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Abstract

We investigate a few approaches that have been considered in
the simulation and modeling of networks describing cell behav-
ior. By simulation it is meant the direct problem of determining
cell behavior when given a graph (network) specifying the in-
teraction among genes. By cell behavior we mean determining
the amount of byproducts (mRNA or protein) that each gene
generates with time as it interacts with other genes. We refer to
modeling as the inverse problem namely, inferring the network
graph when given the data describing the cell’s behavior. The
modeling problem has acquired significant importance in view of
the present high volume of cell data available from micro-array
experiments. The emphasis of the paper is in using the constraint
logic programming paradigm to describe the simulation of cell
behavior. In that paradigm the same program describes both a
problem and its inverse. Basically one defines multi-dimensional
regions, transitions (specifying how control is transferred from
one region to the other), and trajectories (sequences of tran-
sitions describing cell behavior). The paradigm is applied to
several approaches that have been proposed to study simulation
and modeling. Several logic programs have been developed to
prototype those approaches under the same proposed paradigm.
They include considering Boolean and discrete domains. In each
case the potential of obtaining practical solutions to the inverse
problem are discussed. The proposed paradigm is related to ma-
chine learning and to the synthesis of finite-state automata.



1 Introduction

Historically, the first attempts to study cell regulation were based on es-
tablishing systems of non-linear differential equations that “simulate” the
behavior of the variables involved, as a function of time. In that context
the variables correspond to genes capable of producing compounds (mRNA
and proteins) that in turn influence the production capacity of other genes.
This problem has been thoroughly studied in the mathematical theory of
dynamic systems.

The advent of micro-arrays urgently motivates the solution of the in-
verse problem: given the curves expressing the capacity of each gene of pro-
ducing known compounds as time progresses, attempt to infer the original
system of equations or equivalently, the graph expressing the interactions
among genes. Presently, biologists are capable of generating huge sets of
data expressing the amount of production of proteins or mRNA as a function
of time [21]. One then wishes to establish the corresponding gene interac-
tion graph. The inverse problem may be called modeling in contrast with
simulation, the term used to describe the direct problem of determining the
behavior of the variables in a system of differential equations.

There have been various attempts to provide discrete solutions to the
system of differential equations describing cell regulation. By considering
Boolean variables, instead of continuous variables, one can simplify remark-
ably the complexity of the original problem. Several papers are now avail-
able that describe solutions of both the direct and inverse problem using
the Boolean approach.

An important aspect of the inverse problem is that the data obtained
by biologists is not reliable, in the sense that many experimental errors
occur when dealing with thousands of genes. It then becomes imperative to
take into account a probabilistic approach of the inverse problem. In other
words, given imperfect data expressing the behavior of variables with time,
can one infer the corresponding gene interaction graph ?

More recently this last problem has been simplified by having biologists
conjecture the interaction graph and propose the simpler question: How
likely is the hypothesized graph capable of generating the given data set ?
(See for example [19])

An initial classification of the existing methods proposed in the litera-
ture to solve the direct and inverse problems involves three parameters and
thus eight subclasses:

Probabilistic versus Nonprobabilistic
Continuous versus Discrete
Direct versus Inverse

In a recent article de Jong and Page [7] propose a Direct-Discrete- Non-
probabilistic type of approach; that amounts to a qualitative (d¢ la Kuipers
[10]) simulation of the systems of differential equations representing a given
influence graph. Even though their algorithms are implemented in a stan-
dard programming language, the authors make extensive use of constraints
in formulating the solution to that problem.

In this paper we first propose the use of constraint logic programming as
a paradigm for solving the discrete versions of the cell regulation problem.
Basically one considers regions in an n-dimensional space, and transitions
that specify possible paths between the regions. Both regions and tran-
sitions are specified by sets of constraints that restrict the values of the



variables being studied. A path linking an initially specified region to sub-
sequent regions via the transitions, expresses the behavior of the system.
(That description is inherent to the approach taken by de Jong and Page.)

The inverse problem amounts to determining regions and transitions
when given the paths that may be derived from the data expressing the
behavior of the variables. From those regions and transitions one should be
able to determine the desired gene interaction graph.

In the particular case of Boolean constraints — a special case among
the discrete approaches — the determination of the regions and transitions
amounts to the problem of synthesizing Boolean circuits from input and
output data. The regions correspond to subsets of the input data and
the transitions correspond to Boolean formulas that allow transforming the
input data into output. Therefore the problem using Boolean variables can
be expressed in terms of program synthesis or machine learning. Similarly,
it is hoped that the synthesis of constraints from data should play a role in
the discrete solution of the inverse problem.

