indexed by
image coordinates.

Since it relies on tracking several landmarks, the first approach is
more robust but less effective and versatile than the second approach
which, on the other hand, is less robust since it depends on having
enough accurate measurements of the camera’s position and orienta-
tion. This can, however, be managed by methods which establishes a
registration between camera image and virtual image.

4.4 Handling of anchoring requests

In this section we explain how the two main kinds of anchoring re-
quests, indefinite and definite, are treated by the SIM.

An object can be identified by a number of properties or by a de-
scription of the object stored when it was last seen. We first introduce

4 Anchoring in UAV performing traffic surveillance tasks

‘small’ ‘small-Mercedes’

-

] :
T
180 -120 -60 0 60 120 18 3 4 5 6 7 8 9 10 11 12 13 14 15~
Hue (degrees) Area (meters)

Figure 4.3: Fuzzy sets for representing the Hue characterization of the
symbols ‘red” and the area of a ‘small-Mercedes’.

the representation of properties such as “red” and “small-Mercedes”
and the representation of data about previously seen objects. Then
we examine in details the handling of the actual requests.

4.4.1 Representation of properties

Properties are represented in our system using fuzzy set. Some basic
concepts of fuzzy set theory are presented in chapter 3.

Anchoring requests identify the properties describing an object us-
ing linguistic terms like ‘red” and ‘small’. These linguistic terms do not
refer to a unique numerical value and they are inherently imprecise.

The linguistic term ‘small-Mercedes’ is represented by a set of fuzzy
sets over the space of the possible values of length, width and area of
the car. Fig 4.3 (right) shows the fuzzy set for the area. The reason
why we consider the term ‘small-Mercedes’ and not just ‘small’ is be-
cause what should be regarded as ‘small’ depends on the type of car we
are talking about. In practice, we use a database that associates each
car type to its typical length, width, and area, represented by fuzzy
sets. Cars of unknown types are associated with fuzzy sets represent-
ing a generic car, like the ‘small’ (car) shown by the dotted lines in
the picture. Intuitively the values that are mapped to 1 are the values
that without doubt are proper to the property ‘small car’. The values
that are mapped to 0 are the ones that do not belong to the property.
Finally the values that are mapped to an intermediate value are the

4.4 Handling of anchoring requests

ones that belong to the property ‘small car’ just to a certain degree.

The data coming from the vision module are also in the form of
fuzzy sets each representing a property of the seen object, (for details
see Section 4.5.1). The fuzzy sets are used by the SIM to select the
objects that constitute the best answer to the anchoring request and
are then stored in the SIM. When an object needs to be reidentified,
the same fuzzy sets are utilized again.

4.4.2 Indefinite references

An indefinite reference denotes an object, in general not unique, that
satisfies a number of properties, for example a small red Mercedes. The
request for anchoring of an indefinite reference specifies the properties
of the object and, in general, it also specifies the area on the ground
where the object should be searched for. A request for anchoring of
an indefinite request has the following form:

(indefinite object-kind Property; ... Property, area)

where object-kind is the kind of object that is requested®, Property;
... Property, are the requested properties of the object, for instance
color and shape, and the area is expressed in terms of absolute ground
coordinates.

The SIM processes the request by performing the following steps:

e The SIM translates the properties’ symbolic names into a form
that is suitable for the vision module using the fuzzy sets rep-
resentation of the properties described in the previous section.
What is actually sent to the vision module are intervals whose
extremes correspond to the supports of the fuzzy sets of the re-
quired properties. These intervals are used by the vision module
to make a first selection among the visible objects and keep only
those that have properties which fit the intervals. A second more

3Currently just cars are supported.

61

4 Anchoring in UAV performing traffic surveillance tasks

accurate selection of the objects is later performed by the SIM.
Details of both these selection procedures are to be found in
Section 4.5.

e The translated properties and the coordinates of the area which
describes where to search for the object are then transmitted to
the vision module.

4.4.3 Definite references

A definite reference denotes a specific, and in general, unique object.
If the object has not been perceived before, but it has a special prop-
erty that makes it unique, for example “the small red Mercedes at
coordinates (100, 100)”, the anchoring is performed in the same way
as an indefinite reference and the request has the same form.

In the case when the object has been perceived before, previously
recorded data about the object are used for the reidentification. A
request for an anchoring of a previously seen object has the following
form:

(definite identifier)

Identifier is the identifier that was sent to the reactive executor when
the object was previously anchored.

The SIM retrieves information about the object and sends it to
the vision module for the purpose of reidentification. The color and
shape information about the object is in the form of a trapezoidal fuzzy
set, that is, the form in which the data were calculated by the vision
module and then stored in the SIM. The color and shape values sent
to the vision module are intervals whose extremes are the extremes of
the support of the fuzzy set.

The area which defines where to look for the object is derived
by extrapolating the position where the car was last seen, assuming
constant speed. If the car has meanwhile reached a crossing, several
areas can be candidates for search. The SIM transmits the information

62

4.4 Handling of anchoring requests

about the object and one of the areas to the vision module. If the car
cannot be found in that area, the SIM transmits the information about
the other possible areas one at a time. In the current implementation
the search of the car stops as soon as the car is found in one of the
areas. An alternative possibility would be to examine all areas before
making a decision, but we consider this alternative impractical due to
the dynamics of our domain.

4.4.4 Continuous update of references

The anchoring requests considered in the previous sections involve the
first functionality of anchoring, that is to create an anchor between
the symbolic description of the object and the perceived object. The
second functionality of anchoring is to keep an updated record of the
properties of an already established anchor. The request to regularly
get the updated values of the properties of an anchored object has the
following form:

(track identifier).

Identifier is the identifier that was sent to the reactive executor when
the object was anchored.

The SIM retrieves information about the object and sends it to the
vision module. The vision module centers the camera on the car and
tries to keep the camera centered on the object compensating for the
movement of the car and of the UAV. The compensation is done using
a Kalman filter. The properties of the car are regularly updated and
in particular its position. The position of the object is regularly sent
to the reactive executor and it is used, for instance, when the UAV is
following a car.

4.4.5 Invocation of algorithms in the vision module

The invocation of the algorithms in the vision module is done by means
of skill configuration calls. A skill configuration call has the following
structure:

4 Anchoring in UAV performing traffic surveillance tasks

(Name Parameter; ... Parametery,).

Name is the name of the collection of algorithms to be invoked
by the vision module in order to acquire the needed information and
Parameter; ... Parameter,, are the parameters needed by the algo-
rithms. The skill configurations currently implemented are the follow-
ing:

(Look-for list-of-properties area): it moves the camera so that
the image corresponds to the requested area. It then looks for
objects satisfying the required properties* and reports the found
objects to the SIM;

(Track list-of-properties position-coord): when invoked, it moves
the camera so that the position-coord are at the center of the
image. It then finds all cars satisfying the list of properties, re-
ports the information about all found cars to the SIM ordered
with respect to the distance to the position-coord and starts
tracking the nearest car with respect to the position-coord®.
The car is then continuously tracked until the skill configuration
is deactivated. Tracking a car implies keeping the car in the
center of the image and regularly reporting its properties. The
tracking is done using a Kalman filter performing a short term
prediction on the position of the car. Information on all other
visible cars satisfying the properties is also reported®.

(Track-Check-Surroundings list-of-properties position-coord):
this skill configuration performs the same tasks as the Track skill
configuration with the difference that information about all the

4Details on how the objects are selected are provided in Section 4.5.1.

®The SIM checks if the car that the vision module is starting to track is the
correct one. If this is not the case, the SIM can send another Track request to
the vision module, for instance indicating the coordinates of one of the other cars
reported.

6This gives the SIM the ability to realize that the vision module has started
tracking a different car.

— 64 —

4.5 Treatment of sensor data

Fuzzy set

l interval I

T T T T T T T T T T T T l
3 4 5 6 7 8 9 1d 11 12 13 14 15 ™~

Figure 4.4: A fuzzy set compatible with an interval.

cars surrounding the tracked car is also sent to the SIM. This
skill configuration is used, for instance, during event recognition
involving several cars.

4.5 Treatment of sensor data

A request to the vision module to look for an object contains, as de-
scribed in the previous section, a number of intervals indicating the
acceptable values for each of the attributes of the object, for instance
hue, length, area, and so on. For each of the visible objects the vi-
sion module calculates trapezoidal fuzzy sets for all the properties and
selects the objects where the fuzzy sets of those attribute are all com-
patible with the required intervals. A fuzzy set is compatible with an
interval if the support of the fuzzy set intersects the interval. Figure
4.4 shows an example of a fuzzy set compatible with an interval.
Information about the objects selected by the vision module is re-
ported to the SIM. This information includes the fuzzy sets of color,
shape, velocity, and position of the object. The SIM then makes an-
other selection among the objects and orders them with respect to the
degree by which they match the desired object. This second selection
is done at the SIM level for two main reasons: it involves the com-
parison with previously stored information not available at the vision

4 Anchoring in UAV performing traffic surveillance tasks

level; and it involves reasoning about the relative importance of dif-
ferent features that is more proper of the SIM level. Each of the fuzzy
sets coming from the vision module is matched with the fuzzy set de-
scribing the required property and a degree of matching is calculated.
Then the degrees of matching are combined to form the total degree of
matching for each object. The objects are then ordered with respect
to the total degree of matching.

In the rest of the section we first explain how the fuzzy sets are
created in the vision module (Section 4.5.1). Then we consider how the
degrees of matching for a single feature (Section 4.5.2) and for multiple
features (Section 4.5.3) are calculated. Finally answers to the reactive
executor and possibility of disappearance of the object are considered
in Sections 4.5.4 and 4.6 respectively.

4.5.1 Fuzzy-set representation of visual data

Data obtained from the vision system, e.g., color, shape, position and
velocity, are affected by uncertainty and imprecision in several ways. In
this work, we propose to explicitly represent the imprecision inherent
in these data, and to take it into account when performing signature
matching. In order to justify our representation, we need to analyze
the way in which we extract the required parameters from the image.

Consider the measurement of the shape parameters (length, width
and area) of an observed car. Roughly, the measurement starts with
a segmented and labeled binary image containing our candidate cars.
This binary image is created by combining and thresholding the fea-
ture images produced by the different feature channels available, e.g.,
orientation, color, IR and velocity (currently, we only use the color
channels). For each object in the labeled image, we then compute the
moment of inertia matrix. From this 2 x 2 matrix, we calculate the two
eigenvalues which correspond to the largest and smallest moment of
inertia, respectively, and convert them into the length and width of the
object under the assumption that our objects (cars) are rectangular as
seen from above. We also measure the area by counting the pixels that

4.5 Treatment of sensor data

belong to the same object. The length, width and area measures are
then converted to metric measures through multiplication by a scale
factor describing the meter per pixel ratio. This ratio is computed
from the field-of-view angle and from the position and angles of the
camera.

There are a number of factors that influence the correctness of the
values measured by the above procedure. First, in the segmentation
phase, the discretization of the image limits the precision of the mea-
sure.

