
Probabilistic reasoning with terms

Peter A. Flach, Elias Gyftodimos and Nicolas Lachiche

No Institute Given

Abstract. Many problems in artificial intelligence can be naturally approached
by generating and manipulating probability distributions over structured objects.
First-order terms such as lists, trees and tuples and nestings thereof can represent
individuals with complex structure in the underlying domain, such as sequences
or molecules. Higher-order terms such as sets and multisets provide additional
representational flexibility. In this paper we present two Bayesian approaches
that employ such probability distributions over structured objects: the first is an
upgrade of the well-known naive Bayesian classifier to deal with first-order and
higher-order terms, and the second is an upgrade of propositional Bayesian net-
works to deal with nested tuples.

1 Introduction

Attempts to combine logic and probabilities have a long history. There are, roughly
speaking, two possible approaches: one is to merge logic and probabilities into a single
integrated system; the other is to combine them in a complementary fashion, employing
each to address issues which the other is unable to handle. Rudolf Carnap’s inductive
logic is an example of the first approach: he introduces a degree of confirmationc(H;E)
which is a number between 0 and 1 expressing the degree to which evidenceE confirms
hypothesisH. A degree of confirmation of 1 is equivalent to logical entailment; a lower
degree of confirmation ‘may be regarded as a numerical measure for a partial entail-
ment’.

We have argued previously [1, 2] against such a tight merger of logic and probabil-
ities, because it leads to a degenerated form of logic. In particular, in inductive logic
a proof amounts to calculating a degree of confirmation, therefore any hypothesis has
a ‘proof’ from any evidence. Probabilities do establish a semantics of some sort, but
not one that is sufficient to build a fully-fledged logical system. Proof theory requires a
semantics which indicates what is preserved going from evidence to hypothesis; proba-
bility theory can only offer a truth-estimating semantics.

We therefore argue in favour of the complementary approach of combining logic
and probabilities. For instance, in [1] we have developed qualitative logics of induction
which are able to distinguish between hypotheses that explain certain evidence and hy-
potheses that do not, for various definitions of what it means to explain. These logics are
built on a preservation semantics in which the property to be preserved from evidence
to hypothesis is explanatory power: the hypothesis explains the evidence if it has at least
the same explanatory power as the evidence. What such qualitative logics of induction
cannot answer is: how plausible is this hypothesis, given this evidence? For answering
such questions we can employ an additional probabilistic truth-estimating semantics.

We then have both a proof theory (only hypotheses explaining the evidence can be de-
rived from it) and a probabilistic semantics assigning degrees of belief. Notice that the
same probabilistic semantics may be used in combination with different non-deductive
logics.

Halpern [4] has identified the use of probability for assigning degrees of belief as
one of two ways of combining logic and probability, the other being defining proba-
bility distributions over domains of first-order variables. This paper follows the latter
approach. We investigate how we can define probability distributions over structured
objects represented by first- and higher-order terms. First-order terms such as lists, trees
and tuples and nestings thereof can represent individuals with complex structure in the
underlying domain, such as sequences or molecules. Higher-order terms such as sets
and multisets provide additional representational flexibility. In this paper we present two
Bayesian approaches that employ such probability distributions over structured objects:
the first is an upgrade of the well-known naive Bayesian classifier to deal with first-
order and higher-order terms, and the second is an upgrade of propositional Bayesian
networks to deal with nested tuples.

2 Probability distributions over tuples, lists and sets

We start by considering the question: how to define probability distributions over com-
plex objects such as lists and sets? We assume that we have one or morealphabets(or
atomic types)A = fx1; : : : ;xng of atomic objects (e.g. integers or characters – we are
only dealing with categorical data analysis in this paper), as well as probability distri-
butionsPA over elements of the alphabets. Most of the distributions will make fairly
strong independence assumptions, in the style of the naive Bayesian classifier.

2.1 Probability distributions over tuples

For completeness we start with the simplest case, where our complex objects are tuples
or vectors. This is the only aggregation mechanism that has routinely been considered
by statisticians and probability theorists.

Consider the set ofk-tuples, i.e. elements of the Cartesian product ofk alphabets:
(x1;x2; : : : ;xk) 2 A1�A2� : : :�Ak.