An interesting payoff of the use of constraints is that they may well pave
the way for probabilistic solutions to both the direct and indirect versions
of the cell regulation problem. The approach reinforces the importance
of developing probabilistic machine learning algorithms expressed in logic
programming and in constraint logic programming.

1.1 Objectives

The emphasis of this paper is to provide a unified view of the various ap-
proaches that have been proposed in the study of regulation. This is achiev-
able by making extensive use of constraints, in the sense of CLP (Constraint
Logic Programming). It will be seen that different versions of the direct
problem, namely determining gene behavior as a function of time from given
labeled graphs, can be described by the same general principles.

It will be shown in the following sections that most of the existing
approaches to solve the direct problem are based on the concepts of regions
(in n-dimensional space), transitions specifying how control moves from one
a region to another, and trajectories, a sequence of consecutive transitions.

In most cases the inverse problem (modeling) can then be described as in
logic programming: if the clauses specifying the program contain no impure
constructs (i.e., all predicates are “backtrack able” in the sense of Prolog)
then one should be able, at least theoretically, to perform inverse operations
that, given the gene behavior with time, determine the possible labeled
graphs by generate-and-test techniques. This may be not be practically
achievable in the case of large problems using current computers, but the
stress on defining clearly the operations involved in the solution of a problem
has definite benefits. Incidentally, this is not unlike the generate-and-test
approaches used in machine learning and inductive logic programming. The
proposed framework may also lead to future approaches using synthesis of
finite state automata.

The structure of the paper is as follows. First we present the original for-
mulation of the continuous approach using systems of non-linear differential
equations. We then provide a simple motivating example that illustrates the
concepts of regions, transitions, and trajectories. That is followed by pre-
sentations of the available discrete formulations using the proposed general
framework of constraints. The respective subsections deal with approaches
to solve the inverse problem. In the conclusion we make suggestions for
extensions and further work.



2 The Direct Continuous Approach

Graphs expressing the interactions among genes are often used as conve-
nient abstractions enabling the formulation of the appropriate systems of
differential equations. The nodes of those graphs correspond to the variables
(genes) and the directed edges — labeled by plus or minus signs — express
the positive or negative interactions among the variables. In the case of cell
regulation thousands of genes may interact with each other.

The continuous approach is based on the theory of dynamic systems.
From a given regulation graph with n nodes one can always establish a set
of n differential equations expressing the behavior of the system with time.
The solution of these equations for a given initial condition yields the curves
depicting how the genes are expressed as a function of time. The difficulty
with this approach is that highly non-linear functions (sigmoids) are used
to define the variation of each gene’s expression with time.

One of the first approaches in simulating cell behavior consisted of set-
ting up a system of non-linear differential equations of the form:

d.’L'i/dt = f,((l:) —vi%i, ¢; >0

where i denotes the i** gene and z is the vector (21,2, ..,2y)

The term —~;z; states that the concentration of the i*" product de-
creases through spontaneous processes like degradation, diffusion, etc.; f;;
is the function specifying a combination of sigmoids (highly non-linear) and
which describes the interaction between nodes (genes) i and j; m is a pa-
rameter specifying the steepness of the function around 6;; (see Figure 1)

m
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fij = bt (xj,0:5,m) =

Figure 1: Sigmoid function.

We now open a parenthesis to describe by an example how a set of
differential equations can be generated from a labeled graph expressing the
interaction between genes. Each gene corresponds to a node in the graph,
or equivalently, to a variable in the system of equations. The simple graph
in Figure 2(a) contains three nodes and five edges expressing positive and
negative interactions among the genes. The resulting equations are also
shown in that figure. Basically, one has to consider different functions h*



Z1 = ki2h™ (z2,012,m) — 1121
- &2 = ko1h™(x2,021,m).k23h™ (x3,023,m). — 7222

&3 = k3rh™ (z1,031,m) + k3zh™ (3,033, m). — 323

@) (b)

Figure 2: (a) A regulatory network modeled by the 3 equations in

(b).

or h~ corresponding to sigmoids that express either a sharp increase (h')
or a sharp decrease (h™) of the variable being simulated.