Second, continuing the segmentation phase, we apply some binary
operations (e.g., “fill” and “close”) on the binary image in order to
connect and “bind” segmented pixels into objects. This operation
slightly alters the shape, thus limiting the precision. The above two
factors together produce a segmentation error, denoted by €. Third,
the measurement model may be inaccurate, thus introducing an error,
the model error, denoted by €,,; for example the above assumption
that cars are rectangular is almost never completely true. Note that
the impact of the €; and €, errors on the quality of the measurements
depends on the size of the car in the image, which in turn depends on
its distance from the camera and on the focal length of the camera. A
fourth factor that affects the measurement is the perspective distortion
due to the angle a between the normal of the car plane and the optical
axis: if the car plane is not perpendicular to the optical axis, the
projection of the 3D-car on the image plane will be shorter. We denote
this perspective error by €,. Finally, all the geometric parameters
needed to compute the length may themselves be affected by errors and
imprecision. For example, the distance from the camera depends on
the relative position of the UAV and the car; and the o angle depends
on the slope of the road; both these values may be difficult to evaluate.
We summarize the impact of these factors on our measurement in a
geometric error term, denoted by 69.7

"There are more sources of errors in this process. For example, when « increases,
the car projection may seem longer due to the fact that the sides of the car will

— 67 —

4 Anchoring in UAV performing traffic surveillance tasks

|

I T T 1
-180 -120 -60 0 60 120 180
Hue (degrees)

3 4 5 6 7 8 9 10 11 12 13 14 15
Area (meters)

Figure 4.5: Fuzzy sets for the measured area (left) and hue (right).

The above discussion reveals that there is a great amount of uncer-
tainty that affects the measured value, for example, the length of an
object; and that this uncertainty is very difficult to precisely quantify
— in other words, we do not have a model of the uncertainty that
affects our measures. Similar observations can be made for other fea-
tures measured by the vision system: for example, the measurement
of the color of an object is influenced by the spectral characteristics
of the light that illuminates that object. Given this nature of the un-
certainty in the data coming from the vision system, we have chosen
to represent these data using fuzzy sets [53]. Fuzzy sets offer a con-
venient way to represent inexact data whose uncertainty cannot be
characterized by a precise, stochastic model — but for which we have
some heuristic knowledge. For example, Fig 4.5 (left) shows the fuzzy
set that represents a given area measurement. For each value z, the
value of this fuzzy set at x is a number in the [0, 1] interval that can
be read as “the degree to which = can be the actual area of the object
given our measurement.” (See [54] for this possibilistic reading of a
fuzzy set.)

In our work, we use trapezoidal fuzzy sets, both for computational
reasons and for ease of construction. The possibilistic reading gives

become visible. Also, the measured value can be totally invalid if there has been
an error in the segmentation and/or labeling phases. For instance, if the car has
been merged with its shadow, or with another car in front of it. Accounting for
these possibilities is part of our current work.

4.5 Treatment of sensor data

us some simple guidelines on how to build a trapezoidal fuzzy set to
represent an inexact measurement. The core of the fuzzy set identifies
those values = that can be fully regarded as the actual length value
given our measurement. In the example in Fig 4.5 (left), these values
are spread over an interval rather than concentrated in a point because
of the segmentation effect: our measurement cannot tell us more than
what is allowed by the pixel size. The base of the fuzzy set (its support)
identifies those values x that can possibly be regarded as the actual
length value: given the errors that may affect our measurement, the
actual length may be anywhere in the support interval — but under
no circumstances can it be outside this interval. Put differently, the
support constitutes a sort of worst case estimate: however big the error
is, the actual value must lie somewhere in this interval. While the core
constitutes a best case estimate, even if the measurements are taken
in the best of conditions, we cannot be more precise than this.

Let us now discuss in detail how we have built the fuzzy set in
Fig 4.5. The vision system has calculated the length to 29.9 pixels,
which corresponds to | = 4.23 meters. The segmentation error €, is
estimated to a constant +1 pixel, which with a scale factor of s = 0.14
meters/pixel gives us €; = 0.14 meters. This segmentation error is
inherent to our measurement process, no matter how good our models
and computations are, and it thus defines the core of the trapezoid in
the picture, given by the interval [l — e, 1 + €] = [4.09,4.37].

Our estimates for the other errors are all collected in the sup-
port of the trapezoid. The model error €, is estimated in a coarse
but simple way by comparing the measured area a,, with the com-
puted area a, = wl (where w is the calculated width). The difference
between these areas defines ¢, such that a,, will lie in the interval
[(w—€n) (I —€n), (W4 €eyn) (I +en)]. If, for example, a,, is greater
than a., €, becomes:

am — (W+en)({+epn) =0 = em:—(w;” +\/(wzl)2 + (am — ac)

which in our case gives us €, = 0.04m. As a simplification we have
assumed that €, is the same for both the width and for the length.

4 Anchoring in UAV performing traffic surveillance tasks

As for the perspective error €,, in our case we have o = 40.3°. If
we assume that we measure the projected length as [cos a, then the
worst case error due to a becomes €, = lyax (1 — cos «), where lyax
is the estimation of the maximum object length. If we set Ipyax = 6m
we get €, = 1.42m. Since the support of our fuzzy set must in-
clude all the values which are possible in a worst case error situa-
tion, we include all the above errors in it.® This gives us the interval
[l —€s —€m, |+ €5+ €m + €] = [4.05,5.83] for the base of our trape-
zoid. Note that €, only affect the upper bound of the interval, i.e.,
the car may seem smaller in the image when « increases. The correct
length in our example was 4.42 m.

The construction of the fuzzy sets for the other features follows
similar guidelines. For example, Fig 4.5 (right) shows the fuzzy set
that represents the observed Hue value. At the current stage of devel-
opment, however, we have mainly focused on the shape parameters.
Although the definitions of these fuzzy sets are mostly heuristic, they
have resulted in good experimental performance.

4.5.2 Fuzzy matching of one feature in the SIM

Once the vision module has reported the selected objects and their
properties in terms of fuzzy sets, the SIM can compute the degree of
matching between each of the fuzzy sets and the desired description.
The desired descriptions can be the descriptions of properties such as
“red” or a description of the object recorded when the object was last
observed. The computation of the degree of matching is performed
using fuzzy set operations.

We have tried in this domain the two different definitions for de-
gree of matching presented in chapter 3, match; and matchs. The
matchsy definition has given the best performance in this domain. In
the matchsy definition we measure to what extent A is a (fuzzy) subset

8In our current experiments in the simulated environment, we have ¢, = 0 since
the position of the UAV, the camera parameters, and the road geometry are all
perfectly known.

4.5 Treatment of sensor data

of B by comparing the area of AN B and the area of B:

Jrex min{A(z), B(z)} dz

matchy (A4, B) = T Bla)ds
zeX

(4.1)

4.5.3 Fuzzy matching of several features in the SIM

Once we have computed a degree of matching for each individual fea-
ture, we need to combine all these degrees together in order to obtain
an overall degree of matching between a description and a given ob-
ject perceived by the vision system. The simplest way to combine our
degrees is by using a conjunctive type of combination. In our experi-
ments, we have noticed that the Lukasiewicz T-norm maz(z+y—1,0)
operator provides the best results. The overall degree of matching is
used by the SIM to select the best anchor among the candidate ob-
jects provided by the vision module. For each candidate, the SIM
first computes its degree of matching to the intended description; then
it ranks these candidates by their degree of matching, and returns
the full ordered list to the reactive executor. The reactive executor
is then responsible for deciding which candidate to choose. Knowing
how much the best matching candidate is better than the other can be
useful in deciding to engage in further exploratory actions in order to
disambiguate the situation before committing to one candidate. For
instance, we may ask the vision system to zoom in on each candidate
in turn in the hope to get more precise data.

4.5.4 Answers to the reactive executor

The result of the fuzzy matching described in the previous section is
an assignment of a degree of matching to the observed objects. The
SIM discards the objects with 0 degree of matching and stores infor-
mation about the remaining objects creating an identifier for each of
the objects.

The answer to the reactive executor’s anchoring request is a list
of object identifiers ordered with respect to their degree of matching.

71

4 Anchoring in UAV performing traffic surveillance tasks

The degree of matching is also provided to the reactive executor.
(ObjFound(Objld; DegreeMatchingy) ... (Objld, DegreeMatchingy,))
If no object is found, the string:
(no-obj-found)

is sent to the reactive executor. If the reactive executor had requested
the anchoring of an indefinite reference, it simply selects one of the
objects, in general the one with highest degree of matching. If the
reactive executor had requested the anchoring of definite reference,
the fact that there are multiple candidates could be a problem since
the object referred by a definite request ideally should be unique. In
this case the reactive executor can decide to zoom in with the camera
or to move toward the object to gain a better view and collect more
informative data. Deliberative parts of the system can also be involved
in the decision about which object to consider as the correct one.

In the case of a request for tracking an object, the SIM sends to
the reactive executor the following list each time the vision module
sends new data to the SIM:

(obj-properties obj-id xpos ypos zvel yvel)

where obj-id is the identifier of the objects, (zpos ypos) are the absolute
coordinates of the object, and (zvel yvel) is the velocity vector of the
object. This information is used by the reactive executor, for instance
to follow the object.

4.6 Handling of object disappearance

When an object is tracked, the vision module constantly tries to keep
the object in the center of the image and it regularly sends updated
information about the object to the SIM.

72

4.6 Handling of object disappearance

The tracking algorithm can lose the object mainly for two reasons:
the UAV makes a sudden maneuver, the camera cannot compensate
in time, and the object gets leaves the image; or the object is occluded
by another object.

The fact that the algorithm has lost track of the object can be
detected by the SIM in two ways: the vision module communicates
that the tracked object is not visible anymore or the SIM detects that
the vision module has started tracking the wrong object. The second
case can occur for instance when the car disappears under a bridge
while a similar car is passing on the bridge. The SIM can detect
that the wrong object is being tracked because it compares the data
coming from the vision module with the possible positions of the car
calculated on the basis of the previously received data and information
about the road network retrieved from the GIS. There can be several
possible positions in the case where the car has meanwhile reached a
crossing and they take into consideration possible change of velocity
of the car and possible changes of lane. If the data coming from the
vision module are incompatible with any of the possible positions, the
car is considered as lost.

When the SIM determines that a car has been lost, it checks
whether the car has been occluded by an object which is described
in the GIS, for instance a bridge or a tunnel. If this is the case and
the occlusion is expected to be short, as for instance in the case of a
bridge, the SIM transmits to the vision module the description of the
object and the position where the object is going to reappear. The
same mechanism as for a definite reference is used®. If the occlusion
is expected to last for a long time and/or the UAV needs to change
heading or velocity in order to be able to see the object again after
the occlusion, then information that the car has been lost due to an

9 Alternatively one could use a more sophisticated model of the road network to
determine the possible positions of the car that includes possibly occluding objects.
In this case the SIM would know in advance that the car is going to disappear, but
this would increase the complexity of the calculations without adding, we believe,
a real advantage.

4 Anchoring in UAV performing traffic surveillance tasks

occlusion is transmitted to the reactive executor. This is the case, for
instance, when the car disappear under a tunnel. The reactive execu-
tor can in its turn invoke the planner to take decisions about what
course of action to take. The reactive executor is also informed that
the car has been lost if the car does not reappear at the predicted
position after an expected time. The expected time is proportional
to the time that should be needed for the car to reach the end of the
occluding object at the velocity that the car had before disappearing.

If the object has disappeared but there is no information in the GIS
about an occluding object, the SIM continues for a pre-specified time
to transmit to the vision module the information about the object and
the expected position of the object given the last observed position and
velocity. In this way, the SIM can recover the car in the case where
it has briefly disappeared due to trees along the road or if the vision
module has temporary lost the car due to a stiff turn of the UAV.
If the car does not reappear after the pre-specified time, the reactive
executor is informed of the disappearance of the car.

4.7 Events, activities and episodes

The recognition of traffic-related episodes is one of the tasks of the
UAV in the WITAS project. Examples of episodes of interest are
overtaking, giving way at a crossing, and turning. The recognition
of episodes is currently implemented in the reactive executor, while
the recognition of the single events and activities is placed in the SIM
module. The recognition of events and activities is not anchoring in the
proper sense, but since this recognition strongly relates to properties
of the anchored objects, it is most naturally implemented in the SIM.