Definition 1 (Distribution over tuples). The following defines a distribution over tu-
ples:

Ptu((x1;x2; : : : ;xk)) =
k

∏
i=1

PAi (xi)

Obviously, this distribution assumes that each component of the tuple is statistically in-
dependent of the others. Bayesian networks are one way of relaxing this assumption by
explicitly modelling dependencies between variables. We will return to this in Section
3.

2.2 Probability distributions over lists

We can define a uniform probability distribution over lists if we consider only finitely
many of them, say, up to and including lengthL. There arenL+1�1

n�1 of those forn> 1, so
under a uniform distribution every list has probabilityn�1

nL+1�1
for n> 1, and probability

1
L+1 for n= 1. Clearly, such a distribution does not depend on the internal structure of
the lists, treating each of them as equiprobable.

A slightly more interesting case includes a probability distribution over lengths of
lists. This has the additional advantage that we can define distributions over all (in-
finitely many) lists overA. For instance, we can use the geometric distribution over
list lengths:Pτ(l) = τ(1� τ)l , with parameterτ denoting the probability of the empty
list. Of course, we can use other infinite distributions, or arbitrary finite distributions,
as long as they sum up to 1. The geometric distribution corresponds to the head-tail
representation of lists.

We then need, for each list lengthl , a probability distribution over lists of length
l . We can again assume a uniform distribution: since there arenl lists of lengthl , we
would assign probabilityn�l to each of them. Combining the two distributions over
list lengths and over lists of fixed length, we assign probabilityτ(1�τ

n)l to any list of
lengthl . Such a distribution only depends on the length of the list, not on the elements
it contains.

We can also use the probability distributionPA over the alphabet to define a non-
uniform distribution over lists of lengthl . For instance, among the lists of length 3,
list [a;b;c] would have probabilityPA(a)PA(b)PA(c), and so would its 5 permutations.
CombiningPA andPτ thus gives us a distribution over lists which depends on the length
and the elements of the list, but ignores their positions or ordering.

Definition 2 (Distribution over lists). The following defines a probability distribution
over lists:

Pli ([xj1; : : : ;xjl]) = τ(1� τ)l
l

∏
i=1

PA(xji)

where0< τ� 1 is a parameter determining the probability of the empty list.

Example 1 (Order-independent distribution over lists).Consider an alphabetA= fa;b;cg,
and suppose that the probability of each element occurring is estimated asPA(a) = :2,
PA(b) = :3, andPA(c) = :5. Takingτ = (1� :2)(1� :3)(1� :5) = :28, i.e. using the
bitvector estimate of an empty list, we havePA0(a) = (1� :28)� :2= :14,PA0(b) = :22,
andPA0(c) = :36, andPli ([a]) = :28� :14= :04,Pli ([b]) = :06,Pli ([c]) = :10,Pli ([a;b]) =
:28� :14� :22= :009,Pli ([a;c]) = :014,Pli ([b;c]) = :022, andPli ([a;b;c]) = :28� :14�
:22� :36= :003. We also have, e.g.,Pli ([a;b;b;c]) = :28� :14� :22� :22� :36= :0007.

Notice that this and similar distributions can easily be represented by stochastic
logic programs. For instance, the distribution of Example 1 corresponds to the following
SLP:

0.2: element(a).
0.3: element(b).

0.5: element(c).

0.28: list([]).
0.72: list([H|T]):-element(H),list(T).

Not surprisingly, the predicate definitions involved are range-restricted type definitions;
the probability labels either define a distribution exhaustively, or else follow the recur-
sive structure of the type.

An alternative way to see such distributions is as follows. Introducing an extended
alphabetA0 = fε;x1; : : : ;xng and a renormalised distributionPA0(ε) = τ andPA0(xi) =
(1�τ)PA(xi), we havePli ([xj1; : : : ;xjl]) = PA0(ε)∏l

i=1PA0(xji). That is, underPli we can
view each list as an infinite tuple of finitely many independently chosen elements of the
alphabet, followed by the stop symbolε representing an infinite empty tail.

If we want to include the ordering of the list elements in the distribution, we can
assume a distributionPA2 over pairs of elements of the alphabet, so that[a;b;c] would
have probabilityPA2(ab)PA2(bc) among the lists of length 3. Such a distribution would
be calculated by the following SLP:

0.05: pair(a,a).
0.10: pair(a,b).
0.05: pair(a,c).
...
0.15: pair(c,c).