A remark is in order: a simple directed labeled graph does not pro-
vide the full information about the nature of the system of equations that
can be generated. One can, for example, specify by additional graphical
notation that the incoming edges to a node should be considered as being
connected by a Boolean and, or a Boolean or. It will be seen that the
Boolean and qualitative discrete type of approaches can incorporate those
additional graphical notations. In Figure 2 it is assumed that the two edges
entering node 2 are linked by an and connector; and the edges entering node
3 are linked by an or connector. That explains the product and the sum of
the h functions in Figure 2 (b).

It is known from the theory of dynamic systems that the solution of
a system with n variables — when given an initial condition specified by
the vector my — can be described by an n-dimensional curve expressing
the behavior of the system as a function of time. We call that curve a
trajectory. It is known that trajectories may contain loops or may converge
to a stationary point.

2.1 The Inverse Problem

It appears that this continuous type of approach makes it extremely difficult
to obtain inverse solutions analitically.

2.2 Brief Outline of the Following Sections

In a computer implementation of the direct problem one has to find discrete
solutions of the given system of equations. The main approaches that have
been utilized in rendering the solution discrete involve either using Booleans
or the so-called qualitative methods. Those approaches will be described
by examples in later sections of the paper. In the next section we present
a motivating example that illustrates the use of constraints in solving a
problem that is akin to that of dynamical systems. It will be seen that the
constraint formulation in that example can be generalized to cover both the
Boolean and qualitative approaches.



3 A Motivating Example

Figure 3: Example of linear constraints and slopes.

Figure 3 presents an intuitive example of regions, transitions, and tra-
jectories in two-dimensional space. In this simplified version of the direct
problem one specifies regions by linear constraints. The arrows in that figure
specify the transition slopes applicable to each of the four regions. Initially,
we deal with deterministic situations, so that there is a single arrow associ-
ated to each region.

The direct problem then becomes: given an internal initial point in one
of the regions, determine a trajectory, i.e., a sequence of line segments that
start at the given point and have the slopes as specified by the arrows.
(To avoid ambiguous situations we assume that the arrow associated to a
region is not directed towards the intersection of two lines defining that
region. One also assumes that a trajectory does not contain any of the lines
defining the regions’ boundaries.)

Asarin, Maler, and Pnueli [5] have shown that in two-dimensional real
space the following property is decidable: given two points P; and P3 one
can determine if the trajectory starting from P; passes through P,. The
complexity of the problem is exponential. The authors also proved that
that property is not decidable in three-dimensional and higher spaces.

Let us assume that regions and their associated slopes are specifiable by
constraints; one can then sketch a logic program that determines trajectories
that start at a given point. That program is presented in Figure 4.

The predicate region specifies a region defined by constraints. The
predicate transition defines the next region accessible from a given region
via a given slope. One can then define the trajectory as the sequence of
regions that are traversed from a given starting point. One such trajectory
is also shown in Figure 3.

In the program of Figure 4, trajectory is a predicate that determines
a sequence of transitions having n segments, n being specified by a user.
Notice that the concept of trajectory is time-related. By considering that



region((1,X,Y)):- Y>=0,Y>=X. region((3,X,Y)):- Y=<0,Y>=X.
region((2,X,Y)):- Y>=0,Y=<X. region((4,X,Y)):- Y=<0,Y=<X.
slope(1,X,Y):- X = 2 * Y. slope(3,X,Y):-X =0, Y > 0.
slope(2,X,Y):-X =0, Y < 0. slope(4,X,Y):-X=-4 %Y.

trajectory(N,Region, [Region]):- N = 0.
trajectory(N,Start_region, [Start_region|Result]):-
N >0,
region(Start_region),
transition(Start_region, Next_region),
region(Next_region),
N2 =N-1,
trajectory(N2,Next_region,Result).

% transition determines the new point of coordinates (X2,Y2)
% which is the intersection of the boundary common to the
% regions N1 and N2 with the straight line of slope(N1,_,_)

transition((N1,X1,Y1),(N2,X2,Y2)):-

% Note for the particular case in question (Figure 3),
% transition could be written as

transition((R1,X1,Y1),(R2,X2,Y2)):-
R2 \= R1,
Delta_X = X2 - X1,
Delta_Y = Y2 - Y1,
slope(R1,Delta_X,Delta_Y),
region((R1,X2,Y2)).

