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Abstract

This paper proposes a computational model for children’s word
acquisition based on inductive logic programming. There are
three fundamental features in our approach. Firstly, we incorpo-
rate cognitive biases developed recently to explain the efficiency
of children’s language acquisition. Secondly, we design a co-
evolution mechanism of acquiring concept definitions for words
and developing concept hierarchy. Concept hierarchy plays an
important role of defining contexts for later word learning pro-
cesses. A context switching mechanism is used to select a rele-
vant set of attributes for learning a word depending on the cat-
egory which it belongs to. On the other hand, during acquiring
definitions for words, concept hierarchy is developed. Thirdly,
we pursue resemblance to human brain in functional level.

We developed an experimental language acquisition system
called WISDOM (Word Induction System for Deriving Object
Model) and conducted virtual experiments or simulations on ac-
quisition of words in two different categories. The experiments
shows feasibility of our approach.



1 Introduction

This paper proposes a computational model for children’s language acquisi-
tion in terms of inductive logic programming (ILP), based on the observation
of the similarity between human learning and concept learning by ILP.

In language acquisition, there are several difficulties related to its effi-
ciency. First, we need to formalize sensory inputs. There are many input
data to be potentially used in concept learning. Human being selects only
those attributes which are relevant to describe given objects. We assume
that human utilize some kind of context switching mechanism to choose
appropriate set of input stimuli for each learning task. Perception itself
may involve learning process to select appropriate set of attributes for each
learning task. Since we focus to develop computational model for human
word learning, we avoid to include perception parts in our model. Instead,
we carefully prepare appropriate input stimuli after perception process by
hand.

The second problem is to drastically restrict search space in concept
learning. In language acquisition, there are huge number of possibilities for
the target of a given label. It is called Quine’s paradox [11]. Aiming at
solving this problem, many cognitive psychologists have been working to
identify a set of constraints or biases under which children conduct super-
vised learning of concepts description given input sensory stimuli together
with labels for target objects which their mothers, say, give to them [6, 4].
These include Whole Object Bias, Taxonomy Bias, Mutual Exclusivity Bias,
the Principle of Contrast, Shape Bias and so on. Biases play an essential
role in reducing search space in concept description. Without biases, there
seems no hope for children to learn words concepts from a very small set
of examples. The situation is similar in machine learning: bias is essen-
tial for learning concepts even for a simple propositional learner [7]. In
case of inductive logic programming, there are essentially two kinds of bi-
ases: declarative (language) bias and procedural bias. Cognitive biases
correspond neither to declarative nor to procedural bias, directly. They
correspond to various parts in ILP procedure. For example, Shape Bias
can be accommodated into inductive logic programming by defining a new
evaluation function with heavier weight to shape-type attributes. On the
other hand, Taxonomy Bias can be realized by introducing different evalu-
ation functions for each task depending on the taxonomy class of the target
concept.

One notable characteristics of our model is its co-evolution between
word description learning ability and concept hierarchy building ability. As
we state later, they are mutually dependent; word description learning uti-
lizes concept hierarchy and conversely concept hierarchy building utilizes
word description. Also, Mutual Exclusivity Bias as well as the Principle of
Contrast is applied to build concept hierarchy.

We discuss some functional similarities between human brain and our
computational model. We focus two points: a context switching function
for selecting a relevant set of attributes for learning a word depending on
the category which it belongs to, and parameter learning function in evalu-
ation functions. The former corresponds to a switching function in human
brain for selecting an appropriate motion program for performing the target
task, or a target setting function for posing a problem to be further ana-
lyzed. These functions are known to be realized in paleocortex, especially
at amygdaloid complex.

The latter corresponds to neural network learning in the brain, either



in cerebrum or in cerebellum.

We built a preliminary computational model of children’s noun acqui-
sition and conducted virtual experiments by giving a set of attribute-value
pairs as input stimuli together with a label to perform supervised learning.