The recognition of events and activities is just a marginal part
of this dissertation. The work presented in this section describes a
preliminary implementation of the event and activity recognition ca-
pability in the SIM illustrated by a few examples of events, activities
and episodes.

4.7 FEvents, activities and episodes

Following the work of Howarth [25] in recognition of episodes in
traffic scenes, we provide the following definitions of event, activity,
and episode.

Consider an object, for instance a car, and the properties of this
object which we are interested in. In general these properties may be
constant or variable over time. They may also assume values from
different domains. If we restrict ourselves to only those object prop-
erties that take values “true” or “false”, an event can be defined as
the becoming true of a property of a specified object. For example the
stopping of the car is an event, the property becoming true being the
fact that the car is still.

An activity can be defined as the being true for a certain time of
a property of a specified object. For example being near to a crossing
is an activity.

An episode is a composition of events and activities. For instance
the overtaking of one car by another is a episode that can be considered
as the sequential composition of: the event “car changes lane”, the
activity “there is a car beside it”, and the event “car goes back to the
previous lane” 10,

The episode is represented in the reactive executor by an automa-
ton. The automaton is activated when the system needs to recognize
an episode. The request for recognition of the first event/activity in
the automaton is sent to the SIM. The recognition of an event/activity
triggers the request for the recognition of other events/activities until
the episode is completely recognized or it is realized that the episode
cannot be recognized.

The description of the episode includes the cases which make it
possible to realize that the episode cannot be recognized. This is also
expressed in terms of event/activity recognition. For instance, in the
recognition of the overtaking episode given that the event change-
lane has been recognized, recognition of the activity car-beside and

10This definition of overtaking covers the most typical cases that a human would
classify as overtaking, but probably not all of them.

4 Anchoring in UAV performing traffic surveillance tasks

the event change-lane are requested. If the activity is recognized, the
episode recognition continues. If the event is recognized, the car has
returned to the original lane and the recognition of the episode is
aborted.

4.7.1 Request for recognition of events and activities

The reactive executor sends requests for recognition of events and ac-
tivities to the SIM. The SIM responds to the requests by activating
algorithms in the vision module to process appropriate aspects of the
image and activating internal functions for processing the data incom-
ing from the vision module and recognizing events and activities.

A request for the recognition of an event has the following form:

(event event-name object)

where event-name is the identifier of the event of interest and object
is the object that has to be checked with respect to the event. The
object can be referred to by its symbolic identifier or using indexical
references such as “the tracked car” or “the car in front of the tracked
car”.

When an event is produced, for example the car has changed lane,
the reactive executor is notified.

An activity is recognized when the property associated with the
activity is true at the moment of the request of the activity recognition.
If the property is not true initially, it is regularly checked and the
activity is recognized as soon as the property becomes true.

4.7.2 Examples of episodes, events, and activities

The episodes that can be currently recognized are: one car overtaking
another car, and one car giving way to another car. The structures of
the two episodes are shown in Fig. 4.6 and Fig. 4.7 respectively.

The overtaking episode consists of the following steps:

— 76 —

4.7 FEvents, activities and episodes

change-lane(C1, L2, L1)

change-lane(Cl, L1, L2) car-beside(Cl, C2) change-lane(C1, L2, L1)
’U]

Figure 4.6: The overtaking episode.

exit

Xit
passed-crossing(C1) passed-crossing(C1)
Q near-crossing(C1) car-stop(C1) ﬂother—car—infcrossing(c1,C2)m passed»crossing(Cl)O

Figure 4.7: The give way episode.

e the reactive executor sends a request to the SIM to recognize the
event (change-lane carl, linel, line2) of the car currently under
observation. When the center of gravity of the car passes from
one lane to another the event is recognized;

e the reactive executor now sends the request to recognize an ac-
tivity (car-beside carl, car2) and an event (change-lane carl,
linel, line2). If the activity is recognized, the recognition of the
episode is continued. If the event is recognized the recognition
of the episode is interrupted because the car has come back to
the previous lane without overtaking;

e the new requested event is (change-lane carl, line2, linel). When
this event is recognized the entire episode is recognized.

In the give way episode a car stops at a crossing and lets one
or more cars pass before it starts moving again. The steps in the
recognition of the episode are the following:

4 Anchoring in UAV performing traffic surveillance tasks

e the reactive executor sends a request to the SIM to recognize
the activity near-crossing of the car currently under observa-
tion. When the car is less than 50 meters from the crossing, the
activity is recognized;

e the reactive executor sends now the request to recognize an ac-
tivity car-stop and an event passed-crossing. If the activity is
recognized, the recognition of the episode is continued while if
the event is recognized the recognition of the episode is inter-
rupted;

e if the car-stop activity is recognized, two requests are sent: one
of the activity other-car-in-crossing and one of the event passed-
crossing. The first activity is recognized if there is another car
in the crossing to which our car is giving way '!. If the event is
produced, the recognition of the episode is interrupted;

o if the other-car-in-crossing activity is recognized, the new re-
quested event is passed-crossing. When this event is recognized
the entire episode is recognized.

Events

The events recognized in the two episodes are the following:

e (change-lane car previous-lane new-lane): it becomes true when
the car changes lane from previous-lane till new-lane. The SIM
receives the information about the lane the car is in from the
vision module and it compares it with the previously stored value
of the lane of the car;

"'We currently consider every car in the crossing as a car to which our car is
possibly giving way. Since we do not know the direction in which both cars are
going to turn, it would be difficult to explicitly check if the car in the crossing is
actually blocking our car.

— 78 —

4.7 FEvents, activities and episodes

e (passed-crossing car): it becomes true when the car has passed
through a crossing. The vision module sends information about
where the car is with respect to the road network to the SIM.
The SIM checks if the car’s last position was in a crossing while
the new position is on a road.

The car symbol in the previous list is the identifier of the car per-
forming the event.

The properties checked are related to the speed and road posi-
tion of the car. This information is regularly updated for the tracked
car'?. If the car whose properties are being checked is the tracked one,
the SIM mainly activates internal functions for processing the data
incoming from the vision module, checking the properties of interest
and producing the requested events.

If the car whose properties are being checked is a car in the sur-
roundings of the tracked car, then the SIM activates in the vision
module an algorithm that gives information about both the tracked
car and the cars surrounding it. For instance this is the case of the
indexical reference “the car in front of the tracked car”. Also in this
case, the SIM activates internal functions for processing the data in-
coming from the vision module, checking the properties of interest and
producing the requested events.

If the requested car is outside the current image and there are no
other anchoring processes active, the SIM first tries to anchor the re-
quested car and then checks the properties associated with the event.
If the requested car is outside the current image and there are other
anchoring processes active, the SIM overrides the previous anchor re-
quest and starts executing the new one.

The checking of the properties in itself is quite simple. The SIM
stores the values of the properties of interest of the previous cycle and
compares them with the property values currently being received.

12Currently just one car at a time can be tracked by the system.

4 Anchoring in UAV performing traffic surveillance tasks

Activities

The activities recognized in the two episodes are the following:

(car-behind carl car2): the system recognizes when there is a
car behind car! (car2 is the identifier of the car behind). A car
is considered to be behind another car if it is in the same lane
and closer to the beginning of the lane'®. The information about
which lane a car is in and at what distance from the beginning
of the lane is provided by the vision module;

(car-beside carl car2): the system recognizes when there is a
car beside car! (car? is the identifier of the car beside). A car
is considered to be beside if it is in an adjacent lane and at a
distance of a maximum of 5 meters from the car of interest.

(other-car-in-crossing carl car?2): the system recognizes when
there is a car different from car! in the crossing (car2 is the
identifier of the car in the crossing). The information that the
car is in a crossing is given by the vision module.

(near-crossing carl): the system recognizes when the car is at
less than 20 meters from the crossing.

(car-stop carl): the system recognizes when the speed of the car
is below a certain threshold!4.

13This definition is not very robust. We have adopted it for the time being as it
was sufficient for our experiments.

“We do not require that the speed is actually 0 because of the inaccuracy in
the measurement of the speed. The threshold is established considering the level
of inaccuracy of the measurement.

4.8 SIM at work

4.8 SIM at work

4.8.1 Searching for a car ...

To illustrate the first functionality of anchoring, that is, the associa-
tion of a symbolic description with a perceived object, we consider a
scenario in which the reactive executor is interested in a red car of a
specified model in the vicinity of a given crossing. Four cars are sit-
uated around that crossing, moving in different directions. The cars
are all red, but of different models: a small van, a large Mercedes, a
small Mercedes, and a Lotus. In the first example the UAV hovers
over the crossing. In the second example, discriminating between the
cars is made more difficult by the fact that the UAV views the cross-
ing at an inclination of about 30 degrees (see Fig. 4.8). This results
in some perspective distortions, thus introducing more uncertainty in
the extraction of geometrical features.

In our first example, the reactive executor decides to follow ‘Van-
B’, which is described as a red van. The SIM sends the prototypical
signature of a red van to the vision module. Since all four cars in the
image are red, and they have fairly similar shapes, the vision module
returns the observed signatures of all the four cars to the SIM. These
signatures are then matched against the desired signature, applying
the fuzzy signature matching routine described in chapter 3. The
following degrees of matching result:

ID | Color Shape | Overall
66 1.0 0.58 0.58
67 1.0 0.38 0.38
68 1.0 1.0 1.0
69 1.0 0.0 0.0

The ID is a label assigned by the vision system to each car found
in the image. The degree of matching for the color is obtained by
combining the individual degrees of hue, saturation, and value; in our
case, this will be 1.0 for all the cars as they are all red. The degree

81

4 Anchoring in UAV performing traffic surveillance tasks

Figure 4.8: The simulated scenario for our examples.

4.8 SIM at work

B M.,,m.: —

)
4 5 6 7 8 9 10 11 12 13 14 I5
Maiching deg. 1.00
| /
% I 2
T 3 4 5 6 7 8 910 11 12 13 14 15

2

in;
n;

2
Matchis

' "2 3.4 5 6 7 8 910 11 12 13 14 15
Marchi M

'8
8

|

Figure 4.9: The fuzzy sets of length, width, and area of the cars of the
example and the references fuzzy sets for a van.

4 Anchoring in UAV performing traffic surveillance tasks

of matching for the shape is the combination of the individual degrees
of matching of length, width, and area. The overall degree is the
Lukasiewicz combination of the color and shape degrees. The fuzzy
sets of length, width, and area of the cars of the example and the
references fuzzy sets for a van are shown in Fig. 4.9. In this case,
car 68 is correctly!'® identified as the best candidate, and an anchor to
that car is thus returned to the reactive executor.

In the second example, the reactive executor is interested in a
small red Mercedes. The SIM sends the corresponding prototypical
signature to the vision module, and again obtains the signatures of all
the four cars in the image as an answer. In this case, however, the
UAV is further away from the crossing and it views the crossing at
an inclination of about 30 degrees. By applying the fuzzy signature
matching routine, we obtain the following degrees:

ID | Color Shape | Overall
66 1.0 0.65 0.65
67 1.0 0.84 0.84
68 1.0 0.0 0.0
69 1.0 0.97 0.97

Cars 66, 67 and 69 match the desired description to some degree, while
car 68 can safely be excluded. The SIM can try to improve the quality
of the data by asking the vision module to zoom on each one of cars
66, 67, and 69 in turn. Fig. 4.10 shows a car after the vision module
has zoomed on it. Using the observed signatures after zooming, the
SIM then obtains the new degrees of matching:

ID | Color Shape | Overall
66 1.0 0.30 0.30
67 1.0 0.70 0.70
69 1.0 0.21 0.21

The closer view results in a smaller segmentation error, since the
scale factor is smaller, and hence in more narrow fuzzy sets. As a

15This verification was done manually off-line.