Figure 4: Nucleus of a constraint logic program simulating the exam-
ple in Figure 3.

each transition takes a unit time to be simulated, one can plot a curve
expressing how a property of the regions varies with time, given an initial
starting point. From now on we may refer to a trajectory as T'(t), a function
of the variable ¢ expressing time.

3.1 The Inverse Problem

The inverse problem can be stated as follows: given a set of sequences of
regions traversed from given initial points determine the constraints that
constitute the regions and slopes. In other words, given T'(¢) determine
the corresponding regions and slopes. This is a typical problem in machine
learning and a challenge is made to practitioners of inductive logic program-
ming to attempt to solve the problem of Figure 3 in the two-dimensional
space using linear constraints. Notice that even though the direct problem
is linear, the inverse one is not, since the coefficients of the linear equations



and inequations are unknown.

It appears that, in the two-dimensional case, a trajectory can also be ex-
pressed by a regular expression in the vocabulary of regions. (An argument
to that effect is that the number of regions is finite and that the sequence
of regions in a trajectory eventually repeats itself; see Asarin, Maler, and
Pnueli [5] for a proof in the case of 2D).

This suggests that the direct problem in 2D consists of finding the regu-
lar expressions describing the trajectories when given a set of initial points,
the constraints specifying the regions and the respective slopes. The inverse
problem would consist of: given the initial states and the regular expres-
sions describing an experiment, determine the constraints and slopes that
would yield the given data.

One can also express a sequence of transitions by a directed graph: its
nodes represent the regions and the edges any possible transitions. This
description corresponds to a finite-state transition graph having unlabeled
edges.

A non-deterministic logic program that would try all possible combina-
tions of possible slopes could simulate the non-deterministic case of regions
having multiple slopes. This would likely result in a highly combinatorial
program with exponential complexity. In that case the finite-state machine
describing all possible transitions would be non-deterministic since there
may well be two edges emanating from a state representing a region.

Actually one could think of a brute force approach to solving the inverse
problem using interval constraints as proposed by Older and Velino [12]. In
this case each variable would be initially defined as being in the interval
[—00, +00]. The constraints would be used to attempt to narrow down the
intervals. Note that interval constraints can be conveniently used to solve
non-linear systems of equations, which is the case of the inverse problem.

A more restricted version of the inverse problem would be: given all
regions and slopes except that of a single region, determine its value so
that the resulting data has a given configuration. In that case one would
use interval constraints non-deterministically by splitting the interval being
considered for the unknown slope.

4 The Direct Boolean Approach

Let us now consider the case of the Boolean domain with n variables. An
n-digit binary number represents each region. A “slope” in the example
of Figure 5 can be viewed as a Boolean formula that, when applied to
a given binary number, yields another binary number also representing a
region. That situation is depicted in Figure 7(a). Notice that essentially
the same framework program in Figure 6 is applicable, provided that slopes
are defined by Boolean formulas. That example is taken from Glass and

Kauffman [9).
O
OO,

Figure 5: Graph depicting the interaction between two genes.



Actually the Boolean formulas may contain and and or operators, and
can therefore be generated from the directed graph expressing the inter-
actions among genes with additional notations to specify conjunctions and
disjunctions, as suggested in the Section 2.

A trajectory, in the sense of the example of Figure 7(a), then becomes
a sequence of binary numbers. As in Section 3 individual transitions are as-
sumed to take unit time. It should be obvious that since we are dealing with
a finite number (2") of regions the determination of all possible trajectories
— starting from each possible region — is an exponential problem.

It should also be clear that trajectories could be represented by a fi-
nite graph, which may contain loops (including self loops involving a single
node). Figure 7(a) represents all the trajectories for the input graph con-
sidered in Figure 5. Finally, Figure 7(b),(c) and (d) shows how the two
variables change with time when starting from the initial configurations
depicted in the figure.

region([X1,X2]):- X1=0,X2=1. region([X1,X2]):- X1=1,X2=1.
region([X1,X2]):- X1=0,X2=0. region([X1,X2]):- X1=1,X2=0.

slope([X1,X2], [NX1,NX2]) :- NX1 = not(X2), NX2 = not(X1).

trajectory(N,Region, [Region]):- N = 0.
trajectory(N,Start_region, [Start_region|Result]):-
N > 0,
region(Start_region),
transition(Start_region, Next_region),
region(Next_region),
N2=N-1,
trajectory(N2,Next_region,Result).

% transition determines the region R2 that can be reached
% from region R1.

transition(R1,R2) :- slope(R1,R2).