0.28: listp([]).
0.13: listp([X]):-element(X).
0.59: listp([X,Y|T]):-pair(X,Y),listp([Y|T]).

Such a distribution would take some aspects of the ordering into account, but note that
[a;a;b;a] and [a;b;a;a] would still obtain the same probability, because they consist
of the same pairs (aa, ab, andba), and they start and end witha. Obviously we can
continue this process with triples, quadruples etc., but note that this is both increasingly
computationally expensive and unreliable if the probabilities must be estimated from
data.

A different approach is obtained by taking not ordering but position into account.
For instance, we can have three distributionsPA;1, PA;2 andPA;3+ over the alphabet,
for positions 1, 2, and 3 and higher, respectively. Among the lists of length 4, the
list [a;b;c;d] would get probabilityPA;1(a)PA;2(b)PA;3+(c)PA;3+(d); so would the list
[a;b;d;c]. Again, this wouldn’t be hard to model with a stochastic logic program.

In summary, all except the most trivial probability distributions over lists involve
(i) a distribution over lengths, and (ii) distributions over lists of fixed length. The lat-
ter take the list elements, ordering and/or position into account. We do not claim any
originality with respect to the above distributions, as these and similar distributions are
commonplace in e.g. bioinformatics. In the next section we use list distributions to de-
fine distributions over sets and multisets. Notice that, while lists are first-order terms,
sets represent predicates and therefore are higher-order terms. In this respect our work
extends related work on probability distributions over first-order terms.

2.3 Probability distributions over sets and multisets

A multiset (also called a bag) differs from a list in that its elements are unordered, but
multiple elements may occur. Assuming some arbitrary total ordering on the alphabet,
each multiset has a unique representation such asf[a;b;b;c]g. Each multiset can be
mapped to the equivalence class of lists consisting of all permutations of its elements.
For instance, the previous multiset corresponds to 12 lists. Now, given any probabil-
ity distribution over lists that assigns equal probability to all permutations of a given
list, this provides us with a method to turn such a distribution into a distribution over
multisets. In particular, we can employPli above which defines the probability of a list,
among all lists with the same length, as the product of the probabilities of their elements.

Definition 3 (Distribution over multisets). For any multiset s, let l stand for its cardi-
nality, and let ki stand for the number of occurrences of the i-th element of the alphabet.
The following defines a probability distribution over multisets:

Pms(s) =
l !

k1! : : :kn!
Pli (s) = l !τ∏

i

PA0(xi)
ki

ki !

whereτ is a parameter giving the probability of the empty multiset.

Here, l !
k1!:::kn! stands for the number of permutations of a list with possible duplicates.

Example 2 (Distribution over multisets).Continuing Example 1, we havePms(f[a]g) =
:04,Pms(f[b]g)= :06,Pms(f[c]g)= :10 as before. However,Pms(f[a;b]g)= :02,Pms(f[a;c]g)=
:03,Pms(f[b;c]g) = :04,Pms(f[a;b;c]g) = :02, andPms(f[a;b;b;c]g) = :008.

Notice that the calculation of the multiset probabilities involves explicit manipula-
tion of the probabilities returned by the geometric list distribution. It is therefore hard
to see how this could be equivalently represented by a stochastic logic program.

The above method, of defining a probability distribution over a type by virtue of that
type being isomorphic to a partition of another type for which a probability distribution
is already defined, is more generally applicable. Although in the above case we assumed
that the distribution over each block in the partition is uniform, so that we only have
to count its number of elements, this is not a necessary condition. Indeed, blocks in
the partition can be infinite, as long as we can derive an expression for its cumulative
probability. We will now proceed to derive a probability distribution over sets from
distributionPli over lists in this manner.

Consider the setfa;bg. It can be interpreted to stand for all lists of length at least
2 which contain (i) at leasta andb, and (ii) no other element of the alphabet besidesa
andb. The cumulative probability of lists of the second type is easily calculated.

Lemma 1. Consider a subset S of l elements from the alphabet, with cumulative prob-
ability PA0(S) = ∑xi2SPA0(xi). The cumulative probability of all lists of length at least l

containing only elements from S is f(S) = τ (PA0 (S))l

1�PA0(S)
.