— 84 —

4.8 SIM at work

Figure 4.10: A car after the vision module has zoomed in on it.

4 Anchoring in UAV performing traffic surveillance tasks

consequence, all the degrees of matching have decreased with respect to
the previous observation. What matters here, however, is the relative
magnitude of the degrees obtained from comparable observations, i.e.
those collected in the above table. The SIM sends the identifiers of
each of the cars to the reactive executor together with their degrees of
matching. These degrees allow the reactive executor to select car 67
as the best candidate.

The reactive executor now also has the option to try to further
improve its choice by commanding the UAV to fly over car 67 and
take another measurement from above the car — the best observation
conditions for the vision system. If we do this, we finally obtain a
degree of matching of 1.00 for car 67. Note that this degree could
as well have decreased, thus indicating that car 67 was not really the
car that we wanted. In this case, the reactive executor could have
requested the SIM to go back to cars 66 and 69 to get more accurate
views.

4.8.2 ... and then following it

Once a car has been found, the second anchoring functionality, i.e.
keeping an updated record of the properties of the object (tracking),
takes over. The tracking involves the positioning of the UAV above the
car and keeping the car in the center of the image. The first is achieved
by the reactive executor by adjusting the velocity and direction of the
UAV depending on the car’s position. The centering of the car in
the image is performed by the vision module. Currently these two
processes are independent, but we are considering the possibility of
integrating them in one control process.

In this example we illustrate the tracking of a car in three different
cases of disappearance: the car is lost because of a sudden turn of the
UAV, the car disappears under a bridge, and the car disappears into
a tunnel.

Let us consider the first case of disappearance. The car followed
by the UAV is the car in the center of the image, Fig. 4.11. The car

4.8 SIM at work

i

Figure 4.11: The followed car has just turned from the road starting
at the bottom of the image to the road going to the left.

4 Anchoring in UAV performing traffic surveillance tasks

Figure 4.12: The followed car disappears under a bridge and a similar
car appears at its place over the bridge.

Figure 4.13: Several cars similar to the car that has disappeared move
along the roads, but the SIM correctly reidentifies the car when it
reappears from under the bridge.

4.8 SIM at work

has just turned from the road starting at the bottom of the image to
the road going to the left. The UAV makes a sudden turn to follow it,
the camera cannot compensate, and the car is no longer visible. The
vision module reports to the SIM that the car is no longer in sight.
The SIM checks the road database to see if there could be objects
occluding the car. As there are no occluding objects in this case, the
SIM extrapolates the last observed position of the car to a current
expected position. This position together with the description of the
car is sent to the vision module. The camera is then turned to the
expected position and the car is reidentified.

A second example of disappearance is shown in Fig. 4.12. Two
identical cars are present in the image, one traveling along a road
which makes a bend under a bridge, and one which travels on the
bridge. In this example, the UAV is tracking the first car which will
soon disappear under the bridge and, even worse, a few moments later
the second car will be in the position in the image where the first
car would have been, had it not been occluded, Fig. 4.12 (left). The
first car disappears and the second car is the only visible car, Fig.
4.12 (right). The vision module reports the information about the
car on the bridge to the SIM. The SIM, however, regularly estimates
the expected position of the car and realizes that this car cannot be
the correct one as it is in a position incompatible with the previously
reported position of the tracked car. The SIM checks the road database
and realizes that there is a bridge covering the part of road where
the car is expected to be. The predicted position where the first car
will reappear is retrieved and the SIM sends this position with the
description of the car to the vision module. The camera is turned
toward the position waiting for the car to reappear. Several other
similar cars move along the bridge and in the opposite lane with respect
to the one where the car should reappear and the vision module reports
information about them, Fig. 4.13 (left). However, the SIM realizes
that they are in positions incompatible with the expected position of
the car. The SIM reidentifies the correct car when it reappears from
under the bridge, Fig. 4.13 (right).

4 Anchoring in UAV performing traffic surveillance tasks

Figure 4.14: The car disappears under a tunnel and it is reidentified
at the exit of the tunnel with the intervention of the deliberative layer.

Finally let us consider the case when the car disappears into a
tunnel, Fig. 4.14 (left). In this case the SIM retrieves the information
that there is a tunnel at that point in the road, but instead of dealing
with the occlusion itself, it reports the disappearance to the reactive
executor. The reactive executor, in turn, reports the disappearance
to the planning module and the planner creates an appropriate plan
taking into consideration possible behaviors of the car such as slowing
down in the tunnel and making a u-turn. The UAV moves to the
other end of the tunnel and the car is reidentified when exiting from
the tunnel, Fig. 4.14 (right).

4.8.3 Event recognition

In this last example we consider the case of recognition of an episode.
The recognition of an episode is implemented in the reactive executor,
however the recognition of the single events and activities is part of the
SIM functionalities. The recognition of events and activities consists
in checking the values of properties of anchored objects. In this sense
it is related to anchoring even if it is not anchoring in the proper seunse.

We present here the recognition of a “give way” episode and of
the events and actions composing it. In this episode a car stops at

4.8 SIM at work

BiGieY
Other—garJirn—crossing Car-beside
Gar—'rnove

.

E“g
Ui
‘

Figure 4.15: The event other-car-in-crossing is recognized (left). The
event car-beside is recognized (right).

a crossing and lets one or more cars pass before starting to move
again. The car needs to be anchored and the second functionality of
anchoring (tracking) needs to be active. The steps in the recognition
of the episode are the following:

e when the car is at less than 50 meters from the crossing, the
activity near-crossing is recognized;

e when the speed of the car is below 0.2 m/s the car-stop activity
is recognized;

e the activity other-car-in-crossing is recognized, Fig. 4.15 (left);
e finally the event passed-crossing is recognized.

Two of the activities and one of the events involve just the anchored
and tracked car. However the last activity, other-car-in-crossing, in-
volves the recognition of another car. This new car also needs to be
anchored and it is referred in relation to the tracked car as being a car
that is different to the tracked car and that it is at a crossing. Another
example of activity recognition involving two cars is the recognition of
the activity car-beside, see Fig. 4.15 (right). In this case the tracked
car is the car in the lane above and the other car is referred by the
deictic property of being the car beside the tracked car.

4 Anchoring in UAV performing traffic surveillance tasks

4.9 Open problems

In this section we state a number of open problems in the SIM that
we intend to address in our future work.

Changes in orientation and illumination in definite anchoring
The reidentification of an object that has been out of view is cur-
rently performed using the color and shape information stored when
the object was last seen. However, if the object and the UAV have
significantly changed their relative orientation, or if the illumination
has changed, the color and shape information could be incorrect. In
our experiments we have not experienced particular problems related
to this issue, mainly because in our domain the UAV is usually not far
from the objects and we presuppose that just a short time passes from
when the object was last seen to when it is reidentified. However, we
believe that in the general case an expected value of color and shape
should be calculated depending on the changes in orientation and il-
lumination.

Quality of the vision data The degree of matching currently cal-
culated depends on how much the fuzzy sets received from the vision
module intersect with the fuzzy sets representing the desired features.
An additional aspect to take into consideration is the actual quality
of the data received from the vision module. If the fuzzy set received
from the vision module has a large support, that is, the quality of the
data is poor, the degree of matching may not be a good indication
of the “goodness” of the matching. Moreover, the knowledge about
the quality of the data is important in establishing what actions are
suitable to perform to improve the data’s quality. For instance if the
quality of the data regarding the shape is poor, SIM can request the
vision module to zoom on an object to get better measurements.

Combination of features While conjunctive T-norm aggregation
has produced a satisfactory behavior in our preliminary experiments,

92

4.9 Open problems

there are a few reasons why more complex types of T-norms seem more
adequate to our case. First, some of the features are more critical than
others, and we would like their degree of matching to have a stronger
impact on the overall degree. Second, in some situations some values
are known not to be reliable and should have little impact on the
overall degree of matching: for instance, the observed size of the car
is not reliable when the viewing angle is large. Finally, some features
have errors which are strongly correlated (e.g., length and width) and
it might be wise to combine their individual degrees of matching by
an idempotent operator. The search for a more adequate aggregation
technique is part of our current development.

Dealing with object disappearance When an object disappears
due to a known occluding object, the SIM has to decide whether to
invoke the reactive executor or to deal with the disappearance at the
SIM level. Currently it is specified that for certain kinds of occlud-
ing objects, such as bridges, the SIM does the reidentification, while
for other occluding objects, such as tunnels, the reactive executor is
invoked. An alternative solution that we intend to investigate in the
future, is to establish at run-time whether the reactive executor needs
to be invoked. One method to determine this could be to establish a
time window inside which the SIM can act autonomously and calculate
whether the car is going to reappear inside this time window. Another
calculation could be whether the UAV needs to change its speed and/or
direction in order to see the car again after the occluding object. In
the case when change of speed and/or direction is needed, the reactive
executor and the planner need to intervene.

Event and episode recognition In the event recognition part we
do not take uncertainty into consideration. This has not been a prob-
lem in the experiments that we have performed up to now. We intend
to study the matter further when considering more complex event
recognition.

4 Anchoring in UAV performing traffic surveillance tasks

The work concerning event recognition of relations among cars is
quite recent and the relations are checked using simple methods based
on the road structure. The study of more advanced methods is a
subject of future work. Furthermore the only cars considered are the
ones present in the image: the system does not move the camera in
order to cover a larger space in front or behind the car. This could be
an interesting option to add to the system.

In the current system an episode can be recognized only when it
is completed. In adversarial domains, for instance when the airborne
vehicle is chasing a car, it could be useful to consider what episodes
could possibly been going on at each time. We would like to explore
this possibility in our future work and in particular we would like to ap-
ply the ideas that we have developed in a different domain, air-combat
simulation, in the WITAS domain. In this work the automated pilot of
one of the aircraft evaluates the utility of its actions on the basis of the
early recognition of the possible strategies that the opponent could be
following, see [15] and [49] for details. Similarly in the WITAS domain,
the airborne vehicle could recognize the occurrence of an episode at
its early stages and react appropriately.

Real vs. simulated images In our experiments we have been using
simulated images. While the general anchoring mechanism should not
be affected by the shift towards real images, the actual sets used in the
fuzzy matching and especially the fuzzy sets produced by the vision
could change when tested with real images.

We intend to proceed in two directions: creating a more realis-
tic simulated environment and testing the algorithms in sequences of
images recorded from an airborne vehicle. The reason why both direc-
tions are needed is that the testing of the decision making process and
of the interaction of the airborne vehicle with the environment need
to be done in simulation, while the testing of the vision algorithms
requires real images.

The creation of a more realistic environment is currently in progress.

4.9 Open problems

Figure 4.16: More realistic simulation environment.

4 Anchoring in UAV performing traffic surveillance tasks

Fig. 4.16 shows a simulation environment extracted from photos taken
over Stockholm with a simulated car in it'6. In few months it will also
be possible to fly the unmanned helicopter that has been selected as
a platform for the WITAS project and collect images of traffic scenes.
The next step of our work will be to test the anchoring module with
these new images.

'6The simulated car is the one at the top of the image

Chapter 5

Anchoring in a mobile
robot domain

5.1 Introduction

In this chapter we consider the application of the anchoring functional-
ities in a mobile robot domain. The robot performs mainly navigation
tasks and uses sonars and odometry as main sensors.

The robot is a Nomad 200 model equipped with a ring of sonar
sensors near to the top and two rings of contact sensors near to the
bottom. It is located at Orebro University. Fig. 5.1 shows a picture
of the robot.

The work in this application is more recent with respect to the
work in the WITAS project and it is still in progress. The motiva-
tion to present it in the dissertation is the possibility to consider the
anchoring functionalities in an application substantially different from
the WITAS one. In particular the main sensors are in this case sonars
and the emphasis is on the anchoring of static objects.

