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Abstract

In this paper we present a new approach to a symbolic
treatment of quantified statements having the following
form “Q A’s are B’s“, knowing that A and B are labels
denoting sets, and @ is a linguistic quantifier inter-
preted as a proportion evaluated in a qualitative way.
Our model can be viewed as a symbolic generalization
of statistical conditional probability notions as well as
a symbolic generalization of the classical probabilistic
operators. Our approach is founded on a symbolic fi-
nite M-valued logic in which the graduation scale of M
symbolic quantifiers is translated in terms of truth de-
grees. Moreover, we propose symbolic inference rules
allowing us to manage quantified statements.

1 Introduction

In the natural language, one often uses statements qual-
ifying statistical information like “Most students are
single“. Usually they are represented more formally
under the form “Q A’s are B’s“ where A and B are
labels denoting individuals sets and Q is a linguistic
quantifier. Zadeh (Zadeh 85) distinguishes between two
types of quantifiers: absolute and proportional. An ab-
solute quantifier evaluates the number of individuals of
B in A. While a proportional quantifier evaluates the
proportion of individuals of B in A. The proportional
quantifiers can be precise or vague. A precise quan-
tifier translates an interval of proportions having pre-
cise bounds exemplified by “10%“, “Between 10 and
20%*, etc. While a vague quantifier translates an inter-
val proportions having fuzzy bounds. Thus the vague
proportional quantifiers express qualitatively propor-
tions. A proportional quantifier can be viewed as a
kind of probabilities assigned to classes of individuals.
So, several approaches based on the theory of prob-
abilities have been proposed ( (Kyburg 83), (Pollock
90), (Dubois & Prade 88), (Bacchus 90), (Akdag et al.
92), (Bacchus et al. 97), (Jaeger 95)) for the modeling
of precise proportional quantifiers. Other probabilistic
approaches, such as those proposed by ((Nilsson 86),
(Paass 88), (Cheeseman 88)), do not enable an ade-
quate representation of proportional quantifiers, since
these approaches are generally introduced to treat un-
certainty. These authors interpret the probability de-
grees assigned to propositions as degrees of certainty or

beliefs in the truth of these propositions. They rep-
resent statistical assertions of type “Q A’s are B’s*
as uncertain rules of the form: “if A then B“ with
a belief subjective degree in the truth of the rule (A
and B are interpreted as propositions). It has been
pointed out by Bacchus (Bacchus 90) that a confusion
in the representation is made between the probabili-
ties interpreted as certainty degrees assigned to propo-
sitions about particular individuals and those inter-
preted as proportions assigned to classes of individu-
als. The probabilities of the first type are called subjec-
tive and the second statistical. The statistical probabil-
ity that corresponds to the proportion is a particular
case of probabilities where the distribution is uniform
over the finite reference set. For example, the statis-
tical probability attached to a subset A of the finite
reference set €, Prop(A), is equal to the absolute pro-
portion of individuals of A, i.e., Prop(A)=|A|/| Q |.
Similarly, if A and B are two subsets of {2, the rela-
tive proportion of individuals of B in A is expressed by
the conditional statistical probability, Prop(B|A), with
Prop(B|A)=Prop(ANB)/Prop(A)=|ANB|/|A|.  Some
probabilistic approaches ((Adams 75), (Pearl 91), (Bac-
chus 90), (Bacchus et al. 97)) are interested in a qual-
itative modeling of the proportional quantifier “Most “
or “Almost-all “ in the context of default reasoning. The
approaches based on the fuzzy set theory ((Zadeh 85),
(Yager 85), (Yager 86), (Dubois & Prade 88)) deal with
a vague proportional quantifier as a fuzzy number of the
interval [0,1] which can be manipulated by using the
fuzzy arithmetic. For example, the membership func-
tion of "Most” evaluates the degree to which a given
proportion r is compatible with the quantifier “Most“.
The representation of quantified statements involving
fuzzy sets is based on the concept of fuzzy subset car-
dinality. Recently, Dubois et al. (Dubois et al. 92)
have proposed a semi-numerical approach to the vague
quantifiers based upon the numerical results obtained
in ((Dubois & Prade 88), (Akdag et al. 92)) for precise
quantifiers. It is concerned with a suitable ordered par-
tition of the unit interval [0,1] in several subintervals
covering [0,1], subinterval representing a vague quanti-
fier. The subintervals obtained by applying the infer-
ence rules (on the precise quantifiers) to subintervals
representing to the vague quantifiers are approximately



associated to subintervals of vague quantifiers.

In this paper, we propose a purely symbolic approach
to represent vague proportional quantifiers with a statis-
tical interpretation in terms of proportions evaluated in
qualitative way'. More precisely, we define a semantic
model of statistical probabilities representation inspired
by Bacchus’s model (Bacchus 90). The semantic model
is built on the basis of the finite M-valued predicates
symbolic logic introduced by Pacholczyk (Pacholczyk
92) for a symbolic treatment of vague information. We
have introduced a new predicate in the language of this
logic that takes into account the notion of proportions.
A graded scale symbolic quantifiers is associated with
graded scale of truth symbolic degrees of this predicate.
In Section 2, we briefly present the many-valued sym-
bolic logic. Section 3, describes our symbolic represen-
tation of statistical probability. The Axioms governing
this representation are presented in Section 4. Section 5
deals with certain properties generalizing symbolically
some classical properties. Inference rules manipulating
quantified statement are presented in Section 6.

2 M-valued predicates logic

As noted before, the semantic model of statistical prob-
abilities proposed here is built on the substrate of the
M-valued predicate logic proposed by Pacholczyk (Pa-
cholczyk 92). Instead of translatting statistical prob-
abilities in terms of probabilistic equalities, it is more
convenient to consider that statistical probability is rep-
resentable by a multiset S and then that a statistical
probability stands for the degree to which this multiset
is satisfied. That is why we refer to an M-valued logic.
More formally, one is led to enrich the M-valued logic by
adjoining a particular M-valued predicate, denoted as
Prop (Section 3), and by putting the axioms governing
statistical probabilities. Let us briefly recall the notions
of interpretation and satisfaction in this M-valued logic.

2.1 Algebraic Structures

Let M >22 be an odd integer. Let 9t be the interval
[1, M] totally ordered by the relation <, and n be the
mapping defined by n(a) = M+1-a.. Then, {9, V, A,
n} is a De Morgan lattice with :a V3= max(«, §) and
a A= min(«, 3). Let Lo = {Ta, @ € M} be a set of M
elements totally ordered by the relation <such that : 7,
<13 <= a < (. Thus {£€gn, <} is a chain in which the
least element is 7, and the greatest element is 73;. We
define in L9y two operators and and a decreasing involu-
tion as follows : 7, VT8= Tpaa(a, 8)» Ta ANTB= Tmin(a, 8)

'This model extends previous works proposed in ((Khay-
ata 98), (Khayata & Pacholczyk 98)).

