Issue 98032 | Editor: Erik Sandewall | [postscript] | ||
31.3.1998 |
|
|||
Today | ||||||||||||||||||||||||||||||||||||||
Today, an answer by Rob Miller and Tony Kakas to the question that Francois Levy posed to them earlier this month. Also, the discussion about the ontology of time continues, with concurrently written contributions by Graham White, John McCarthy, and Pat Hayes.
| ||||||||||||||||||||||||||||||||||||||
ETAI Publications | ||||||||||||||||||||||||||||||||||||||
Discussion about received articlesAdditional debate contributions have been received for the following article(s). Please click the title of the article to link to the interaction page, containing both new and old contributions to the discussion.
Antonis Kakas and Rob Miller
| ||||||||||||||||||||||||||||||||||||||
Debates | ||||||||||||||||||||||||||||||||||||||
Ontologies for timeGraham White:John McCarthy wrote:
Graham White
John McCarthy:McCarthy and Hayes (1969) used time as a fluent on situations, i.e. time(s). One motivation was that people, and perhaps future robots, often do not know the time with sufficient resolution to compare two situations, e.g. Ray Reiter's recent message with times 1.41 and 3.14. A second motivation for making situations primary was to make it correspond to human common sense. Many people who can reason about the consequences of actions in situations perfectly well do not know about real numbers, and some don't know about numbers at all. The falling body example was also in that paper with time as a fluent. Galileo did know about real numbers. It's not clear that either of these considerations is of basic importance for AI. My previous message gave a reason for including time points in a theory of events and actions. The theory could be founded so as to regard them as degenerate intervals, but I don't see any advantage in that, although I suppose the idea stems from the fact that people and robots can't measure time precisely.
Pat Hayes:Responses to Ray Reiter and John McCarthy. Ray wrote:
I think of Ray's 'sequences of actions' as alternative ways the temporal universe might be, ie possible timelines (or histories, as Ray sometimes calls them.) The point/interval controversy is about reasoning within, or with respect to, one of these possible timelines; sitcalc gets this muddled up with reasoning about alternative futures for the partial timeline up to the present. (Think of the tree of accessible situations in a state's future: the distinction is between reasoning about a single branch, and comparing two different branches.)
Hold on! What kinds of things are these 'times' supposed to be? They seem to be something like clock-times, ie temporal coordinates (maybe understood with respect to a global clock of some kind.) OK, but notice that this isn't what I mean by a 'timepoint'. There are at least six distinct notions of 'time' (physical dimension, time-plenum, time-interval, time-point, time-coordinate and duration.) I think the nearest thing in Reiter's ontology to what I call a time-point is something like the pairing of a clock-time with a situation ('3.14 in situation s').
This seems to be the half-open-interval solution, where intervals contain their endpoints but not their starting points. This makes sense for the sitcalc, which focusses on the results of actions, but seems ad-hoc and unintuitive in a broader context. (Also, BTW, the idea that one can ever say that some finite list of actions is all the actions that have occurred seems quite unrealistic. After all, people's fingers probably pushed the switch and something somewhere was generating electricity. Surely one should be able to actually infer this from a reasonably accurate common-sense description of light-switching.)
The problem is that even if we stick to talking about a single timeline (eg the unique past, or one alternative future) there still seems to be an intuitive difficulty about timepoints like the time when a light came on. The solution I suggested - that is, truth at a point has to be defined relative to a reference interval containing the point (which is not my idea, let me add) - is similar in many ways to Reiter's , except it applies not just across timelines but also within a single one. John wrote:
The 65mph example is logically similar to the point at the top of a
trajectory when the vertical velocity is zero. Examples like this appeal to
a basic intuition about continuous change, that it has no 'jumps', so if it
is
(continuous X i) =df (forall (y)(implies (between (X (begin i)) y (X (end y))) (exists t) (and (in t i) (= y (X t)))) (strictlycontinuous X i) =df (forall (j) (implies (subint j i)(continuous X j))) where subint is the Allen union {begins, inside, ends}. (This assumes that the timeline itself is dense; if not, strictlycontinuous is trivially true everywhere.) Other conditions like monotonicity and so forth also transcribe directly from their usual mathematical formulations. Pat Hayes
|