A typical task of the robot is to reach requested locations in an
office environment following a map and avoiding static and dynamic
obstacles. The map provides just a sketchy view of the environment
since the robot’s end-user should be able to use the robot in a new

5 Anchoring in a mobile robot domain

Z%
|
.
-
.
.
.

.

Figure 5.1: The robot used in our erperiments.

5.1 Introduction

environment without needing to draw a detailed map. The anchoring
functionalities are used to establish a connection among elements in
the map and perceptual data collected by the sonars.

The information present in the map is mainly the topological rela-
tions among the map objects, for instance which door opens in which
corridor and how the corridors are connected. Moreover approximative
information about the positions and shapes of objects is stored in the
map, for instance a standard width for a door is in general provided
and just in special cases (a very large or very small door) the width
is actually measured. However, the robot needs more and more pre-
cise information about objects when acting in the environment. For
instance if the planner decides on the basis of the map information
that the robot needs to cross a specific door to reach its destination,
the door needs to be recognized in the environment and the actual
width and position of the door with respect to the robot needs to be
checked using perceptual data. Therefore objects in the map need to
be anchored to perceptual data. Anchoring in this domain fulfils the
function to connect the perceptual data coming from the sonar to the
map objects that are of interest for the robot.

When we started working with the mobile robot, a complex archi-
tecture controlling the robot was already present. The architecture
included a separate anchoring process, although more primitive with
respect to the one presented in this dissertation. Our work has con-
sisted in the redesign of the anchoring module according of the princi-
ples and functionalities presented in chapter 3. In particular we have
clearly identified the three entities involved in the anchoring process
(descriptor, anchor, and percept) and we have separated the find and
tracking functionalities. This has resulted in an improvement of the
performance of the anchoring process. In particular the introduction
of the descriptor entity has given us the possibility to correct, on the
basis of the initial description of the desired object, an anchor wrongly
established. An example of such a scenario is presented in section 5.4.3
which illustrates the case of an incorrect anchoring of a corridor due
to a misinterpretation of the sonars’ readings. The correct anchor is

5 Anchoring in a mobile robot domain

goal

map
@ S .
RO ~|_Planner Monitor ‘
a priori information\\

i : D Context rules
anchoring) :
. 1 objects
: : : 'J f fuzzy control
features |~] YT et info copvezy 7?
segments :
buffer 3
T Local Perceptual Space

sensor data

Figure 5.2: Decision making architecture

reestablished when readings are collected that better correspond to
the data in the descriptor.

In the rest of the chapter we first introduce the control architec-
ture of the robot, then we describe the anchoring process used in this
domain, and finally we present an example where anchoring function-
alities are used by the robot while moving along a corridor.

5.2 The control architecture

The control architecture of the robot is shown in Fig. 5.2. The plan-
ning system receives a goal to accomplish, produces a plan and acti-
vates behaviors needed to execute the plan. The monitoring system
controls the effectiveness of a plan with respect to the current goals.
The selection of behaviors is performed with the help of context rules.
Several behaviors can be active at the same time. A fuzzy control
system combines the movement directions coming from the different

— 100 —

5.2 The control architecture

behaviors and sends the appropriate commands to the lowest level
robot control.

The behaviors may need perceptual and a priori information to ex-
ecute. For example a “cross door” behavior needs to know the a priori
approximate position of the door to move the robot toward it in the
first place. When the robot is actually crossing the door more accu-
rate information about the width of the door and its relative position
with respect to the robot is needed and this information needs to be
acquired through perception. The perceptual and a priori information
are collected in the Local Perceptual Space. Map information and the
perceptual data are used to update the Local Perceptual Space. The
treatment of perception and a priori information is the focus of this
work. Therefore we concentrate on this aspect in the rest of the sec-
tion. For information about the planning, monitoring and execution
parts see [41], [42], and [31].

5.2.1 The sonar sensors

Before going more into detail in the perceptual and a priori information
handling let us briefly describe the nature of the data coming from a
sonar.

The robot has 16 sonars positioned circularly around the robot.
The sonars are activated in sequence. Each sonar sends an ultrasound
and receives back the echo produced by the encounter of the ultrasound
with the nearest object. The time needed by the echo to come back
establishes the distance to the object. Each sonar covers an angle of
30 degrees. A complete cycle, that is collecting of the readings from
all the sonars, takes 1 second.

The data coming from sonars can mainly give an indication that
there is an object at a certain distance and angle with respect to the
robot, but they cannot give any indication of the nature of the object.
Moreover, the sonar data cannot be considered reliable if an object is
at a distance larger than 3 meters.

— 101 —

5 Anchoring in a mobile robot domain

|

@

e e e L e v
" ' [

Drawing$

=7

|EY

T2z N T124

_____________ L} :I :
i : :
JT-e5 | CORR-E3 IFT-E7
i . JCT-ES '
0 :Ej D :
i HALL-E1] |
-2 '
! 128
L -2 =i o LCORREd o 3 o 4 oE e N T

Current sector: Corr—e3.

Figure 5.3: A map as represented in the debugging screen during exe-
cution.

5.2.2 The map information

The map available to the robot contains topological information such
as which rooms open in a corridor and metrical information, for exam-
ple length of a corridor. However the information is approximate. For
instance width of corridors and doors is roughly estimated. In fact it
is presupposed that the user of the robot should just need to provide
a simple map of a new environment before starting to use the robot in
it.

A separate process, the localization process, tries regularly to posi-
tion the robot with respect to the map. Fig. 5.3 shows an example of
a map as represented in the debugging screen during execution. The

— 102 —

5.2 The control architecture

round object is the robot.

5.2.3 The Local Perceptual Space (LPS)

The Local Perceptual Space is a blackboard-like structure showing an
indexical representation of the world surrounding the robot, that is the
current view of the world from the perspective of the robot. Figure
5.4 shows an example of the LPS as represented in the debugging
screen during execution. At the center is the robot. The information
maintained in the LPS includes:

e Sonar readings represented by points. Part of the points
are current readings and part are update of the position of pre-
viously perceived points with respect to the movement of the
robot.

e Objects present in the global map. In particular the double-
line segments are corridor representations and the rectangular
shapes are door representations. These objects are represented
from the point of view of the robot and are updated while the
robot is moving. The correctness of the position of these objects
depends on the correctness of the self localization of the robot
and on the precision of the actual map.

e Information about the anchor of the object, that is, where
the object is believed to be according to the information stored
in the anchoring structure. For instance the single parallel lines
represent where the corridor is believed to be according to the
information stored in the anchor. In the figure one can notice a
discrepancy between the anchor and the map information (rep-
resented by double lines) with respect to the orientation of the
corridor. This can be due to incorrectness in the map repre-
sentation and/or in errors in the odometric estimate (used in
the prediction of the positions of the objects while the robot is
moving). There appears also to be a discrepancy in the width

5 Anchoring in a mobile robot domain

Figure 5.4: An example of the Local Perceptual Space as represented
in the debugging screen during execution.

5.2 The control architecture

measurement, but this is not actually the case. The lines are just
represented slightly moved to one side to make the figure more
readable.

e Perceptual features extracted from sensor data. For in-
stance, the “W” over the line formed by the perceptual points
indicates the recognition of a wall and the “C” in the middle of
Fig. 5.4 represents the recognition of a corridor.

5.2.4 Perception module

The Perception module consists of 4 processes applied in sequence every
time new perceptual data are received and they together form the
perceptual cycle:

Buffering of perceptual data: the sonar data are stored in a cir-
cular buffer where the current data and the old data (up to 8
previous perceptual cycles) are maintained;

Segments recognition: given past and current data, segments are
recognized from a sequence of points. The sequence of points
should be of at least a pre-specified length in order to be recog-
nized as a segment;

Feature recognition: given the segments recognized in the previous
process, features such corridors, doors, and walls are recognized.
The recognition of walls and corridors is of particular interest for
our examples. A wall is recognized when a segment of at least
a pre-specified length is detected. The length is dependent on
the environment. For instance, in an environment with long and
smooth corridor the length required can be longer, while in an
environment where the corridors have several recesses, as the one
of our experiments (see Fig. 5.5), the length must be shorter.
A corridor is recognized when two parallel walls with a suitable
distance between each other are recognized;

5 Anchoring in a mobile robot domain

Anchoring: the currently perceived features are anchored to symbolic
identifiers such as “corridor 11”7 and “a door in corridor 12”. The
anchoring process is the topic of the following sections.

5.3 The anchoring process

The anchoring process tries to anchor every map object present in the
Local Perceptual Space to a perceived object. The map objects present
in the LPS are all the objects in the radius of 2.5 m from the robot and
that are reported in the map representation of the environment. Each
object is represented in the map by a name, the symbol used at higher
levels in the system to identify the object, and by an approximate
description, for instance an estimate of the width and orientation of
the object.

The two functionalities of anchoring introduced in the first chapter
are also present in this domain: finding an object for the first time
and keeping track of it over time. The objects to be anchored are in
this case static, therefore the tracking is actually necessary only if the
robot moves. Tracking the object re-establishes the current position
of the robot with respect to the object, and it gives to the anchoring
process the opportunity to re-evaluate the correctness of the anchoring
by seeing the object from a different point of view.

5.3.1 The object representations used by the anchoring
process

The object representation used by the anchoring process are of three
kinds:

e The map description stores information about a priori knowl-
edge about the position of the object, its shape, and its connec-
tions to other objects. For instance, in the case of a corridor the
information present in the map description is the coordinates of
the center of the corridor, its width, the rooms opening in the

— 106 —

5.3 The anchoring process

corridor and the corridors connected with it. The information
is however approximate, the aim being to be able to use the
robot having just a sketchy map of the environment. For exam-
ple the width of the corridor is not actually measured, it is just
a measure of an “average” corridor. The map description is a
descriptor according to the terminology used in the first chapter;

The anchor is created when an anchor is established between a
descriptor and a perceptual object. It stores the last perceived
data of the object such as shape and position of the object with
respect to the robot. It also stores a value in the interval [0, 1]
indicating the reliability of the anchor. The reliability value is
1 when the descriptor is newly anchored and it decreases if the
anchor is not reestablished in the following perceptual cycles and
the robot moves;

The percept is created when an object is recognized by the
feature recognition module, for instance a corridor or a door and
it is maintained just until the object remains in the field of view
of the sensors. It stores the perceptual data of the object such
as shape and position with respect to the robot.

5.3.2 The implementation of anchoring

The anchoring process considers every object in the LPS at every per-
ceptual cycle and it checks if it has already been anchored. If the
object is not anchored, the first functionality, finding the object, is
applied. Otherwise the track functionality is applied.

5.3.3 Compatibility between object representations

Before presenting the finding and tracking functionalities, let us intro-
duce the concept of compatibility between object representations.

Two object representations are compatible if all the measurable

data stored in the representation do not differ more than certain values,

5 Anchoring in a mobile robot domain

called compatibility values. Different compatibility values are used for
different measurable data. The “largeness” of these values establishes
the strictness of the compatibility: the larger the values the less strict
the compatibility test.

The compatibility values are calculated using the following formula:

Comp. value = (A * MinimumValue) + ((1 —) * MazimumV alue)

Where Mazimum Value and Minimum Value are the maximum and
minimum values we wish the compatibility values to assume and are
constant during execution. A is a number in [0,1] that varies depend-
ing on how strict the compatibility needs to be. In our examples A
is 0 when the compatibility between the perceptual data and the de-
scriptor is tested and no anchor has yet been found. In this case the
compatibility value is at is maximum. We are in fact willing to accept
a candidate anchor even if it is not very good. A is 1 when an an-
chor has been found in the previous perceptual cycle and we compare
the new perceptual data with it. In this case the compatibility value
is at its minimum. Finally A is between 0 and 1 when the anchor
was established previously, but it could then not be reestablished for
some time while the robot was moving. A tends to decrease towards 0
proportionally to the space covered by the robot during the time the
anchoring was not reestablished. As a consequence the compatibility
value tends to increase towards is maximum value.