2In the assertion x is voA, the linguistic expression v
expresses the degree to which x satisfies A. In order to in-
clude the translation of x is A, we have introduced the empty
word ). So: x is A & x is PA. This empty word () will be
the same in the assertion x is not A: x is not A <x is () not
A. So, the corresponding truth degree v, will be such that
~(va) =Vq. This propery implies that M should be an odd
integer.

and « To= Ty (a)- We can interpret Loy as a set of lin-
guistic truth degrees allowing to deal with vague pred-
icates. For example, by choosing M = 7, we can intro-
duce: £,= {not-at-all-true, very-little-true, little-true,
moderately-true, very-true, almost-true, totally-true}3.
In a statement having the following form “x is v,A“,
the term v, linguistically expresses the degree to which
the object x satisfies the concept A ((Pacholczyk 92),
(Pacholczyk 94)). Each linguistic term v, is associ-
ated to the truth degree 7,-true. So, we have : “John
is very tall“ is true <=“John is tall“ is very-true . In
the following, the lattice {Lan, V, A, «} will be used as
the support of the representation of M truth degrees.

2.2 Interpretation and satisfaction of
formulas

The many-valued predicates logic used here can be
found in (Pacholczyk 92). Let £ be the many-valued
predicates language and § the set of formulas of £ .
We call an interpretation structure 21 of £, the pair
<9, {R, | n € N} >, where © designates the do-
main of A and R,, designates the multiset* associated
with the predicate P,, of the language. We call a val-
uation of variables of £, a sequence denoted as v =
<VQyeeesVie1,Viy Viql,...>. The valuation v(i/a) is de-
fined by v(i/a) = <V, Vie1,8,Viq 1,00 >0

Definition 1 For any formula ® of §, the relation of
partial satisfaction “v satisfies ® to a degree 7, n-A“
or “v Ty-satisfies ® in-A“, denoted as A E;, D, is de-
fined recursively as follows :

- U EL P (zi) 552y ) <= < Uiy, ooy Vi >E€q Ry

-AFE 2p = AFEG ¢ with 7 = 73,

SAEY PN <= {A F5 ¢ and A EL Y with Ta =TTy},
- AR, QU Y = {AF ¢ and A Fy ¢ with
Ta=T3 V Ty},

- A FY 32,9 <= 7o = Max{T, /A hz(n/a) Y, a € D},

A EL Vb = 1o = Min{r, QA EY ¢, a € D).

Definition 2 A formula ® is said to be T -true-in-2,
if and only if, there exists a valuation v such that v
To-Satisfies @ in-2A.

3 Symbolic representation of the
statistical probabilities

The representation of statistical probabilities requires
the reference to sets of individuals and also to assign
probabilities to these sets. To solve the first problem,
we use the concept of placeholder variables in lambda
abstraction used by Bacchus (Bacchus 90), where one
considers that a Boolean open formula can refer to the

3Note that “not-at-all-true“ and “totally-true“ corre-
spond respectively with the classical truth values “false“
and “true“.

4The multiset theory is an axiomatic approach to the
fuzzy set theory. In this theory, x €,A, the membership
degree to which x belongs to A, corresponds with pa(x) =«
in the fuzzy set theory of Zadeh (Zadeh 65).



set of all instances of its free variables specified as place-
holders, satisfying the formula. So given a many-valued
predicates language £, for an interpretation 2* with do-
main of discourse 2 and € the set of open well-formed
formulas without bound variables ¢ of § such that, for
any valuation v of €, ¢ totally satisfied in-2* or not
at all satisfied in-2. So: €= {¢ € F | Vv, A*EY, ¢ or
A*=Y ¢}, Since formulas of € contain only free vari-
ables, we can consider that free variables of formulas of
¢ stand implicitly for placeholder variables. Thus in in-
terpretation 20*, each formula of € will be able to make
reference to the subset of individuals of 2 that satisfy
this formula.

In order to define the symbolic statistical probabil-
ities assigned to subsets referred by formulas of €,
we add to the language £, a new many-valued unary
predicate, denoted as Prop, defined over formulas of
¢ which qualitatively takes into account the notion of
proportions of sets referred by formulas of €. We are
going to extend the structure interpretation of the lan-
guage A* to 2A with domain QU €, and we suppose that
the variable ¢ designates the argument of Prop, and
that any valuation v comprises v that is associated to
Q.

?eﬁnition 3 The predicate Prop is defined as follows

- For any interpretation A, Vo € € , Prop(p)€ §.
- Any interpretation 24 associates to Prop a multiset
of €, denoted as S, so that for all valuation v, if ¢ is

an element of € , we have: A #g(o/(b)Prop((p) = <
Pp>Eq & < Prop(¢) is 1o-true-in-2A. If no confusion

is possible A E,Prop(¢p) stands for A hg(o/d’)Prop (¢).

In (Pacholczyk 94) the main objective was the defini-
tion of an uncertainty concept within a symbolic theory
of probabilities. Here, it concerns the representation of
symbolic quantification. So, the semantic associated to
Prop is different from the one chosen for Prob in (Pa-
cholczyk 94).

Definition 4 Let Qgn be the set of the vague pro-
portional quantifiers : Qon={Qn, o €[1,M]}. Then,
QA Eq Prop(¢) “ will mean that “Qn individuals of Q) to-
tally satisfy ¢ in-A“ if and only if, the subset referred
by ¢ belongs to the multiset S with a degree T, .

Thus Q. is considered as the symbolic degree of

statistical probability of the set referred by ¢ in 2L
Therefore, each symbolic truth degree 7,-true of Loy
of Prop(¢), is associated to a symbolic degree of statis-
tical probability (proportion) of the set referred by ¢,
i.e., to a linguistic quantifier Q, of Qgy.
Example 1 By choosing M = 7, we can introduce : Q,
= {none, very-few (or almost-none), few, about half,
most, almost-all, all} that corresponds to the symbolic
degrees of statistic probability.