Figure 6: Constraint program for the Boolean approach.

4.1 A More Complex Example

It is simple to develop programs similar to the one presented in Figure 6
to deal with more complex graphs. For example, the graph in Figure 8 (a),
yields the results presented in (c) and (e). In this particular example, the
transitions are given explicitly (in lieu of a boolean formula) by the contents
of the table in Figure 8 (b).

4.2 The Inverse Boolean Approach

The inverse Boolean domain problem then becomes: given a set of trajecto-
ries determine the Boolean formula that represents the transitions between
regions. This is a typical problem in circuit design. In that case one deals
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Figure 7: (a) A direct graph depicting all trajectories starting from
each region and variations of variables 1 and zo with time, for an
initial state z1z9 = 11 (b), 10 (c), 01 (d) .

with an optimization problem: the determination of a minimal Boolean
formula (circuit) capable of yielding a binary number from another one.
It is expected that a suitable ILP program could generate the appropriate
Boolean formula when given a sequence of pairs of binary numbers.

4.3 The Inverse Boolean Approach Proposed by Som-
ogyi

The members of the group lead by Roland Somogyi have published several
interesting papers on the Boolean approach to modeling. Many of those
papers are described and referenced in the recent book edited by Bower and
Bolouri [1]. In the inverse approach proposed in REVEAL [11], Somogyi
introduces the concept of entropy, which is essentially a way to speed up
the determination of genes that could possibly interact with other genes.

Given a table such as that depicted in Figure 8 (b), one wishes to deter-
mine the corresponding graph, namely that of Figure 8 (a) . An exhaustive
generate-and-test approach consists of searching for all Boolean formulas
that would express the input-output behavior of the system being consid-
ered. By introducing the notion of entropy, Somogyi is able to make that
search efficient in cases where a few genes are influenced by a relatively
small number of other genes. Essentially, the entropy approach allows one
to first consider a single gene that may interact with a given gene; then all
pairs of genes, and so forth.

The reference [4] essentially enumerates the possible searches of genes
that can influence other genes within the Boolean approach. One can view
these efforts as worthy ones in analyzing and improving the efficiency of the
inverse Boolean approach. Though Somogyi and his group have been able
to deal with modeling problems involving 50 or more genes, much remains
to be done by incorporating probabilistic techniques and making it possible
to study the interaction of hundreds, and possibly thousands of genes.

5 The Qualitative Approach

With the above background material it becomes easy to explain the ap-
proach taken by de Jong and Page [7]. Their so-called qualitative approach
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Figure 8: (a) Graph depicting the interaction between four genes and
(b) the associated table of transition. (c) A direct graph depicting
all trajectories and (d) the mapping of those trajectories on a torus.
(e) Curves showing the behavior of the different genes with the initial
state 1110.
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(in the sense of Kuipers [10]) can be viewed as a generalization of the
Boolean approach. Recall that in the latter one assumes that the Boolean
formulas representing a transition between regions imply that the n-digit
binary numbers involved are changed simultaneously. De Jong and Page
assume that each variable representing a gene changes according to a step
function simulating a sigmoid function. They also assume that the change
of value occurs at a specified position 6 (see Figure 1).

In the deJong-Page approach the regions amount to n-dimensional mini-
cubes whose edge sizes are determined by the various 8’s. Figure 10 shows a
view of the regions involved in the case of 2 variables. As in the example of
Figure 10, a trajectory is determined by applying the known slopes (associ-
ated to each mini-cube). A slope in that case is defined by qualitative values
qZ;, which may take the values qi; > 0, q&; < 0, or qz; Z 0, meaning that
the qualitative value gx; is likely to increase, decrease or to be the same;
where gx; represents a set of constraints specifying a given mini-cube.

region((1,X,Y)):
region((2,X,Y)):
region((3,X,Y)):
region((4,X,Y)):

X>=0, X=<Thetal, Y>=0, Y=<Theta2.
X>=Thetal, X=<maxl, Y>=0, Y=<Theta2.
X>=0, X=<Thetal, Y>=Theta2, Y=<max2.
X>=Thetal, X=<maxl, Y>=Theta2, Y=<max2.

slope(1,5X,8Y):- SX = 1, SY = 1.
slope(2,5X,8Y):- SX = 0, SY = 0.
slope(3,5X,8Y):- SX = 0, SY = 0.
slope(4,5%X,38Y):- SX = -1, SY = -1.

trajectory(N,Region, [Region]):- N = 0.
trajectory(N,Start_region, [Start_region|Result]):-
N > 0,
region(Start_region),
transition(Start_region, Next_region),
region(Next_region),
N2 =N -1,
trajectory(N2,Next_region,Result).

transition((R1,X1,Y1),(R2,X2,Y2)):-
slope(R1,SX1,SY1),
slope(R2,5X2,SY2),
successor ((R1,X1,Y1),(R2,X2,Y2),SX1,SY1,SX2,5Y2).