Finding an object

If an object is not anchored, the anchoring process tries to find an ob-
ject among the perceived ones that is compatible with the descriptor.
The comparison is made on the basis of the features of the object that
can be perceived by the sensors. For instance, in the case of a corridor
the perceived width and orientation of the corridor is compared with
the width and orientation stored in the descriptor.

In general the perceptual data of several objects can be compati-
ble with the descriptor to different degrees. The one whose measurable

— 108 —

5.3 The anchoring process

data are closer to the a priori information stored in the descriptor is
selected and an anchor is established. If no object whose perceptual
data are compatible with the descriptor is found, the anchoring pro-
cess tries again to find a compatible object when new sensor data are
acquired. The control routines of the robot use, while the object is
not anchored, the a priori information about the object. For instance,
if the robot is supposed to follow a corridor, the control routines ini-
tially use the a priori information about the corridor to start moving
the robot. While the robot is moving along the corridor, more percepts
accumulate and the anchor of the descriptor to these percepts may be
established.

Tracking an object

When an object has been anchored, the anchoring process keeps main-
taining the anchoring between the descriptor and the percept. A dif-
ference between the visual sensor considered in the UAV domain and
the sonar sensor of this domain is that in the former case it is possible
to track the object by regularly moving the camera so that the object
is always in the center of the image. In the case of sonar readings it is
not possible to direct the sensor to the object of interest.

Every time new percepts are provided the anchoring process tries
to find among them the best candidate for updating the anchor. The
compatibility of the data of the percept with the data in the previous
anchor and the a priori information in the descriptor is tested. The
strictness in the compatibility test depends on the reliability value of
the anchor: the higher the reliability value the more strict the com-
patibility test!.

Let us now introduce in more detail the algorithm for tracking an
object. It considers four different cases:

e If there is at least one perceived corridor whose perceptual data

'This is obtained assigning to the X in the compatibility test the number indi-
cating the reliability value.

5 Anchoring in a mobile robot domain

are compatible with the current anchor and if the perceptual
data are also compatible with the information in the descriptor,
the anchor is updated with the new readings. If there are several
perceived corridors whose perceptual data are compatible with
the current anchor, the one with the best matching is selected.

e If there is at least one perceived corridor whose perceptual data
are compatible with the current anchor, but they are not com-
patible with the information in the descriptor, several policies
could be possible, privileging the perceptual and the a priori in-
formation to different degrees. We currently favor the perceptual
information and we update the anchor with the newly perceived
data?.

e If there are no perceived corridors whose perceptual data are
compatible with the current anchor, but there is at least a per-
ceived corridor whose perceptual data are compatible with the
descriptor, several policies could be possible. We currently up-
date the anchor with the data of the perceived corridor. This
policy gives the anchoring process the possibility to recover from
erroneous anchoring as we see in the last of the following exam-
ples.

e If there are no perceived corridors whose perceptual data are
compatible with either the current anchor or the descriptor, the
anchoring process maintains the previous anchor. However the
more the robot moves away from the place where the anchor was
last established the more the anchor decreases is reliability value.

2This is actually one of the aspects of the algorithm that has given rise to the
most intense discussions. Although this solution has performed well in the current
examples, we intend to reevaluate it in the near future with the help of additional
examples.

— 110 —

5.4 Anchoring at work

5.4 Anchoring at work

We illustrate the use of the anchoring process by presenting three
examples of anchoring that have been implemented and tested in the
robot. In all three examples the robot starts from a similar position
and anchors the descriptor of a corridor with data perceived by the
sonars. Figure 5.5 shows the robot at its starting point. The map of
the environment used by the robot is shown in figure 5.6. The corridor
CORR-E3 shown in the map is the one formed by the wall on the left
and the copying machine and shelf on the right. The recognition of
this corridor through sonar readings presents some difficulties due to
the fact that the one on the right is not a proper wall and the wall on
the left is not uniform. In our last example we show a case where the
Feature Recognition module fails to correctly recognize the corridor
due to the peculiar form of the corridor.

The first example illustrates the “normal” case in which the robot
moves along a corridor and the perceptual data of the corridor are
correctly anchored to the descriptor. In the second example the robot
is in the same position as in the previous example, but it has made a
wrong estimate of its own position with respect to the map, in par-
ticular the estimate of the heading is off at around 20 degrees. In
the third example the sonars’ readings induce the Feature Recognition
module to recognize a corridor where no corridor is actually present.
The anchoring process first anchors the incorrect corridor to the de-
scriptor but then, when better data are collected, the correct anchor
is established.

An important aspect that needs to be emphasized is that all the
three entities involved in the anchoring process: the descriptor, the
anchor, and the percept need to be taken into consideration when per-
forming the anchoring process. In the case of disagreement among the
data stored in these entities, different policies need to be used giving
preference to one entity over the other depending on the application,
the reliability of the sensor data, and the reliability of the localization
ability of the robot. In the examples we choose specific policies to deal

— 111 —

5 Anchoring in a mobile robot domain

Figure 5.5: A photo of the environment at the beginning of the exper-
iments.

__________ Pl it pgmae
T£5 CORR-E3 e
| JCT-£8 H
§ o HALLEY ;
: 12
L Ll R U S A SN - SO MUY I 1O

 pp—r—

Figure 5.6: The map of the environment used by the robot with the
robot in its initial position. Corridor E-3 is the corridor to the left of
the xerox machine in Fig. 5.5.

— 112 —

5.4 Anchoring at work
| M\

Figure 5.7: The LPS space of the robot at the beginning of the exe-
cution (left). A corridor is recognized and the anchor is established
(right).

with the disagreement. However the intent of the examples is not to
illustrate the policies themselves, or to claim that these policies are
the optimal ones for this domain. We are aware that it could always
be possible to construct specific examples where these policies do not
achieve the correct results. The main intent is to illustrate the pos-
sibility to easily implement different policies in the framework offered
by the anchoring functionalities.

5.4.1 Anchoring of a corridor in the “normal” case

In this example the robot is initially positioned at the beginning of
corridor E3. The position of the robot can be seen in Fig. 5.6 and Fig.
5.5. The robot has the goal of moving along the corridor, so the de-
scriptor of the corridor is added to the LPS and the anchoring process
starts to try to anchor the descriptor to the perceptual data. Initially
the sonars perceive a number of points. The LPS space of the robot

113

5 Anchoring in a mobile robot domain

is shown in Figure 5.73. The a priori information about the corridor
is drawn with a double line. The Feature Recognition module tries to
establish whether the points are part of a wall. In this case however
the string of points is too short to serve as a basis for the recogni-
tion of a wall. As a consequence no corridor is recognized. The single
line indicates where the corridor is according to the robot knowledge.
As no perceptual data about the corridor has been collected, the only
knowledge that the robot has is the a priori information 4. The control
of the robot uses the a priori information about the corridor to start
moving the robot along the corridor.

Additional sonars readings are accumulated while the robot is mov-
ing and after few perceptual cycles two walls are recognized. The
recognition of each wall is shown in the debugging window for the
LPS by the appearance of a “W” over the string of points, see Fig.
5.7. In this case two parallel walls with a distance between each other
compatible with the one of the corridor are detected. Therefore the
Feature Recognition module recognizes a corridor. The anchoring pro-
cess compares the percept of the corridor (orientation and width) with
the a priori data present in the descriptor. In this case the data are
compatible and the descriptor is anchored to the percept. The an-
choring of an object for the first time implies the creation of an anchor
containing: the perceived data of the object, a pointer to the descrip-
tor, and a number in [0,1] indicating the reliability of the anchor.
When the object has just been anchored, the reliability value is 1.

The control of the robot now uses the data in the anchor to direct
the movement of the robot along the corridor. The newly perceived
data about the corridor is compared by the anchoring process to the

3Notice that, while the experiments have been performed both in the real robot
and in the simulator provided together with the robot, the figures are taken during
the simulator execution. This is due to the difficulty of executing a step by step
experiment in the real robot as needed for extracting a sequence of figures.

*Notice that the single line in the figure should actually coincide with the double
line indicating the a priori information; however the single line is drawn slightly on
one side to facilitate reading the figure.

114

5.4 Anchoring at work

data currently present in the anchor structure. In this example the

data are compatible and are therefore used to update the anchor.
The following is the transcription of the messages produced by the

program while executing the anchoring process of this example.

Switching sector from E115 to CORR-E3 through JCT-E5

[...]

Found first anchor for CORR-E3

Percept matches both anchor and descriptor: CORR-E3 anchored
[...]

Percept matches both anchor and descriptor: CORR-E3 anchored

[...]

The program records first the finding of an anchor and then the
fact that in the following cycles the percept match both the data stored
in the anchor and the a priori information in the descriptor.

5.4.2 Anchoring of a corridor with initially incorrect
robot position

In the second example we consider the case when the robot has initially
an incorrect estimation of its heading at around 20 degrees. This
can be due to an accumulation of odometry errors in the previous
navigation period. Similarly to the previous case, the control starts
moving the robot along the corridor and a corridor is recognized by
the Feature Recognition module. As one can see in figure 5.8, there is
a significant discrepancy between the a priori information about the
corridor (double line) and the perceptual data (single lines with “W”
written over). Several policies could be taken in this case, favoring
the a priori information over the perceptual data or vice versa. In our
case, given that the corridor has never been anchored before, we allow
a relatively large difference between the a priori information and the

115

5 Anchoring in a mobile robot domain

Figure 5.8: Example where there is a significant discrepancy between
the a priori information and the perceptual data.

perceptual data. We adopt this policy mainly because the a priori
information in this application is not very precise and it depends on
the accurate localization of the robot, which can be unreliable. Once
the corridor has been anchored for the first time, we adopt more strict
criteria of comparison between the new percepts and the data stored
in the anchor. In figure 5.8 the new perceptual data (single lines with
“W” written over) are very similar to the data present in the anchor
(single line) so the new perceptual data are used to update the anchor.
In the following example we see a case in which the new percepts are
not compatible with the data in the anchor structure.

The following is the transcription of the messages produced by the
program while executing the anchoring process of this example.

Switching sector from E115 to CORR-E3 through JCT-E5
[...]

Found first anchor for CORR-E3

Percept matches anchor but not descriptor: CORR-E3

— 116 —

5.4 Anchoring at work

Figure 5.9: Example where the corridor is initially incorrectly an-
chored.

anchored all the same

[...]

Percept matches anchor but not descriptor: CORR-E3
anchored all the same

[...]

In this case the anchor is established and the following perceptual
data match the anchor, but not the descriptor.

5.4.3 Anchoring a corridor in the presence of incorrect
recognition by the Feature Recognition module

In this last example we consider the case when the Feature Recognition
recognizes a corridor where in reality there is no corridor. This incor-
rect recognition is due to the fact that the wall to the left of the robot
has a number of recesses that sometimes produce a number of aligned
points in the sonar readings. The points can form a line that has an

117

5 Anchoring in a mobile robot domain

Figure 5.10: The corridor is now correctly anchored.

angle with respect to the actual wall (see figure 5.9). To the right of
the robot there is a copying machine that in some cases produces a
number of aligned points that form a parallel line with respect to the
line on the left. Therefore in some unlucky cases two parallel walls are
recognized and the Feature Recognition recognizes a corridor. Fig. 5.5
shows a photo of the corridor. The anchoring module considers this
an acceptable anchor for the descriptor as this is the first time the de-
scriptor is anchored and the comparison criteria are less strict in this
case. The robot moves along the corridor and new percepts indicate a
corridor with a different orientation than the previously anchored one.
These new data are actually correct with respect to the real corridor.