The idea proposed in Pacholczyk (Pacholczyk 94) for
the representation of “Q A’s are B’s“ was to interpret

SProp has been introduced in a similar way as the pred-
icate Prob in (Pacholczyk 94).

it as a symbolic conditional uncertainty of the event
B given A. Our interpretation will be in terms of the
symbolic relative (or conditional) proportion of indi-
viduals of B in A. Therefore, as in (Pacholczyk 94),
we can generalize the classical definition of conditional
statistical probability in a symbolic context, by using
a “symbolic probabilistic division“ operator, denoted
as C, or equivalently a “symbolic probabilistic multi-
plication “ operator, denoted as I. These two operators
have been defined in (Pacholczyk 94) (see also (Xiang
et al. 90)). The operator I is an application of QF;
into Qgyn, that verifies the classical properties of the
probabilistic multiplication (commutativity, absorbent
element: Qq, identity: Qjs, monotony, associativity,
idempotence: Qg2). The operator C is an application
of Qf; into P(Qq). C is deduced from I by a unique
way as follows: Q, €C(Qa, Qx)<=Qx=I(Qa, Qu).
Among the different tables of the operator C which
verify the axioms chosen in (Pacholczyk 94), in £, we
have chosen table 1 presented in Annex A. The cor-
regponding operator I is defined in Annex A by Table
2.

Definition 5 Let ¢ and iy be formulas of €, we are
going to introduce the symbolic conditional statistical
probability, ‘A, Prop(y|p)*, expressing the symbolic
degree of the relative proportion of individuals that sat-
isfy the formula v among those satisfying w. It will
be defined by the symbolic division of the symbolic de-
gree of Prop(y A\ ¢) by that of Prop(¢p) as follows: {2
':oz PTOP((f)), 2 ':)\ PTOp(’l/J A (75)} = QH:;J«PTOP(@M(?&)
with Qu €C(Qa, Qr). “AFE,Prop(i|p)” means that “
Among the individuals of Q which totally satisfy ¢ in-2A,
Qu totally satisfy ¢ in-A”

In order to obtain an equivalent manipulation of sets
and formulas of type “Prop(t|¢)“, we can use the nota-
tion of the partial inclusion of a set in another, proposed
in (Akdag et al. 92). This can be done by considering
that the symbolic degree of partial inclusion of a set
in another, coincides with the symbolic degree of sta-
tistical probability of individuals of the second in the
first.

Suppose that ¢ and v refer respectively to subsets A
and B of 2 in the interpretation 2(. The equivalence be-
tween the two notations whose sense remains identical,
allows us touse : “A C,B*“instead of “A F,Prop(t|¢)“.

It can be established as follows: 2 F,Prop(i|¢)
<=Q, individuals of A, are individuals of B
<=AC,B. Then, we have : AC,B<=Q, A’s are
B’s. Then, knowing that T is a tautology, we ob-
tain: 2 F,Prop(¢)<= 2A E,Prop(¢|T). So, we can use

61t can be noted that the operators V, A and ~ have been
defined in the M-valued logic in order to deal with partial
truth degrees. But, they do not allow us to govern the par-
ticular predicate Prop, since statistical probabilities are not
truth-functional, in this sense that the statistical probabil-
ity of a compound formula is not a function of the statistical
probabilities of its parts. In order to propose a symbolic rep-
resentation of the statistical probability, we have to define
the operators governing this symbolic concept.



“Q CaA instead of “AF,Prop(¢)“. Thus Definition
5 can equivalently be written with notation of sets as
follows:

Definition 6 Given an interpretation A, let us sup-
pose that the formulas ¢ and Y refer respectively to the
subsets A and B of the universe Q. Then, in terms of
partial inclusion in the multiset theory, A F,Prop(y|¢)
receives as translation AC,B. In other words, ”Among
the individuals of £ which totally satisfy ¢ in-A, @, to-
tally satisfy ¢ in-2A” is equivalent to say that ”A is
included into B with a degree ),”.

Remark 1 Previous definition gives us: if {Q CaA,
Q CAANB} then AC,B with Q, €C(Qa,Qx). This can
be viewed as a symbolic generalisation of the classical
property: Prop(B|A) = Prop(ANB) / Prop(A) = |ANB|
|Al.
Let A and B be subsets of Q. It is easy to prove the
following properties:

Proposition 1 AC,B<—=ACB <= ANB=A.

Since the degree Qs corresponds with the quanti-
fier “All“, then Cj; coincide with the inclusion in set
theory.

Proposition 2 AC;B<= ANB=0).

Since the degree Q; corresponds with the quantifier
“None“, this means that A and B are disjoint.

Example 2 By using £,, let us suppose that the do-
main of discourse consists residents of the city V.
Knowing that: “Most residents of the city V are young“
and “Half of residents of the city V are young single “.
These assertions are respectively translated in our model
by: Q C5 Young and Q C4 Young single. Definition 6
gives us: Young C,Single with @, €C(Qs,Q1)={Qs}.

Then we obtain: “Most young people are single “.

4 Axiomatic of the symbolic statistical
probabilities

We can now put the axioms governing the concept of
symbolic statistical probabilities. Let A and B be sub-
sets of 2 . The axioms are defined as follows:

Axiom 1 ANB # A, Q CulA, Q C,A N B and
Qo €/Q3,0Qm-1] = ACm-1B. (Aziom defining
“Almost-all“)

Qualitatively the subsets A and AN B can have
the same symbolic degree of proportions without be-
ing equal. This is the case, when AN B is equal to
the set A without one or some individuals. This can
qualitatively translate by saying that “A and AN B are
almost equal® or “Almost all A’s are B’s“. This is not
always the case, when the proportion of A is very weak
(associated with Q2 = Very-few).

Axiom 2 CaA, Qa E/QQ,QM,1] and ACy_ 1B =
Q CoANB. (Aziom defining “Almost-all®)

When we have “Almost all A’s are B’s“, we know

that A # ANB (Cf. Proposition 1), but we can say

that A and ANB are almost equal and therefor A and
AN B have the same symbolic degree of proportions.

Axiom 3 Q CoA<= Q C (o) A with n(a) = M + 1
-, (Aziom defining the dual quantifier)

Generally the dual quantifier of Q,, corresponds with
Qn(a) (“Few®is the dual quantifier of “Most*).

Axiom 4 Q C,A, Q CgB, AUB# Q and ANB=) —
Q C,AUB with Q. €S(Qa,Qp). (Aziom defining the
symbolic proportion of disjoint sets union)

Classically, when A and B are disjoint, the absolute
proportion of their union is the sum of their absolute.
We put that if the union A and B is different from
Q) (otherwise, the symbolic proportion degree of their
union is evidently Qas) and that they are disjoint, then
the symbolic proportion degree of their union belongs
to the “symbolic sum* of their symbolic proportion de-
grees. The symbolic sum denoted S is introduced in
a way that it gives an interval containing one or two
values. The lower bound of this interval is greater than
or equal to each symbolic value of two arguments of
S. Since the set AUB is different from 2, the maximal
degree that can take the upper bound of the interval
is Qas—1. The use of an interval rather than a single
degree is due to the degree Q. It is justified by the fact
that the addition of one or some elements (i.e., a very
weak quantity) to a set can either preserve its symbolic
degree of proportion or increase it at most one degree.