Proof.We can delete all elements inS from the alphabet and replace them by a single
elementxS with probabilityPA0(S). The lists we want consist ofl or more occurrences
of xS. Their cumulative probability is

∑
j�l

τ(PA0(S)) j = τ
(PA0(S))l

1�PA0(S)

f (S) as defined in Lemma 1 is not a probability, because the construction in the
proof includes lists that do not contain all elements ofS. For instance, ifS= fa;bg
they include lists containing onlya’s or only b’s. More generally, for arbitraryS the
construction includes lists over every possible subset ofS, which have to be excluded in
the calculation of the probability ofS. In other words, the calculation of the probability
of a set iterates over its subsets.

Definition 4 (Subset-distribution over sets).Let S be a non-empty subset of l elements
from the alphabet, and define

Pss(S) = ∑
S0�S

(�PA0(S0))l�l 0
� f (S0)

where l0 is the cardinality of S0, and f(S0) is as defined in Lemma 1. Furthermore, define
Pss(/0) = τ. Pss(S) is a probability distribution over sets.

Example 3 (Subset-distribution over sets).Continuing Example 2, we havePss(/0) =

τ = :28, Pss(fag) = f (fag) = τ PA0 (fag)
1�PA0 (fag)

= :05, Pss(fbg) = :08, andPss(fcg) = :16.

Furthermore,Pss(fa;bg) = f (fa;bg)�PA0(fag) � f (fag)�PA0(fbg) � f (fbg) = :03,
Pss(fa;cg)= :08, andPss(fb;cg)= :15. Finally,Pss(fa;b;cg)= f (fa;b;cg)�PA0(fa;bg)�
f (fa;bg)�PA0(fa;cg)� f (fa;cg)�PA0(fb;cg)� f (fb;cg)+(PA0(fag))2� f (fag)+(PA0(fbg))2�

f (fbg)+(PA0(fcg))2 � f (fcg) = :18.

Pss takes only the elements occurring in a set into account, and ignores the remain-
ing elements of the alphabet. For instance, the setfa;b;cg will have the same proba-
bility regardless whether there is one more elementd in the alphabet with probability
p, or 10 more elements with cumulative probabilityp. This situation is analogous to
lists. In contrast, the usual approach of propositionalising sets by representing them as
bitvectors over which a tuple distribution can be defined has the disadvantage that the
probability of a set depends on the elements in its extension as well as its complement.
The subset-distribution is exponential in the cardinality of the set and is therefore ex-
pensive to compute for large sets. On the other hand, it can deal with finite subsets of
infinite domains. The bitvector probability calculation is independent of the size of the
subset, and cannot handle infinite domains.

2.4 Naive Bayes classification of terms

It is easy to nest the above distributions: if our terms are sets of lists, the alphabet over
which the sets range are the collection of all possible lists, and the list distribution can

be taken as the distribution over that alphabet. The same holds for arbitrary nestings of
types.

What can we do with probability distributions over terms? The usual things: infer-
ence, learning, prediction, and the like. We can do inference, either directly or through
sampling, if we have completely specified distributions over all types involved. This
involves queries of the type ‘what is the probability of this term?’. We would normally
assume that the type structure of the terms is known, so learning would just involve es-
timating the parameters of the distributions as well as the probabilities of atomic terms.
This is usually fairly straightforward, for instance the maximum likelihood estimate of
the parameterτ giving the probability of the empty list is1

1+l
, wherel is the average

length of a list.
In [6] we have used this approach to implement a naive Bayes classifier for first-

and higher-order terms. We assume that the type structure is given (i.e., whether to treat
a sequence of elements as a list or a set), and during the training phase the algorithm
estimates the parameters and the atomic distributions. Predictions are made by calculat-
ing the posterior class distribution given the term to be classified. The approach is naive
because of the strong independence assumptions made: for instance, for lists we use the
distributionPli defined above, which treats each element of the list as independent of
the others and of its position.

An interesting point to note is that in the context of the naive Bayes classifier, the
list and multiset distributions behave identically (the number of permutations of a given
list is independent of the class). Somewhat more surprisingly, we found that the subset
and list distributions behaved nearly identically as well.

In this section, we defined fairly naive probability distributions over tuples, lists, sets
and multisets, and indicated how these could be used for naive Bayes classification. A
natural next question is whether the approach carries over to Bayesian networks, of
which the naive Bayes classifier is a special case. In the next section we will address
this question for the special case of nested tuples.