The anchoring process compares these new data with the data
stored in the anchor structure. There is a substantial difference be-
tween the data. Moreover the anchor has high reliability as it has been
established very recently. Therefore the compatibility test is strict and
the data are considered incompatible with the data stored in the an-
chor. However, a second comparison is done, this time with the a
priori data in the descriptor. Given that the new data match very well

— 118 —

5.4 Anchoring at work

with the a priori information the anchor is updated with the new data
correcting the initial anchoring error. Fig. 5.10 shows the corrected
anchor. The following percepts are compatible with the data in the
anchor and the data in the anchor are updated, see Fig. 5.10.

The following is the transcripted version of the messages produced
be the program executing the anchoring process.

Switching sector from E115 to CORR-E3 through JCT-E5

[...]

Found first anchor for CORR-E3

Percept matches anchor but not descriptor:

CORR-E3 anchored all the same

[...]

Percept matches anchor but not descriptor:

CORR-E3 anchored all the same

[...]

Percept only matches descriptor: CORR-E3 anchored

Percept matches both anchor and descriptor: CORR-E3 anchored
[...]

Percept matches both anchor and descriptor: CORR-E3 anchored

[...]

The program records first that an anchor is established, despite
the fact that the perceptual data does not match well the data in the
descriptor. This is detected, however, in the subsequent perceptual
cycles where the new data are compatible with the anchor but not
with the descriptor. After few cycles the program records that the
perceptual data are compatible only with the descriptor and that the
anchor is updated with these new data. In the subsequent cycles the
percepts are compatible with the data stored in both the anchor and
descriptor.

To make a parallel between this application and the previously pre-
sented WITAS application, this case is comparable with the case in

119

5 Anchoring in a mobile robot domain

which initially a car is considered to be the correct one, even if it does
not match the description very well as there is no better candidate.
However in following observations a car that better matches the de-
scription is detected and the system corrects itself and recognizes this
car as the correct one.

5.5 Open problems

The work presented in this chapter is in progress, therefore there are
a number of important issues that still remain to be addressed.

Anchoring and localization Currently two processes execute in
parallel in the system: the anchoring process and the localization pro-
cess. The localization process establishes the current position and
heading of the robot with respect to the map using odometry infor-
mation, but also recognized landmarks such us corridors and doors.
Therefore the localization process is partly dependent on the correct-
ness of the anchoring process. On the other hand, the correctness in
the localization influences the correctness of the map information that
in its turn influences the correctness of the anchoring process. We
intend to study the interaction between these two processes and try
to prevent errors in one process from generating errors in the other
process.

Policies to be used in case of discrepancies among object rep-
resentations The policies used in this chapter have given good re-
sults in our examples and seem to be appropriate for this particular
application. However we intend to consider the performance of dif-
ferent policies in a wider range of examples and to study in a more
systematic way the consequences of choosing one policy over another.

Fuzzy matching In this application the matching among percept,
descriptor and anchor is crisp. It consists of a simple check against

— 120 —

5.5 Open problems

lower-upper bounds and it is therefore a degenerate case of fuzzy
matching. This is due to the on-going nature of the work. We intend
in the near future to experiment with more complex fuzzy matching.

Integration of sonars with other sensors A robot using mainly
sonar sensors is limited in the possible tasks that it can perform. The
addition of other sensors can greatly expand the number of tasks that
can be executed and can improve the execution of currently performed
tasks [51]. For instance the crossing of a door can be greatly facilitated
if the door is at the same time sensed with the sonar and seen with
a video camera. The integration of the perceptual data coming from
several sensors offers new challenges to the anchoring process. This is
one of the directions in which we intend to direct our future research.
In particular we would like to examine the integration of less “com-
mon” sensors such as the artificial mouth and artificial nose currently
being developed at Orebro University.

— 121 —

5 Anchoring in a mobile robot domain

— 122 —

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

Intelligent agents embedded in physical environments and performing
complex tasks need the ability to perceive the environment, under-
stand the current situation and make decisions about future actions.
However while in general the decision making part of the system uses
symbolic reasoning, the perceptual part of the system deals with quan-
titative data. An essential aspect for a successful understanding of the
current situation and the performing of actions is the connection be-
tween the symbols used at the decision making level and the perceptual
data provided by the sensors. In this dissertation we have addressed
the problem of connecting the symbols used to perform abstract rea-
soning to the physical entities which these symbols refer to. We have
called this problem the anchoring problem. We have then outlined
a number of functionalities that we believe are needed when solving
the anchoring problem and a number of requirements that should in
general be satisfied when implementing an anchoring module.

The definition of anchoring and of its functionalities has been tested
in two applications: an unmanned airborne vehicle (UAV) used for

123

6 Conclusions and Future Work

traffic surveillance, and a mobile robot performing navigation tasks.
The two experimental platforms share the use of a layered archi-
tecture to integrate abstract reasoning with perceptual and control
processes. However, these platforms differ significantly in terms of
sensory-motoric capabilities and their domains of application. Exper-
imenting with anchoring in systems acting in different environments
and using different sensors (the mobile vehicle uses sonars as its main
sensors) has helped us in outlining general functionalities and require-
ments that we believe are common to any anchoring process.

6.2 Future work

Anchoring is a complex and multi-faceted problem. This dissertation
can be considered a first study on it and a number of issues still need to
be addressed. At the end of the application chapters we have proposed
a number of open problems related to the domain addressed in the
chapter. In this section we consider more general issues that we believe
are of importance in understanding and trying to solve the anchoring
problem.

6.2.1 Generalization of the anchoring concept

In this dissertation we have given a definition of the concept of an-
choring and its functionality. The process of trying to find general
principles behind the anchoring process has greatly benefited from be-
ing able to consider two different domains where anchoring plays an
essential role and different kinds of sensory platforms. We intend to
continue in our generalization process considering different, and less
common, kinds of sensors, such as smell and taste sensors currently
available at Orebro University. Additionally an infrared camera is will
be available in the WITAS platform.

124

6.2 Future work

Figure 6.1: A traffic scene viewed through an infrared camera.

125

6 Conclusions and Future Work

6.2.2 Sensor fusion

In this dissertation we have consider anchoring when one sensor is in-
volved. In general if several sensors are present in the system there
could be the additional problem of fusing the information coming from
the different sensors about an object and creating a unique represen-
tation to be used as the referent to the symbolic representation of the
object. In particular the object needs to be identified as the same
object in all sensor representations.

In both the domains studied in this thesis we are now introducing
new sensor platforms. In the WITAS project the video camera sensor
will be complemented by an infrared camera. An image taken from
an infrared camera is shown in Fig. 6.1. In such images it is quite
easy to differentiate the cars from the road and they could therefore
be useful for the calculation of for instance the car velocity, although
additional information such as color and shape needs to be extracted
using a regular video camera image. If a car is identified as the same
one in both images, the properties extracted from both images can be
combined in one common car representation.

One of the aims of the research on the robotic platform developed
at Orebro University is to integrate a number of sensors that will allow
the robot to move in the environment, pick up objects, and smell and
taste them. This long-term goal is illustrated in an amusing picture
showing the robot participating in a Swedish traditional buffet, Fig.
6.2. The challenge in this domain is to integrate sensors traditionally
used in robotics such as video cameras and sonars, with an artificial
mouth and nose. For instance the recognition of a food can involve
the combination of visual perceptions with the perception of its taste
and smell.

6.2.3 Anchoring in communication between agents

The notion of anchoring can be extended to address a general aspect
of communication between agents. Anchoring is currently conceived

— 126 —

6.2 Future work

Figure 6.2: The Orebro University robot participating in a Swedish
traditional buffet. Courtesy of AASS, http://www.oru.se/forsk/aass/,
Orebro University.

6 Conclusions and Future Work

as a mechanism for creating a correspondence between the internal
representation used by the perceptual system and those used by the
reactive reasoning system to denote the same external object. In more
general terms, we can see anchoring as (one side of) the problem of
establishing the correspondence between the representations used by
two different systems embedded in the same physical environment to
refer to the same objects in the environment. In particular, in the
next phase of the WITAS project an autonomous ground vehicle will
provide services to the airborne vehicle such as re-tanking. The two
vehicles will need to coordinate and communicate using shared refer-
ences of objects. Moreover a new aspect of the WITAS project will
be the involvement of a human operator that will communicate with
the airborne vehicle giving additional instructions and/or changing the
current mission. Even in this case the need to refer to the same objects
in the environment is clear.

There is also an interest in cooperation and communication among
robots at Orebro University. In particular, we intend to study the pos-
sibility of cooperation among different kinds of robots in performing
tasks. An interesting case is the cooperation among Sony legged robots
in the RoboCup domain. RoboCup is an international soccer compe-
tition among robots and among simulated agents; see [29] and [28] for
additional information on the RoboCup initiative. Orebro University
has been part of the Swedish team for the Sony legged robot league of
this year’s competition, RoboCup-99, and will probably be part of next
year’s competition, too. The Sony legged robots are equipped with a
color video camera and can also hear. Fig. 6.3 shows a picture of the
robot. The effort in this year’s RoboCup has been mainly to program
each robot so that it could perform the basic functionality; however, to
get a good team, cooperation among robots is the next necessary step:
this cooperation will involve some communication about the objects
in the environment, and this will require the sort of reference sharing
that is a property of anchoring.

— 128 —

6.2 Future work

Figure 6.3: The Sony legged robot. Courtesy of the RoboCup Feder-
ation.

129

6 Conclusions and Future Work

References

[1]

2]

P. Agre and D. Chapman. Pengi: an implementation of a theory
of activity. In AAAI87, pages 268-272. Seattle, WA, 1987.

T. Andersson, S. Coradeschi, and A. Saffiotti. Fuzzy matching of
visual cues in an unmanned airborne vehicle. Linkoping Electronic
Articles in Computer and Information Science, Vol. 4 (1999): no.
8. http://www.ep.liu.se/ea/cis/1999/008.

R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge,
MA, 1998.

R. Bajcsy and J. Kosecka. The problem of signal and symbol inte-
gration: a study of cooperative mobile autonomous agent behav-
iors. In Proceedings of KI-95: Advances in Artificial Intelligence,
19th Annual German Conference on Artificial Intelligence, vol-
ume 981 of LNCS, pages 49-64, Berlin, Germany, 1994. Springer.

D.H. Ballard. Animate vision. Artificial Intelligence, 48:57-87,
1991.

J. Barwise and J. Perry. Situations and Attitudes. The MIT Press,
1983.

G. Berry. The Esterel v5 Language Primer, version 5.10, release
2.0 edition, 1998. Included in the Esterel distribution available
from http://www-sop.inria.fr/meije/esterel/.

131

[8]

[9]

[10]

[11]

[12]

[14]

References

I. Bloch. Information combination operators for data fusion: A
comparative review with classification. IEEE Transactions on
Systems, Man, and Cybernetics, A-26(1):52-67, 1996.

A. Bonarini. Symbol grounding and a neuro-fuzzy architecture for
multisensor fusion. In Proceedings of the World Automation Con-
ference (WAC), pages 75-80, Montpellier, FR, 1996. TSI Press.

H. Buxton and Shaogang Gong. Visual surveillance in a dynamic
and uncertain world. Artificial Intelligence, 78:431-459, 1995.