Definition 7 The symbolic sum S is a commutative
application of Qf, into P(Qum). By supposing that
a+ 0 < M+1, S is defined as follows:

{Qu} if =1

[Qat5—2,Qatp—1] if
a#l, B#L atf<M
{Qumat ifat+B=M+1

In agreement with Axiom 3, it is necessary to have
a+ < M+1. Indeed, ANB =f) implies that BC A .

Now ((Axiom 3) gives Q C, o) A. Intuitively 8 <n(a)
(for, BC A ) therefore, a + 8 < a+n(a)=M+1. Defin-
ing Inf and Sup as two applications of Q3; into Qon,
we obtain respectively the lower bound and the upper
bound of an interval of Qs so we can write : S(Qq,Qp)
= [InfoS(Qa, Qg), SupoS(Qa, Qp)] or more simply
InfS(Qa, Qp), SupS(Qa, Qg)]. We can prove that
the applications InfS and SupS verify the properties
of a T-conorm.

S(Qa;Qs) =

Definition 8 An application T of Lo into Lon satis-
fying the following conditions :

- T(Tlﬂ Tl) =T1,

- T(8, Tm) = T3,

- T(T/g, Ta) = T(T(w Tﬁ)

- 718, <18, and T, < Tay =>T(Tay, 78, ) < T(Tas, T3,)
- T(1a, T(13, 7y) ) = T(T(7a, 73), Ty) is called a T-
norm.

Moreover, C(1y, 73) = ~T(~ Ty, ~ 73) is called a T-
conorm.

Definition 9 Given S, we can define the “symbolic
subtraction“ denoted D as an application of Qi

into P(Qon) such that: if Qr €5(Qu,Qs), then Qs



€D(Qr,Qa) and Qo €D(Qr,Q3). Then D can be de-
duced from S:

1Q 2} ifr=p¢€[2, M —1]
(Qr+1-8, Qry2-8] if
29<f<r<M—1

Remark 2 In this paper, we have chosen the operators
S and D defined by Tables 3 and 4 (see Annex A)

D (@r, Qs) =

5 Fundamental properties

Let A and b be substes of Q. The following properties
can be viewed as symbolic generalizations of classical
statistical probabilities.

Proposition 3 IfQ C,A and ACB, then Q CgB with

Propoposition 3 shows that the symbolic degree of
proportion of a set is greater than or equal to its subsets.
Classically, the proportion of a set is strictly greater
than to one of its strict subsets, while qualitatively, a
set and one of its subsets can have the same symbolic
degree of proportion (Cf. Axiom 1).

Proposition 4 IfQ C,A, Q CAANB and A# Q, then
Q CyA\B with Qy €D(Qa, Q).

It appears clearly that Proposition 4 generalize the
property: [A\B|/[ € |=(|A|-|ANBJ)/[ €.

Proposition 5 If Q C,A, Q CgB, Q Cx ANB and
AUB# Q, then Q C,AUB with Qr €U(Qa, Qp, Qr)
where U(Qou Q,@ﬂ Q)\) = /InfS(Q(w InfD(Q/g, Q)x));
SupS(Qn, SupD(Qp, Q)] if a+B-A < M-1, and
U(Qou Qﬁ} Q)\) - {QM—I} Zfa+/6_)‘ - M

Corollary 6 If Q@ C,A, Q CgB, Q@ C,AUB and
AUB# Q, then Q@ CAANB with Qr= @2 if a+F-r=
1 and Qx €[InfD(Qs, SupD(Q;, Qn)), Inf{SupD(Qs,
InfD(Q’I"? Qoz));Qoz, Qﬁ}/ otherwise.

Proposition 5 and Corollary 6 generalize the classical
property: [AUB| / [ Q[ = (A| +[B| - [ANB]) / [ 2 |.

6 Inference with quantifiers

Reasoning on quantifiers is called by Zadeh (Zadeh 85)
syllogistic reasoning, where a syllogism is an inference
rule that consists in deducing a new quantified state-
ment from one or several quantified statements. As
an inference scheme, a syllogism may generally be ex-
pressed in the form:

Qu1 A’s are B’s

Qu2 C’s are D’s

Q. E's are F's with Q,, €[Qq, Qo] € [Q1, Qurl,
where E and F are sets resulting from applications of
set operators on A, B, C or D, and where the bounds
Qq and Qp are in accordance with Q1 and Qe.

The quantifier “All“ is represented by the implica-
tion using the quantifier V in classical logic or by the
inclusion in set theory. The classical implication and
the inclusion propagate inferences by transitivity, con-
traposition, disjunction or by conjunction. From one or

several statements quantified by “All“, these inferences
enable to generate new statements likely quantified by
“All“. Nevertheless, most of these inferences are not
valid for other quantifiers, i.e., for Q, €[Q2,Qas—1]. For
example, from “Most A’s are B’s“ and “Most B’s are
C’s“ one can not always have “Most A’s are C’s“. That
is due to the fact that the inference by transitivity is not
valid for the quantifier “Most“. The invalid inference
has been considered as a case of total ignorance.

6.1 Valid inferences with quantifiers

We consider that an inference is valid, if we deduce
Qu €[Qa; Qu), where Q. or Qp is in accordance with
Q1 or Q2. We present some valid inferences. Each of
them is illustrated by an example.

Proposition 7 (Relative Duality):
Qu1 A’s are B’s

Qu2 A’s are A\B and Qu2 A’s are not B’s
with Quz2 = Qnu1)y of Qui # Cn(ur)
and Q2 € [Qn(#l), Qn(u1) + 1/ otherwise.

Example 3
Almost all students are unmarried

Very few students are married.
Proposition 8 (Mized Transitivity):
Qu1 A’s are B’s

All B’s are C’s

Quz A’s are C’s with Q,n <@

Example 4
Most students are young (less than 25 years)
All young people are non retired

At least most students are non retired.

Proposition 9 (Ezception)
Qu A’s are B’s

All C’s are A’s

All C’s are not B

Qy A’s are not C, with Qy €[Q,,Qn—1].