3 Hierarchical Bayesian Networks

Bayesian Networks [7] are being used extensively for reasoning under uncertainty. In-
ference mechanisms for Bayesian Networks are compromised by the fact that they can
only deal with propositional domains.

Hierarchical Bayesian Networks (HBNs) are an extension of Bayesian Networks,
such that nodes in the network may correspond to (possibly nested) tuples of atomic
types. Links in the network represent probabilistic dependencies the same way as in
standard Bayesian Networks, the difference being that those links may lie at any level
of nesting into the data structure.

3.1 Principles of Hierarchical Bayesian Networks

An HBN consists of two parts: thestructuraland theprobabilisticpart. The former de-
scribes the type hierarchy that builds the domains of the structured variables as tuples

of simpler types. It also contains the direct probabilistic dependencies, which are ob-
served between elements of the same tuple. The latter contains the quantitative part of
the conditional probabilities for the variables that are defined in the structural part.

C

BII

 0.3 0.7

BIB

(a)

(d)

(c)

A C

BIIBI

(b)

C

BII

t

BI

A

B

t

A

P(BI|A) bI1 bI2

P(A) a1 a2

 a1bI1 0.3 0.4 0.3
 a1bI2 0.1 0.5 0.4
 a2bI1 0.7 0.1 0.2
 a2bI2 0.9 0.1 0

P(C|BI,BII) c1 c2 c3

 bI1bII1 0.2 0.6 0.2
 bI1bII2 0.3 0.4 0.3
 bI1bII3 0.2 0.2 0.6
 bI2bII1 0.5 0.3 0.2
 bI2bII2 0.6 0.2 0.2
 bI2bII3 0.7 0.2 0.1

P(BII|A,BI) bII1 bII2 bII3

 a2 0.8 0.2
 a1 0.4 0.6

Fig. 1. A simple Hierarchical Bayesian Network. (a) Nested representation of the network struc-
ture. (b) Tree representation of the network structure. (c) Standard Bayesian Network expressing
the same dependencies. (d) Probabilistic part.

Figure 1 presents a simple Hierarchical Bayesian Network. The structural part con-
sists of three variables,A;B andC, whereB is itself a pair(BI;BII). This may be rep-
resented either using nested nodes (a), or by a tree-like type hierarchy (b). We use the
symbol t to denote a top-level composite node that includes all the variables of our
world. In (c) it is shown how the probabilistic dependency links unfold if we flatten the
hierarchical structure to a standard Bayesian Network.

In an HBN we observe two types of relationships between nodes: Relationships
in the type structure (which we callt-relationships) and relationships that are formed
by the probabilistic dependency links (p-relationships). We will make use of everyday
terminology for both kinds of relationships, and refer toparents, ancestors, siblings,
spousesetc. in the obvious meaning.

In the previous example,B has two t-children, namelyBI andBII , one p-parent (A)
and one p-child (C).

We also assume that a probabilistic dependency link scope “propagates” through
the type structure, defining a set ofhigher-levelprobabilistic relationships.

Trivially, all p-parents of a node are also considered its higher-level parents. For
example, we consider the higher-level parents ofC to beB (as a trivial case),BI andBII
(because they are t-descendants ofB and there exists a p-linkB!C), while the higher-
level parents ofBII areBI (trivial) andA (becauseA! B andBII is a t-descendant of
B).

For a more formal and complete description of the above notions, see [3].

3.2 Probability distribution decomposition

A Hierarchical Bayseian Network is a compact representation of the probabilistic in-
dependencies between the atomic types it contains, in a similar manner as in standard
Bayesian Networks. Informally, we can express this as the following property:

The value of an atomic variable is independent of all atomic variables that
are not its higher-level descendants, given the value of its higher-level parents.

The independencies that an HBN describes can be exploited using the chain rule of
conditional probability, to decompose the full joint probability of all the atomic types
into a product of the conditional probabilities, in the following way:

P(x) =

�
PAX(x) if x2 AX is atomic
∏n

i=1P(xi jPar(xi)) otherwise

wherex1;x2; : : : ;xn are the components ofx andPar(xi) are thedirect p-parentsof
xi in the structure.

3.3 Inference in Hierarchical Bayesian Networks

Inference algorithms used for standard Bayesian Networks can also be applied to the
Hierarchical Bayesian Network model. Backward reasoning algorithms [8] and mes-
sage passing algorithms [7] can be used if we restrict our focus on the corresponding
Bayesian Networks. The additional information in the Hierarchical Bayesian Network
may serve towards a better interpretation of the resulting probability distributions.