% the following predicate tests if two regions R1 and R2 are
% adjacent, and that R2 can be reached from Rl according to

% their corresponding slopes.

successor ((R1,X1,Y1),(R2,X2,Y2),SX1,SY1,SX2,5Y2) : -

Figure 9: Constraint program for the qualitative approach.

My student Tri Nguyen-Huu developed a prototype logic program — us-
ing the paradigm proposed in this paper — that, given a set of differential
equations, discretizes them according to the given step functions (repre-
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Figure 10: (a) Mini-cubes corresponding to equations in (b) and the
interaction graph in (c). The arrows are the slopes associated to each
mini-cube.

senting the sigmoids, each with its own ), and then constructs the set of
applicable regions and slopes. In that case each region may be associated
with more than one slope. The program then performs a (don’t know) non-
deterministic search capable of determining all trajectories emanating from
a given initial point.

The program in Figure 9 can be viewed as having been generated by
the Nguyen-Huu’s program when given the equations and graph in Figure
10 (b) and (c). The program in Figure 9 has the same general structure
as that of the programs in Figures 4 and 6 used to describe the motivating
example and the Boolean approach. Assuming the trajectory depicted by
the dashed line in Figure 10 (a), one would obtain the curves in Figure 11.

Nguyen-Huu’s program is presently non-invertible but we believe that it
could be perfected to have that property. Our current goal is to attempt to
use it as a tool for helping biologists check if a given set of data is compatible
with a hypothesized labeled graph. As a matter of fact this is the approach
presently used by de Jong and Page as well as other authors (Gifford [19]).

5.1 The Inverse Qualitative Approach

Consider the differential equation for a variable z:
T=k—yx

A discrete solution means that

x(t+6§%—m(t) =k—nz

k= fa(t+6t) + (v — 5)z(t)
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Figure 11: Possible curves obtained for Figure 10.

We first remark the importance of the following property of the solution
of the direct qualitative problem:

If one computes the above values of k for a trajectory, then each minicube
contains points exhibiting the same value of k.

This is a key property in outlining a possible solution of the inverse
qualitative problem. We start by estimating the maximum number of dif-
ferent values of k we can obtain assuming that the deJong-Page approach
was used to solve the direct problem. Obviously, one also knows are many
genes are involved, say n.

Let us consider the case of two genes and therefore two dimensions.
Assuming that the direct qualitative approach has been used, then there
are 22 = 4 possible regions in the solution space and there are therefore 4
different values of k. This means that we can label the points in a trajectory
constituting data available in the indirect qualitative approach according to
those 4 values.

Consider the first gene, and determine the corresponding 6’s so that
each of the 4 regions contains the same value of k. That enables the deter-
mination of 2 values for 6. Call M; the defined regions corresponding to the
0’s associated with the first gene. One then performs a similar operation
considering the second gene and thus determines Ms. The superposition of
M; and M, yields the desired results. This is so because the direct appli-
cation of the qualitative approach would result in all the regions defined in
the superposition of M; and Ms.

In the general case of r edges in the input graph converging to a given
node i, one would have 2" possible values for k. Then one would proceed
as above by determining the set of regions M enabling the determination
of @’s for each gene. The superposition of all such M’s yields the desired
results.

This is obviously a highly complex set of computations but they outline
what is needed to solve the inverse problem using the qualitative approach.
This suggests that there may well be approximate less complex solutions to
the problem.
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6 Comparison Between the Boolean and Qual-
itative Approaches

A few remarks are in order when comparing the Boolean approach with the
qualitative approach. In the Boolean approach there are no specified 6’s
defining the time at which there is a change in a Boolean value. In contrast
in the qualitative approach time intervals are increased according to the
various values of # that define the faces of the mini-cubes.

A trajectory, in the sense taken in this paper, consists of a traversal in
the space that constitutes the minicubes. Trajectories are governed by the
current minicube and the possible slopes that it specifies.