Example 5

Most birds fly

All ostriches are birds
All ostriches do not fly

Most or almost all birds are not ostriches.
Proposition 10 (Union Right)

Qu1 A’s are B’s

Qu2 A ’s are C’s

Qu A’s are (BU C)'s, with Qp €[Qutaz(ut, o) Qar—1)-
Example 6

Most students are single
Very few students are taxable

Most or almost all students are single or taxable.



Proposition 11 (Intersection Right)
Qun A’s are B’s
Qu2 A ’s are C’s

Qu A’s are (BNC)’s, with Q, <Qprpin(u1,u2)

Example 7
Few salaried people are official
Most salaried people are taxable

At most salaried people are taxable official.

Proposition 12 (Mized Union Left)
Q, A’s are C’s
All B’s are C’s

Qy (A UB)’s are C’s with Qy €[Qu,Qrn—1]

Example 8 Example 9
Most young people are single
All the catholic priests are single

Most or almost all young people or catholic priests are
single.

Proposition 13 (Intersection / Product
Syllogism):

Q1 A’s are B’s

Qu2 (ANB)’s are C’s

Qu A’s are (BN C)’s, with Q, = I(Qu1, Qu2)

Example 10
Most students are young
Almost all young students are unmarried

Most students are young and unmarried.

Proposition 14 (Contraction)
Qu A’s are B’s
Qu2 (ANB)’s are C’s

Q. A’s are (s,
Q]VIaac(M—l,,u?)/

with Q,“' = /I(Qp,l ) Q,LLQ)}

Example 11
Most students are young
Almost all young students are unmarried

Most or almost all students are young and unmarrie

Proposition 15 (Intersection/Quotient syllogism)
Qun A’s are B’s

Qu2 A ’s are C’s

Qu3 (ANB) ’s are C’s

Qu (ANC)’s are B’s, with Q,, €C(Qua, 1(Qui, Qu3)).

Example 12

Most students are young

Most students non salaried

Almost all young students are non salaried

Almost all non-salaried students are young.

Proposition 16 (Weak Transitivity)
All B’s are A’s

Qu1 A ’s are C’s

Qu2 B’s are C’s

Qu A’s are C's with Q €[I(Qu1, Qu2), Almost-all].

Ezxample 13

All salaried people are active
Most active people are salaried
Most salaried people are taxable

Between half and almost all of active people are taxable

6.2 Valid Inferences with the quantifier
“Almost-all“

We present three inferences only valid with the quanti-
fier “Almost-all“. They result from the axioms of quan-
tifier “Almost-all“ (Cf. Axiom 1, Axiom 2). These in-
ferences are counterparts 7 of inference rules proposed
in ( (Adams 75), (Pearl 91)), where “Almost all“ is
interpreted as proportion arbitrarily close to 1. In
their approaches, the obtained quantifier is ” Almost-
all”. In our approach, with the first inference we obtain
” Almost-all”, while with the others, we obtain ” Most”
or ” Almost-all”. That can be justified by the fact that
we consider the infinitesimal interpretation of this quan-
tifier is a particular case of our interpretation.

Proposition 17 (Contraction)
Almost-all A’s are B’s
Almost-all (A N B)’s are C’s

Almost-all A’s are C’s.

Example 14
Almost all students are young
Almost all young students are single

Almost all students are single.

Proposition 18 (Cumulativity)
Almost-all A’s are B’s
Almost-all A’s are C’s.

Qu (AN B)’s are C’s, with @, €[Most, Almost-all].

Example 15
Almost all students are young
Almost all students are single

Most or almost all young students are single.

Proposition 19 (Union Left)
Almost-all A’s are C’s
Almost-all B’s are C'’s.

"Pearl’s approach is introduced for default reasoning,
then his inferences are not exactly syllogisms, but they are
rather non-monotonic inferences about particular individu-
als from defaults.



Qu (AU B)’s are C’s, with Q,, €[Most, Almost-all].

Example 16
Almost all students are single
Almost all priests are single

Most or almost all students or priests are single.

6.3 Monotonic aspect of reasoning with
quantifiers

We can note that the reasoning with quantifiers is
monotonic (Sombé 90) in the following sense: when a
knowledge base contains: AC,1B and CC,2D, when
we deduce EC,F with Q, €[Qq,Qs), and if one adds
in the base or one deduces by an other inference new
information: EC,F with Qu €[Qa/;, Qul, then one
must have [Qq, Qp] N [Qa, Qu]# @ and finally one
will have: E C,F with Q, €[Qq, Qb] N [Qar, Qor]. In
other words, the new knowledge can only tighten the
interval [Q,,Qp], that maintains the coherence between
the quantified statements. There is an inconsistency, if

[Qanb}ﬂ[Qavab/]: 0.

Example 17 The following example proposed among
benchmarks problems contains the quantified state-
ments:

S1: Most dancers are not ballerinas,

S2: Most dancers are graceful,

S3: Most graceful dancers are ballerinas.

Then, S1 = "Few dancers are ballerinas” (Relative
duality).

Moreover, S1 and S2 —> ”Between half and almost all
dancers are ballerinas” (Contraction).

Since { Few} N [Half, Almost-all] = (), the statements S1,
S2 and 83 are inconsistent.

7 Conclusion

In this paper we have presented a symbolic approach
to quantifiers used in the natural language to express
a qualitative evaluation of proportions. This approach
allows to reason qualitatively on quantified assertions,
since we provide inference rules based upon statements
involving linguistic quantifiers. In our interpretation,
in accordance with the natural language, the propo-
sition “Q A’s are B’s“ have a Boolean nature, i.e., it
is given as true. On other hand, in fuzzy approaches,
the proposition is multivalent, in the sense, that for a
given proportion r of B in A, the truth degree of “Q
A’s are B’s“ is equal to pg(r). The difficulty of choice
of the inteval bounds values and of membership func-
tions in semi-numeric approaches does not face in our
approach purely symbolic. Moreover, in the approaches
based upon the cardinality of sets to represent propor-
tional quantifiers, the sets must be finite, while in our
symbolic approach, they can be infinite. Thus, we can
represent statements like “Most birds fly“. In order to
obtain belief symbolic degrees attached to properties
about particular individuals, and this, by using knowl-
edge based upon quantified assertions and certain facts,
it is nececarry to propose a symbolic model based upon

a direct inference principle and a choice of the appropri-
ated reference class ((Kyburg 83), (Pollock 90), (Bac-
chus 90)). This point is actually on study.
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Annex A : Tables of operators C, I, S
and D