P. Cohen. The need for identification as a planned action. In
IJCAIS81, pages 31-36. 1981.

S. Coradeschi, L. Karlsson, and K. Nordberg. Integration of vi-
sion and decision-making in an autonomous airborne vehicle for
traffic surveillance. In H. I. Christiansen, editor, Computer Vision
Systems, volume 1542 of LNCS, pages 216-230, Berlin, Germany,
1999. Springer.

S. Coradeschi and A. Saffiotti. Anchoring symbolic object descrip-
tions to sensor data. Problem statement. Linkoping Electronic
Articles in Computer and Information Science, Vol. 4 (1999): no.
9. http://www.ep.liu.se/ea/cis/1999/009, 1999.

S. Coradeschi and A. Saffiotti. Anchoring symbols to vision data
by fuzzy logic. In A. Hunter and S. Parsons, editors, Qualita-
tive and Quantitative Approaches to Reasoning with Uncertainty,
LNAI, pages 104-115. Springer, Berlin, Germany, 1999.

S. Coradeschi and T. Vidal. Accounting for temporal evolutions
in highly reactive decision-making. In L. Khatib and R. Morris,
editors, Proceedings of the Fifth International Workshop on Tem-
poral Representation and Reasoning (TIME98), pages 3-10, Los
Alamitos, California, 1998. IEEE Computer Society.

132

[16]

References

P. Davidsson. Toward a general solution to the symbol grounding
problem: combining machine learning and computer vision. In
AAAI Fall Symposium Series, Machine Learning in Computer
Vision: What, Why and How?, pages 191-202. AAAT Press, 1993.

D Driankov, H. Hellendoorn, and M. Reinfrank. An introduction
to fuzzy control. Springer, 1993.

J. Firby. Task networks for controlling continuous processes. In
Proceedings of the Second International Conference on AI Plan-
ning Systems, 1994.

R. J. Firby. The RAP language manual. Technical Report AAP-6,
University of Chicago, 1995.

F.L.G. Frege. Uber Sinn und Bedeutung. Zeitschrift fir Philoso-
phie und philosophische Kritik, pages 25-50, 1892.

E. Gat. Three-layer architectures. In R.P. Bonasso D. Ko-
rtenkamp and R. Murphy, editors, Artificial Intelligence and Mo-
bile Robots, chapter 8, pages 195-210. MIT Press, Cambridge,
MA, 1998.

David Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231 — 274, 1987.

S. Harnard. The symbol grounding problem. Physica D, 42:335—
346, 1990.

H. Hexmoor, J. Lammens, and S. C. Shapiro. Embodiment in
GLAIR: A grounded layered architecture with integrated reason-
ing for autonomous agents. In D. Dankel, editor, Proceedings of
the Florida AI Research Symposium, pages 325-329, 1993.

R. Howarth. Spatial representation, reasoning and control for
a surveillance system. PhD thesis, Queen Mary and Westfield
College, 1994.

[26]

[27]

32]

[33]

[34]

[35]

References

R. Howarth. Interpreting a dynamic and uncertain world: task-
based control. Artificial Intelligence, 100:5-85, 1998.

D. Hutber, S. Moisan, C. Shekhar, and M. Thonnat. Perception-
interpretation interfacing for the prolab2 road vehicle. In Pro-
ceedings of Tth Symposium on Transportation Systems: Theory
and Application of Advanced Technology, Tianjin, China, August
1994.

H. Kitano. Robocup as a research program. In Proceedings of
IR0OS-97, Grenoble, 1997.

H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Os-
awa, H. Matsubara, I. Noda, and M. Asada. Robocup synthetic
agent challenge 97. In Proceedings of IJCAI'97, pages 24-29.
Nagoya, Japan, 1997.

G. Klir and T. Folger. Fuzzy sets, uncertainty, and information.
Prentice-Hall, 1988.

K. Konolige, K.L.. Myers, E.H. Ruspini, and A. Saffiotti. The
Saphira architecture: A design for autonomy. Journal of Experi-
mental and Theoretical Artificial Intelligence, 9(1):215-235, 1997.

Y. Lespérance. A formal theory of indexical knowledge and ac-
tions. PhD thesis, Department of Computer Science, University
of Toronto, Toronto, ON, January 1991.

Y. Lespérance and J. Levesque. Indexical knowledge and robot
action - a logical account. Artificial Intelligence, 73:69-115, 1995.

K.F. MacDorman. Grounding symbols through sensorimotor inte-
gration. Journal of the Robotic Society of Japan, 17:20-24, 1999.

E. Prem. Dynamic symbol grounding, state construction and the
problem of teleology. In Mira J. and Sandoval F., editors, From

[42]

[43]

[44]

References

Natural to Artificial Neural Computation, Proceedings Interna-
tional Workshop on Artificial Neural Networks, pages 619-626.
Springer Verlag, 1995.

D.A. Reece and S.A. Shafer. Control of perceptual attention in
robot driving. Artificial Intelligence, 78:397-430, 1995.

E. H. Ruspini. On the semantics of fuzzy logic. International
Journal of Approximate Reasoning, 5:45-88, 1991.

B. Russell. On denoting. In Mind XIV, pages 479-493. 1905.

A. Saffiotti. Pick-up what? In C. Backstrom and E. Sandewall,
editors, Current trends in AI Planning, pages 266-277. IOS Press,
Amsterdam, Netherlands, 1994.

A. Saffiotti. The uses of fuzzy logic in autonomous robotics: a
catalogue raisonné. Soft Computing, 1(4):180-197, 1997.

A. Saffiotti. Autonomous Robot Navigation: a fuzzy logic ap-
proach. PhD thesis, Université Libre de Bruxelles, IRIDIA, Brux-
elles, Belgium, 1998.

A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued-logic
approach to integrating planning and control. Artificial Intelli-
gence, 76(1-2):481-526, 1995.

C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and R. Woétz.
Integrating vision based behaviours with an autonomous robot.
In Proceedings of the International Conference on Vision Systems
(ICVS99), pages 1-20, Las Palmas de Gran Canaria, Spain, 13-15
January 1999. Springer Verlag.

S.C. Shapiro. Embodied cassie. In Cognitive Robotics: Papers
from the 1998 AAAI Fall Symposium, pages 36-143. AAAT Press,
Menlo Park, CA, 1998.

[45]

[46]

References

M. Shoppers and R. Shu. General indexical-functional reference.
In Proceedings of AAAI-96, pages 1153-1159. Portland OR, 1996.

M. Shoppers and R. Shu. An implementation of indexical-
functional reference for the embedded execution of symbolic plans.
In Proceedings DARPA Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 490-496. Portland OR,
1996.

D. Subramanian and J. Woodfill. Making situation calculus in-
dexical. In Proceedings of KR-89, pages 467-474. 1989.

T. Uhlin and J. Eklundh. Animate vision in a rich environment. In
Proceedings of IJCAI'95, pages 27-35. Montreal, Canada, 1995.

T. Vidal and S Coradeschi. Highly reactive decision making: a
game with time. In Proceedings of IJCAI-99, pages 1002-1007,
Stockholm, August 1999.

S. Weber. A general concept of fuzzy connectives, negations and
implications based on t-norms and t-conorms. Fuzzy sets and
systems, 11:115-134, 1983.

P. Wide, A. Saffiotti, and H.H. Bothe. Environmental exploration:
an autonomous sensory systems approach. IEEE Instrumentation
& Measurement Magazine, 2(3):28-42, 1999.

WITAS web page: http://www.ida.liu.se/ext/witas/.

L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353,
1965.

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets and Systems, 1:3-28, 1978.

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No 97

No 109

No 111

No 155

Department of Computer and Information Science
Link6pings universitet

Dissertations

Linkoping Studies in Science and Technology

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977,
ISBN 91-7372-144-1.

Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

Mats Cedwall: Semantisk analys av processbe-
skrivningar i naturligt sprak, 1977, ISBN 91-
7372-168-9.

Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal Hard-
ware, 1978, ISBN 91-7372-188-3.

Tore Risch: Compilation of Multiple File Que-
ries in a Meta-Database System 1978, ISBN 91-
7372-232-4.

Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

Sture Hidgglund: Contributions to the Deve-
lopment of Methods and Tools for Interactive
Design of Applications Software, 1980, ISBN
91-7372-404-1.

Pir Emanuelson: Performance Enhancement
in a Well-Structured Pattern Matcher through
Partial Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial Sys-
tems, 1981, ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981,
ISBN 91-7372-489-0.

Osten Oskarsson: Mechanisms of Modifiabili-
ty in large Software Systems, 1982, ISBN 91-
7372-527-7.

Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incremental
Compilation,1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Plan-
ning System for Turning, 1984, ISBN 91-7372-
805-5.

Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987, ISBN
91-7870-133-3.

No 165

No 170

No 174

No 192

No 213

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

James W. Goodwin: A Theory and System for
Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989,
ISBN 91-7870-485-5.

Tony Larsson: A Formal Hardware Descrip-
tion and Verification Method, 1989, ISBN 91-
7870-517-7.

Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

Jonas Lowgren: Knowledge-Based Design
Support and Discourse Management in User
Interface Management Systems, 1991, ISBN 91-
7870-720-X.

Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

Peter Eklund: An Epistemic Approach to Inter-
active Design in Multiple Inheritance Hierar-
chies, 1991, ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

Nils Dahlbick: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodolo-
gy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

Ralph Roénnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

Bjorn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277

No 281

No 292

No 297

No 302

No 312

No 338

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

Christer Backstrom: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

Arne Jonsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

Ulf S6derman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

Andreas Kagedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Prob-
lematic Control Situations, 1995, ISBN 91-7871-
603-9.

Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transformations,
1996, ISBN 91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

Jaime Villegas: Simulation Supported Indu-
strial Training from an Organisational Learn-
ing Perspective - Development and Evaluation
of the SSIT Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452

No 459

No 461

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

No 503

No 512

No 520

No 522

No 526

No 530

Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

Lena Strombick: User-Defined Constructions
in Unification-Based Formalisms, 1997, ISBN
91-7871-857-0.

Lars Degerstedt: Tabulation-based Logic Pro-
gramming: A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsystem
utformas och anvénds efter féretagsforvarv,
1997, ISBN 91-7871-914-3.

Mikael Lindvall: An Empirical Study of Re-
quirements-Driven Impact Analysis in Object-
Oriented Software Evolution, 1997, ISBN 91-
7871-927-5.

Goran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

Jakob Axelsson: Analysis and Synthesis of
Heterogeneous Real-Time Systems, 1997, ISBN
91-7219-035-3.

Johan Ringstrom: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997,
ISBN 91-7219-045-0.

Anna Moberg: Narhet och distans - Studier av
kommunikationsmmonster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software
Engineering, 1998, ISBN 91-7219-176-7.

Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555

No 561

No 563

No 567

No 582

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

Jonas Hallberg: Timing Issues in High-Level
Synthesis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

Jorgen Lindstréom: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System
for Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordanyi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Re-
interpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of De-
sign Knowledge - An Assessment of Com-
menting Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Nar-
ratives, 1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organiza-
tional Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

Jorgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and
Services in the Public Sector: A Methods
Approach, 1999, ISBN 91-7219-543-6.

Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information
Technology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training,
1999, ISBN 91-7219-547-9.

Magnus Merkel: Understanding and
enhancing translation by parallel text
processing, 1999, ISBN 91-7219-614-9.

Silvia Coradeschi: Anchoring symbols to
sensory data, 1999, ISBN 91-7219-623-8.

Link6ping Studies in Information Science

No1

No 2

Karin Axelsson: Metodisk systemstrukturering

- att skapa samstdmmighet mellan informationssys-
temarkitektur och verksamhet, 1998. ISBN-9172-
19-296-8.

Stefan Cronholm: Metodverktyg och anvand-
barhet - en studie av datorstodd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

	titelsida
	
	

	Main.ps
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	doksam
	
	
	