Let R; be the it" region and Neighbor(R;) be the set of its neighbors.
In the qualitative approach the concept of neighboring minicubes is well
defined and transitions in a trajectory always take place from neighbor to
neighbor.

This may not be the case in the Boolean approach, since one has to
clarify the notion of neighborhood. In reference [9] a region is considered as
neighboring another one when their binary representations differ by a single
digit. This amounts to defining neighborhood in the spatial sense of a torus.
Two regions are neighbors if they are adjacent to each other in the torus.
Figure 8 (d) depicts the adjacency of the various regions corresponding to
the example provided in Figure 8.

7 The General Paradigm Expressed in a Con-
straint Language

The examples in Sections 3,4 and 5 allow us to generalize the proposed
approach using a constraint logic program description. This is depicted in
Figure 12.

region;(x) < region_constraint;(x).
slopei(x, x’) < slope_constraint;(x,z’).
transition(region;(x),region;(x’)) < slope;(x, z’),

trajectory(n,region;(x),list(region;(x))) < n =0.
trajectory(n, region;(z),list(region;(x),result)) +
n >0,
transition(region;(z), region;(z’)),
trajectory(n — 1,region;(x’), list((region;(x’), result)).

Figure 12: General structure of a constraint program traversing re-
gions using transitions (z and x’ are vectors, i, j and m are integers).

It seems that it would not be extremely difficult to generalize the direct
qualitative approach to consider other shapes of sigmoids that would be
approximated by piecewise linear segments. In that case one would have to
generate a set of regions, slopes and transitions that would constitute the
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foundation for the general program computing trajectories as described in
Figure 12.

It should be noticed that the programs previously described in this
work essentially simulate a finite-state-like automaton. It is convenient to
select the set of regions as its terminal vocabulary, as well as its the set of
states. One basically has to determine the constraints specifying regions
(corresponding to states) and slopes (corresponding to the transitions).

One can then view the inverse problem as the one of synthesizing finite
state automata from given data. That synthesis has been used quite often
in the past and it represents an alternative to machine learning d la ILP.
There are Web sites that offer programs capable of performing the synthesis
of automata when given thousands of strings [20].

A few words about those programs are in order. First it is important to
sketch the functioning of those synthesizers. The given input strings are first
represented in the form of a tree that constitutes the automaton accepting
exactly the set of input strings, and no other strings. The synthesizer then
attempts to merge pairs, then triples, etc., of nodes in the tree therefore
introducing loops that are essential for obtaining more general automata.
In so doing it is of paramount importance to have a good set of negative
examples, otherwise the generated automata is useless since it may con-
sist of a single state. The automata synthesizer approach should be given
consideration in future work.

8 Final Remarks

It has been shown in the previous sections that the concepts of regions,
transitions, and trajectories were applicable to all the versions of the cell
regulation problem considered in this paper. Starting from the original
formulation of the direct continuous problem using systems of differential
equations, it was shown that the Boolean and qualitative approaches could
be described using the constraint logic programming (CLP) paradigm for
expressing the relationships between regions, transitions and trajectories.

Under the proposed paradigm both the direct and inverse problems are
describable by the same program. We posit that this conceptual develop-
ment is important because: (1) it presents a unified view of the regulation
problem and its possible solutions, and (2) it enables to develop efficient
versions of the inverse problem (modeling).

The second point deserves some clarification. Let us consider as an ex-
ample the case of the Fibonacci function defined by the CLP program for
Fibb(N, Result). When solving the inverse problem, i.e., given Result,
determine N, one essentially solves a large system of linear equations. A
careful examination of how those equations are solved by an inverse evalu-
ation could lead to more efficient computations.

It was seen in Section 3 that the inverse problem of determining the
regions from trajectories is non-linear even though the direct problem is
defined by linear inequalities. This suggests the use of interval constraints
for solving the inverse problem.

A study of the available literature reveals that clustering plays a key
role in the development of solutions to the inverse regulation problem. This
was evidenced in the case of the remarks made in Section 5.1 about the
inverse qualitative problem. Support Vector Machines (SVM) are related
to clustering and have been used in attempts to solve the modeling problem
(see [6] and [15]).
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The experience gained from the present approach motivates us to ex-
tend it to consider the probabilistic case. That is undoubtedly the type of
approach needed to solve problems involving a very large number of genes
whose regulation data contains experimental errors.
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