Remark 3 In the following tables,()u» stands for in-

terval [Qu, Qb/

C 1Q [ Q |Q3 Q4 Q5 | Qg | Qr
Q1 [ Q170 [ [ 0 0 1]
Qo Q1] QoA 0 0 0 0 1]
Q3 Q1) Q2.5] Qg7 0 0 0 0
4 1) Qo4 {Qs) Qg7 0 0
Qs [ {Q1] Qo3 {Q4) {Qs) Qg.7] 0 0
Qs | {Q1) {Qao) {Q3) {Qq) {Q5) Qg7 0
Q7 | {Q1) {Qof {Q3} {Q4) {Q5) {Qs) {Qr
Table 1 : Operator C
I [ Qi | Q| Q3| Qs Q| Qs | Qr
Qi | QU | Q| Q@ | QU | Q| Qa |
Qo | Q1 | Q| Q2| Q| Q| Q| Q
Q3 | Q1 [ Q2 | Q2| Q2| Q2 | Q3 | Qs
Qs | Q1 | Q[ Q2| Q| Q3| Qa4 | Qq
Qs | Q1 | Q2 | Q2 | Q3 | Qs | Q5 | Qs
Qe | Q1 | Q| Q3| Q4| Q5 | Qs | Qs
Q7 | Q1| Q | Q3| Q4| Q5| Qs | Qr

Table 2 : Operator 1
S Q1 Q2 Qs Qa Qs Qs
Q1 | {Q1} | {Qao} | {Q3} | {Qa} | {Q5} | {Q6}
Q2 | {Q2} | Q2,3 | Q3.4 | Q4,5 | Q5.6] | {Q6}
Qs | {Q3} | Q3.4 | Q45 | Qa6 | 1Q6} | {Qs}
Q4 [ {Q4} | Qa5 | Q56 | {Q6) | {Qs} [ {Q4}
Qs | {Q5} | Q5.6 | {Q6) | {Qs | {Qa} | {Q5}
Qs | {Q6} | {Q6} | {Q3 | {Qa | {Qs5} | {Q6}

Table 3 : Operator S

D Qi | Q2 | Q3 | Q4 | Q5 | Q6
Qq Q1
Q2 Q2] {Q2
Qs Q3] Q23] {Qe
Q4 Q4] Q3.4 Q23] {Q2
Qs Q5] Q5] Q3.4 Qo3[ {Q2

Qs Qs) Qs.6] Qa5 Q4] Qo3| {Q2
Table 4 :Operator D

Annex B : Proofs of some propositions
We suppose that A, B and C are subsets of .

Proposition 3: Let us suppose that 2 CgB and
QCpB\A. A CB = B = AUB\A. A and A\B are
disjoint. Using Axiom 4, we obtain: Qg €S(Qq,Qp).
Therefore Q, <Qg.

Proposition 4: Let us suppose that Q@ C,A\B. A
= (A NB) UA\B and (AN B) N A\B =0 . Using Axiom
4, we obtain: Q, €S(Qx, Q). Definition 8 gives us :
Qo €D(Qa, Q).

Proposition 5: Let us suppose that  C3B\A. The
proposition 4 gives us : Qg €[InfD(Qg, Qx), SupD(Qg,
Q,)]. Since AUB=A U (B \ A) and the sets A and B\A
are disjoint, then according to Axiom 4 : if a+03 <
M+1, Q C,AUB with Q, €S(Qq, Qp’). Definition
8 implies that : InfD(Qg, Qx) = Qp+1-r < Qp <
SupDA(Qg, Q) = Qgt2-x. Therefore, a+5" < M+1
= a+0+1-\ < a+fF < a+f+2 - X < M+1. So, we
obtain (see Table 5):

-If a4+-642 - A < M+1 = a+0+ A < M-1, then Q,
E[InfS(Qaa InfD(Qﬁ7 Q)\))a SupS(Qaa SupD(QﬁaQ)\))]
-If a+8+1 - A = M+1 = a+08- X < M, then Q,

(S {InfS(Qa, IHfD(Qg, Q)\))} = {Q]\jfl}.

Qa Qﬁ Q)\ Qr S U(Qaa Qﬁa Q)\)
Q2 | Q| Qo Q2,Q3
Qs | Q2 | Qo Q3,Q4
Qs | Q3 | Q2 Q3,Qs5
Qs | Q3 | Q3 Q3,Q4
Qs | Q2 | Qo Q4,Q5
Qs | Q3 | Q2 Q4,Q6
Qs | Q3 | Q3 Q4,Qs5
Qs | Q4 | Qo Q5,Q6
Qs | Q4] Q3 Q4,Q6
Qs | Q4 | Q4 Q4,Qs5
Qs | Q| Q2 Q5,Q6
Qs | Q3 | Qo Qs5,Q6
Qs | Q3 | Qs Q5,Q6
Qs | Q4 | Qo {Qs}
Qs | Q4 | Qs Q5,Q6
Qs | Qu | Qu Q5,Q6
Qs | Q5 | Qs {Qs}
Qs | Q5 | Qu Q5,Q6
Qs | Qs | Qs Qs5,Q6
Qe | Q2 | Qo {Qs}
Qs | Q3 | Qo {Qs}
Qe | Q3 | Q3 {Qs}
Qs | Q4 | Qs {Qs}
Qs | Q4 | Qu Qs }
Qs | Qs | Qu Qs}
Qs | Q | Qs {Q6}
Qe | Qs | Qs 1Qs}
Qs | Qs | Qs {Qs}

Table 5: U(Qa,Qs,Qx)

Corollary 6 : Let us suppose 2 CyAN B. Propo-
sition 5 give us Q, €U(Qq, QF, QN) if o + 5 — A <
M- 1, and Q, € {Qpr—1} if @« + 8 — A= M. Thus we
can deduce the values of Q) in accordance with those
of Qr, Qa and Qg, as this is showed in the following
table 6. From this table, we can verify that : Q) = Q2
if « + 3 —r =1and Qx €[InfD(Qa, SupD(Q,, Qu)),



Inf{SupD(Qg, InfD(Q,, Qa)), Qa, Qs}] otherwise.

