Issue 98084 | Editor: Erik Sandewall | [postscript] | ||
27.11.1998 |
|
|||
Today | ||||
Discussion don't always die easily - Hector Geffner has now come back with a reply to David Poole's answer to his original question about David's article. Well, this Newsletter is always open to the preferences of its readers. Also, Yves Lesperance's discussion starter a few issues ago about the format of robot competitions has now received the first comment, by Mikhail Soutchanski.
| ||||
ETAI Publications | ||||
Discussion about received articlesAdditional debate contributions have been received for the following article(s). Please click the title of the article to link to the interaction page, containing both new and old contributions to the discussion.
David Poole
| ||||
Debates | ||||
CompetitionsMikhail Soutchanski:Recently (Newsletter ENRAC 16.11, 98080), Yves Lesperance posted a summary of the discussion on how to design a robot competition that exploits robots' cognitive skills. I would like to vote for a competition (suggested by Sebastian Thrun and Martha Pollack) that is centered around the
Yves Lesperance wrote (Newsletter ENRAC 16.11):
In an office environment, there are several rooms with colored blocks inside them (e.g., all blocks are placed on white paper on the floor). The initial locations of blocks in different rooms are not given in advance: robot has to wander around to determine which blocks are located where. The robot's task is to arrange a mosaic of blocks in a designated white place; the specification of goal color patterns would be randomly generated at competition time. For example, the goal is to put in a row 3 red blocks followed by 4 green blocks or 2 yellow blocks followed by 5 green blocks (note disjunction). Assume that robots can deliver no more than 2 blocks simultaneously. Each robot participating in a competition will be either assisted or disrupted during its work by exactly the same sequence of helping or upsetting actions of a judge, but those actions will not be known to contestants in advance. The judge may take an arbitrary block from an already constructed pattern and/or put a block of a different color on a free place in the pattern. The robot has to change its plan (which blocks to deliver from which room) accordingly. The environment where the robot works also may change dynamically: doors may become (partially) closed/opened, different obstacles (possibly with colored blocks on top of them), may appear in corridors, etc. The robot that will build a goal mosaic before the deadline and faster than the other robots will win. (The robot may either rely on vision to determine the color of blocks and the current state of a mosaic that it is building, or the robot can be told what the current state is. In the case of robots which do not have manipulators, a human assistant may put blocks on the robot which will deliver them to a goal place.) Mikhail Soutchanski
|