Standard inference algorithms are not directly applicable to networks that contain
loops (a loop is a closed path in the underlying undirected graph structure). One tech-
nique of coping with loops is to merge groups of variables into compound nodes, elim-
inating the circles in the graph. In the case of Hierarchical Bayesian Networks, knowl-
edge of the hierarchical structure can serve as a guideline for which nodes to merge, in
such a way that the resulting network would allow a more meaningful interpretation.

Message Propagation Algorithm A very efficient method of calculating beliefs in
polytree-structured standard Bayesian Networks (i.e., that do not contain any undi-
rected closed path) is the message-passing algorithm described in [7]. Every node in
the network is associated to abelief state, that is a vector whose elements sum up to one
and correspond to the proportionate beliefs that each value in the domain may be the
variable’s value, given all available knowledge. The belief state of every node can be
directly retrieved given the belief states of its parents and children. Whenever a change
in a node’s belief state occurs, either forced by some direct observation or indirectly,
due to a change of the state of a neighbour, the node calculates its new belief state and
propagates the relevant information to its parents and children (Fig. 2). The algorithm
then repeats until the network reaches an equilibrium.

Belief calculation is performed locally in three independent steps:

π

π
π

λ

λ
λ

.

.

.

.

πj

λi

BEL(x)

(a) (b)

Fig. 2.Belief propagation in polytrees. (a) Message passing in polytree structures. (b) Local belief
update.

Belief updating: Calculating a node’s belief vector, using the latest information avail-
able from its neighbours.

Bottom-up propagation: Computing theλ messagesthat will be sent to parent nodes.
Top-down propagation: Computing theπ messagesthat will be sent to children nodes.

The locality of the above algorithm is based on probabilistic independencies that
result from the assumption that the network does not contain any undirected circles. If
a network does contain loops, either an equilibrium cannot be reached, or, if it can be,
it will not necessarily represent the actual joint probability distribution.

This algorithm may be directly applied to Hierarchical Bayesian Networks in the
trivial case where the corresponding Bayesian Network does not contain undirected
cycles. Even if individual composite nodes contain no loops, these will occur in the
corresponding Bayesian Network in any case where some composite node participates
in more than one p-relationship. The only case where loops will not occur is if we allow
for polytree-like structures, where only leaf nodes may be composite, under the further
restriction of not containing any p-links.

Structures containing loops In the case where probabilistic dependencies form loops
in the network infrastructure (i.e., the undirected network) the above algorithm can-
not be applied directly. We define a Hierarchical Bayesian Network to contain loops if
its corresponding Bayesian Network contains loops. There are several approaches that
can be used to perform inference on a network containing loops [7, 5]. As a trivial case,
these methods can be applied to any Hierarchical Bayesian Network after flattening it to
a standard Bayesian Network. Here we will restrict our discussion on an existing clus-
tering method and show how it can be specifically adapted to the Hierarchical Bayesian
Network case.

Clustering methods eliminate loops by grouping together clusters of two or more
vertices into composite nodes. Different cluster selections may yield different polytrees

A B C

D

A B C

D

ABC

D

ABCD

(a) (b)

(c) (d)

Fig. 3. Coping with loops. (a) A Bayesian Network containing the loop ABDA. (b) Grouping
all non-leaf variables in a single cluster. (c) Equivalent Markov network. (d) Join tree algorithm
results in a single cluster.

when applied to a given Bayesian Network. As an extreme case, all non-leaf nodes may
be grouped in a single cluster (Fig. 3(b)).

One popular method, described in [7], is based on the construction ofjoin trees.
Briefly, the technique consists in building a triangulated undirected graphG (i.e., a
Markov Network) that represents independency relations similar to the original Bayesian
Network, and then linking the maximal cliques ofG to form a tree structure. The advan-
tage of this method is that the resulting directed acyclic structure is a tree, making the
application of message propagation highly efficient. The trade-off is that the common
parents of a node in the original Bayesian Network, along with the node itself, will be
grouped into a single cluster, so information about independencies between them will
be lost (Fig. 3(c,d)).