Qr Qa Qﬁ Q)\ S
Q| Q| Q2 | {Qo

Q3 [ Q3 | Qo Qo

Q3 | Q3 [ Q3 | [Q2,Q3]
Qs [ Q3 [ Qe | {Qo}
Qs | Q3 | Qs | [Q2,Q3]

Qs [ Qu [ Q| {Qo}
Qs | Q4 | Q3 | 1Q2,Q3
Qs | Qs | Q4 | 1Q3,Qq
Qs | Q3 | Q3 Qo }
Qs | Qs | Qo Qo)
Qs | Q4 | Q3 | [Q2,Q3
Qs | Qa | Qs | [Q2,Qq
Qs [ Qs [ Q2 | {Qo}
Qs | Qs | Q3 | 1Q2,Q3
Qs | Qs | Qa | [Q3,Qq
Qs | Qs | Qs | [Q4,Q5
Qs | Qa | Q3 | {Qa}
[Q2,Q3]
Qs | Qs | Q2 | {Qa}
Qs | Qs | Q3 | |Q2,Q3
Qs | Qs | Qs | [Q2,Qq4
Qe | Qs | Qs | [Q3,Q5
Qs | Qs | Q3 | 1Q2,Q3
Qe | Qs | Qs | [Q3,Qq
Qs | Qs | Qs | 1Q4,Q5
Qs | Qs | Qs | Q5,Qs

Table 6

Proposition 7 (Relative Duality) : Let us suppose
that Q@ C,A, @ CxiAN B and AC,2 A\B. We have Q1

€0(Qu, Q1) or equivalently Qyy = 1(Qq, Qu1). Using
proposition 4, we obtain Q Cx2A\B with Q2 €D(Qq,
Qx1). For the different degrees of Q, and Qq, in £,,
the following table 7 gives us the values of Q2 €C(Qq,
Qx2). We can verify that : Quui)+1 = Qs €C(Qa,
Qx2), if Qo = Q4 and Qg1 = Q4. For the other cases,
we can verify that : for any Qu1 €C(Qa, Qa1), there
exists Qu2 €C(Qa, Qa2) such that Q2 = Q1. Since
A\B = AN B, then AC,2 ANB and consequently

ACNQ B .

Qo | Qui € a b C
Q2 | [Q2,Qs] | Q2 | {Qa2} Q2,Qs
1Q2,Qs3] | [Q2,Q6
Qs | {Qe} [ Q3| {Qo} Q2,Qs5
Qs | [Q2,Q4] | Q2 [ [Q3,Q4] | [Q5,Qs
Q4 Qs [ Qs | [Q2,Qs] [ [Q2,Q5
Q4 Qs | Qa| {Qo} Q2,Q4
Qs | [Q2,Q3] | Q2 | [Q4,Qs5] | [Q5,Qs
Qs Q4 | Q3| [Q3,Q4] | [Q4,Qs5
Qs Qs Qa | 1Q2,Qs] | [Q2,Qq
Qs Qs Qs [ 1{Qaf Q2,Q3
Qe Q2 Q2 | Q5,Qse] | [Q5,Qs
Qs Qs Q3 | Q4,Qs5] | [Q4,Q5
Qs Q4 Qs | [Q3,Q4] | [Q3,Qa
Qe Qs) | Qs | [Q2,Qs] | 1Q2,Q3
Qs | {Qef | Qs | {Qo} {Qa]

al Q)\l = I(Qaa Qul)
b: Qx2 € D(Qa,Qx1)

c: Qu2 € C(Qa, Qx2)\{Q7}
Table 7

Proposition 8 (Mixed Transitivity) : Let us sup-
pose 2 CoA,Q Cy AN B, Q Ca2A NC and A C2C.
The definition 6 give us Qu1 €C(Qa, Qr1) and Qe
€C(Qa, Qr2). BC C = AN B C A NC. Using Propo-
sition 3, we obtain Qx; <Qx2. We distinguish two cases

-a- When Q)1 < Qn2, Table 1 of operator C implies
that Qlﬂ < QNQ.

-b- When Q)1 = Qx2, we distinguish three cases:
-b1-if AN B = A NC, then Q1 = Que.

-b2- if A NB #AN C = A, then Proposition 1 implies :
Qul < Q]V] and QNQ = Q]V[. Therefore Qul < ng.
-b3- if AnNB# A NC+# A, then:

- when Qx1 >Q3: Axiom 1 gives us Q1 = Qu2 = Qumr—1
if Q, = Qa1, and we have : Card(C(Qq, Q1)) = 1 oth-
erwise (i.e., Qo #Qx1 = Qa2). Therefore Q.1 = Qxa.
- when Q1 = Qg : since we have C(Qq, Qa1) = C(Qq,
Qx2), then for any Qu1 €C(Qa, Q1) there exists Qu2
EC(Qaa Q)\Q) such that Q,U.l SQ}LQ'

Proposition 13 (Intersection / product Syllogism) :
Let us suppose that Q C,A, Q CAAN B, Q CsANBN C
and A €, B NC. We have Qy = 1(Qa, Qu1), Qs = I(Qx,
Qu2) and Q, €C(Qa, Qs). >From the following table
8 in £,, we can verify that for the different degrees of

Qom Q)\a Q&, Qul and QuQ with Qa >Q)\ EQ,B we have

- if Qs >Qg, then Q. = I(Qu1, Qu2).

- if Q5 = QQv then C(Qaa Qﬁ) = [(InfC(Q(w Q)\)a
InfC(Qx, Qs)), I(SupC(Qa, Qx), SupC(Qyx, Qs))].
Since for any Qu1 €C(Qa, Qa) and Qu2 €C(Qx, Qs),
we have I(Qu1, Qu2) €C(Qa, Qs). Therefore Q, =
1(Quis Qo



Qa | QX | Qs a b c d

Q2 | Qo | Q2 | [Q2,Q6] | [Q2,Q6] | [Q2,Qs6] | [Q2,Q6

Qs | Qo | Q2 | [Q2,Q5] | [Q2,Q6] | [Q2,Q5] | [Q2,Q5

Qs | Q3 | Q2 Qs Q2,Qs] | [Q2,Qs5] | [Q2,Q5

Qs | Q3 | Q2 Qs Q2,Qs5) | [Q2,Q4) | [Q2,Qq

Qs | Q4 | Q2 Qs Q2,Q4] | [Q2,Q4] | [Q2,Q4

Qs | Q3 | Q2 Q4 Q2,Qs5) | [Q2,Q3] | [Q2,Qs

Qs | Q4 | Qo Qs Q2,Q4] | [Q2,Qs3] | [Q2,Qs

Qs | Q4 | Q2 Q4 Q2,Q4 Q2 {Q2

Qs | Qs | Q2 Qs Q2} Q2 {Q2

Qs | Q3 | Qs Qs Qs Qs {Qs

Q, | Q3 | Q3 Qs Qs Qs Qs

Q4 | Q4 | Q4 Qe Qe Qs Qe

Qs | Qa | Qs Qs Qs Q4 Q4

Qs | Q4 | Qq Qs Qe Qs Qs

Qs | Q5 | Qs Qs Qs Qs Qs

Qs | Qs | Q4 Qs Qs Qq Q4

Qs | Q4 | Qs Qs Qs Qs Qs

Qs | Qs | Qa Qs Qs Qs Qs

Qs | Qs | Qs Qs Q6} Qs Qs

a: QulEC(QQ’QA)\{Q’?}
b: Quz € C(Qx, Qs)\{Q7}
& I(Qul: QMQ)

d: Qu S C(Qanﬁ)\{Q7}
Table 8

Proposition 18 (Cumulativity) : Let us suppose
that Q C,A, © C3AN BNC and AN Bc,, C. We have
Qu €C(Qa, Qy). Axiom 1 implies that : (AC a1
B= Q C,ANB) and (A Cpy-1 C = Q C,A
NC) and Proposition 1 implies that AN B# A and
AN C #A. Since ANB cC (An C) U (BN C) C A,
Q CoA and Q C,A NB, then Q C,(A NC) UB NC).
Corollary 6 give us Q) €[InfD(Qq, SupD(Qq, Qa)),
SupD(Qa, InfD(Qa, Qa))] which is equal to [Qa—1,Qa]
for « > 3 and to {Qq} for @ = 2. Since AN B #A
and A NC#A, then A NB NC # AN B. Therefore
Qu €C(Qa, Q\)\{Qas} which is equal to ([InfC(Qq,
Qa—1), SupC(Qa, Qa)]) \ {Qum} for @ > 3 and to
C(Q2, Q)\{Qns} for a=2. It is evident to verify
in table 1 of C that : for a >4, [InfC(Qn, Qa_1),
SupC(Qa; Qa] \ {Qu} = [Qar—2,Qar—1] 5 for 2 < a <3,
C(Qa, Q) Qur} = [Q2, Qar—1]. Since for a >4,
we have Q, €[Qar—2, Qar—1], then for 2< a < 3 the
interval [Q2,Qar—1] can be restrained to the interval
[Qaz—2,Qar—1]. Therefore Qu €[Qas—2,Qr—1]-

Proposition 17 (Contraction) : According to
Proposition 9 : AC 31 B and A NBCy—1C =AC,
B NC with Q, = I(Qaxr—1, Qv—1) = Qar—1. According
to Proposition 8 : AC, BNCand BNC cC=A C,C
with Q, €[Qa—1,Qun). ANB Cpr1 C=Q, < Qur.
Thus Q,u = Qum—1-

Proposition 19 (Union Left) : Let us suppose that
Q CaA, Q CgB, © Cx1A NB and Q2 Cx2ANB NC. Ac-
cording to Axiom 2 : (AC p-1 C and Q C,A =
Q CoAN C) and (B C p—1 Cand Q CgB= Q C3BN
C). Proposition 1 implies that A NC #A and BN C# B.
We have (A UB)NC = (AN C) U(BN C)). Then, Propo-

sition 5 gives us :

- Q CAU B with Q1 €U(Q, Q, Q) = [InfS(Qa,
IHfD(Q/g, Q)\l))v SupS(Qaa SupD(Qﬁa QAI))] if o + 3 -
Al < M-1,and Q1 = Qp qifa+ 8- AN1=M ;

-Q Cre (ANC) UBNC) with Q2 €U(Qa, Qs, Qr2) =
[fS(Qa, INfD(Qg, Qx2)), SupS(Qa, SupD(Qs, Qnz))
if a4+ 6-X2< M-1,and Q0 =Qp 1 if a + 8- 22 =
M.

Since (AU B) NCCAUB and AN B NC CA NB, then
Proposition 3 gives us : Qqo <Q,1 and Qo < Qa1.
The following constraint : for any Qxo, Qa1 such that
Q2 < Qi1 we must have Q,o <Q,1, allow us to sup-
press each value of U(Qa, Qg, Q1) and U(Qa, Qg,
Qx2) for which Q9 > Q,1 as that is showed in the fol-
lowing table 9. From this table, we can verify that for
any Qa, Qp, Qaz, Qx with Q2 <Qx1, we have Q0 =
er or Qr? - QTl—l-

If AUBC,C, then Q, €C(Q;1,Q,2). We have (AUB)
N C = (AnC) U (BNC) # AUB (as,ANC#A and
BNC#B), then Q, €C(Q1, Qr2) \ {Qar} which is
equal to ([InfC(Qy1, Qr1—1), SupC(Qr1, Qr1)]) \ {Qnr}
for er > Q3a and to C(QQa QQ) \{QM} for QT1:Q2° It
is obvious to verify in table 1 of C that : for Q,1 > Qyq,
InfC(Qr1, Qr1-1), SupC(Q1, Qr1)] \{Qu} = [Qar—2,
Qur—1); for Q2 <Qr1 <Q3, C(Qr1, Qr2)\{Qur} = [Q2,
Qar—1]. Since for Q,1 >Qu, Qu €[Qar—2, Qar—1], then
for Q2 <Q,1 <Qg the interval [Qz, Qar—1] can be re-
strained to the interval [Qas—2, Qar—1]. Therefor Q,

€[Qrr—2, Qrr—1)-

Qr Qa QB Q)\ <€

Q2 | Q2 | Qo Q2,3

Q3 | Q| Qo Q3,4

Qs | Q3 | Qo [Q3,Qs5]\{ Q5]

Q3 | Q3 | Q3 Q3,4

Qq | Q2 | Qo Q4,5

Qs | Q3 | Qo [Q4, Qs]\{ Qs }

Qs | Q3 | Q3 1Q4, Q5]

Qq | Q4 | Qo [Qs, Q6] \{ Qs }

Qs | Qs | Qs | [Qu4,Q6]\{Q4,Q6}

Qq | Q4 | Q4 [Q4, Q5]\{ Q4]

Qs | Q2 | Qo Qs, Qs

Qs | Q3 | Qo Qs, s

Qs | Q3 | Qs Qs, Qs

Qs | Q4 | Q3 Qs,Qs]\{ Q5 }

Qs | Q4 | Q4 Qs5,Q6\{Qs}

Qs | Qs | Q3 {Qs}

Qs | Qs | Qa4 Qs5,Qs]\{ Q5 }

Qs | Qs | Qs Qs,Qs]\{ Qs }

Qe | Q2 | Q2 (s

Qs | Q3 | Qo Qs

Qs | Q3 | Qs Qs

Qe | Qa | Q3 Qe

Qs | Qs | Qu Qs

Qs | Qs | Qu Qe

Qs | Q5 | Qs Qs

Qs | Qs | Qs Qs

Qs | Qs | Qs {Qe}
Table 9