The same algorithm can be applied directly on any fully flattened Hierarchical
Bayesian Network. However, we can make use of the additional information that a Hi-
erarchical Bayesian Network structure contains to arrive to more informative structures.
The method we introduce is the following algorithm:

Algorithm 1 (HBN-decycling algorithm) To decyclea node v:

– If v is a non-leaf node:
� Decycle all components of v
� If v participates in two or more p-edges, prune the network structure on v.
� If v has exactly one p-parent (or p-child), flatten the structure on v replacing

every p-connected subset of the t-children of v by a single cluster.
� If v has no p-parents or p-children, flatten the structure on the node v.

– If v is a leaf node, leave v unchanged

By applying theHBN-decyclingalgorithm on a Hierarchical Bayesian Network and
then retreiving its corresponding Bayesian Network, we arrive at apolytreeBayesian
Network. The application of the inference algorithm for Bayesian Networks is not as
efficient for polytrees as it is for standard trees, but this is balanced by the smaller size
of individual nodes.

In figure 4(a) we see an HBN-tree structure containing a loop. The structure is
similar to the Bayesian Network in figure 3(a), with nodesA andB additionally forming
a composite node. The result of the decycling algorithm (Fig. 4(b)) retains much more
structural information from the original structure.

AB
C

D

t

AB C D

A B

(a) (b)

Fig. 4. (a) A Hierarchical Bayesian Network containing the loop ABDA. (b) Result of theHBN-
decyclingalgorithm.

4 Concluding remarks

In this paper we have considered the issue of probabilistic reasoning with terms. Aggre-
gation mechanisms such as lists and sets are well-understood by logicians and computer
scientists and occur naturally in many domains; yet they have been mostly ignored in
statistics and probability theory, where tupling seems the only aggregation mechanism.
The individuals-as-terms perspective has been explored in machine learning in order
to investigate the links between approaches that can deal with structured data such as
inductive logic programming, and more traditional approaches which assume that all
data are in a fixed attribute-value vector format. This has been very fruitful because it
has paved the way for upgrading well-known propositional techniques to the first- and
higher-order case.

In our work we are exploring similar upgrades of propositional probabilistic mod-
els to the first- and higher-order case. We have done this upgrade for the naive Bayes
classifier but further work remains, in particular regarding an extended vocabulary of
parametrised probability distributions from which to choose. In the case of Bayesian

networks, we are currently concentrating on a restricted upgrade considering nested tu-
ples only. Our approach takes advantage of existing Bayesian Network methods, and is
an elegant way of incorporating into them specific knowledge regarding the structure of
the domain. Our current work is focused on implementing inference and learning meth-
ods for Hierarchical Bayesian Networks, aiming to be tested against the performance
of standard Bayesian Networks. Further on, we plan to introduce more aggregation op-
erators for types, such as lists and sets. This will demand somewhat more sophisticated
probability decomposition methods than the cartesian product, and will allow the ap-
plication of the model to structures of arbitrary form and length, such as web pages or
DNA-sequences.

References

1. P.A. Flach. Conjectures: An Inquiry Concerning the Logic of Induction. PhD thesis,
Katholieke Universiteit Brabant, 1995.

2. Peter A. Flach. Logical characterisations of inductive learning. In Dov M. Gabbay and Rudolf
Kruse, editors,Handbook of defeasible reasoning and uncertainty management systems, Vol.
4: Abductive reasoning and learning, pages 155–196. Kluwer Academic Publishers, October
2000.

3. Elias Gyftodimos and Peter A. Flach. Hierarchical bayesian networks: A probabilistic rea-
soning model for structured domains. In Edwin de Jong and Tim Oates, editors,Proceedings
of the ICML-2002 Workshop on Development of Representations. University of New South
Wales, 2002.

4. J. Halpern. An analysis of first-order logics of probability.Artificial Intelligence, 46:311–350,
1990.

5. M. Henrion. Propagating uncertainty by logic sampling in bayes’ networks. Technical report,
Department of Engineering and Public Policy, Carnegie-Mellon University, 1986.

6. Nicolas Lachiche and Peter A. Flach. 1bc2: a true first-order bayesian classifier. InProceed-
ings of the 12th International Conference on Inductive Logic Programming, 2002.

7. Judea Pearl.Probabilistic Reasoning in Intelligent Systems — Networks of Plausible infer-
ence. Morgan Kaufmann, 1988.

8. Stuart J. Russell and Peter Norvig.Artificial intelligence, a modern approach. Prentice Hall,
2nd edition, 1995.