In section 2, constraints theory in cognitive science for acquiring noun
is introduced. In section 3, a computational model for children’s noun
acquisition based on ILP is presented. In section 4, the results of virtual
experiments are described. In section 5, related work is briefly mentioned.
Finally, in section 6, conclusion and future research direction are given.

2 Constraints Theory in Cognitive Science

Designing a mechanism of human language acquisition has ever been ad-
dressed as an extremely difficult problem.

Induction is deeply tied with learning, so we want some noun learning
model utilizing induction. However, when we try this, we found difficulty in
intensional description of concepts. Intension of a cat is an answer for the
question ‘What is a cat?’. A cat has furred skin, has four legs, is good at
climbing trees, can reach its hind feet to back of its ears, etc. Then, what
is the sufficient set of descriptors? How can children find such a set?

Markman [6] suggested Constraint Theory on vocabulary acquisition
by human children. What she constrained is children’s expectation for the
questions ‘What is named?’ and ‘How the things to be named should be
selected?’.

We use nouns for varied types of intensions. We use ‘a cat’ or ‘a car’ to
indicate a concrete or an imaginary object from a certain category which
we think we know what it is. The words ‘you’ and ‘them’ changes their
target object/s depending situations. ‘Mr. Smith’ and ‘John’ indicates a
fixed target in a speaker’s community. ‘water’ and ‘rice’ has neither their
shapes nor their ends. Consider the characteristics of following words: ‘a
finger’, ‘the ground’, ‘a forest’, ‘machinery’.

Although we human beings have such a large number of types of nouns,
we do learn nouns only from positive examples. The universe of names is
complex as you see, but this observation is static and comes from matured
language. Constraint Theory is a hypothesis on a stepwise acquisition of
vocabulary and can be regarded as defining priority on category types, in
general.

Whole Object Bias [6] is a bias Markman herself suggested under the
Constraint Theory. This bias states that a child considers the novel label
refers the whole of a given related object if it is unnamed. This means that
an unnamed object requires a label for its whole object primarily. We can
use such a bias as a constraint for setting the whole object as the one to be
referred to by labels.

Other biases we try to assemble in our learning model than Whole Ob-
ject Bias include: Taxonomy Bias, Shape Bias, the Principle of Contrast,
and Mutual Exclusivity Bias.

Taxonomy Bias [6]: This bias states that a child tends to interpret a
label, to be mapped to some category, to include a related object. This
means that children know that the relation between label and the referred
objects is not bijective. In fact, children do generalize a known label to map
to objects that are not identical to the one which they saw when they were
learning the label.



It is important to consider another aspect of Taxonomy Bias. Accord-
ing to [1], children recognize animals as analogical beings of human beings
or children themselves. Some children confess that plants are not living
because they do not move; some others say that insects have their heart.
These misunderstanding shows their knowledge that some objects are alike
to human beings while the others are not. This knowldege is referred to as
an ability of classifying object taxonomies.

Shape Bias citeHI90: This bias states that children think objects are
similar when their shapes are similar. Children tend to generalize a label of
an object to a concept having similar shape.

The Principle of Contrast: This bias states that children tend to think
different labels can refer to the same object, yet their sets of referring objects
cannot be identical.

Mutual Exclusivity Bias [6]: This bias states that children tend to think
different labels do not refer to the same object.

3 A Computational Model for Children’s Lan-
guage Acquisition in ILP

We show the configuration of WISDOM (Word Induction System for Deriv-
ing Object Model), our computational model for the childrens’ word (noun)
acquisition in figure 1. We use the name "WISDOM’ to refer to our compu-
tational model as well as to its implementation. The detailed descriptions
of their modules are described below. Note that Label Input Module and
Sensory Input Module are not implemented here in WISDOM. They are
virtual modules.

| Label Input Module | | Sensory Input Module |
General Attribute&
Label Categorical Classifier Categorical Classifier

Learner i Attributes Selection Module

Concepts Evaluation Function
Concepts (Weight)
| Similarity Calculation Module | Weight

Weight Learner

wo'ZRwnoH

Concepts & Similarity

Hierarchy Constructor i Domain

Figure 1: Configuration of our word acquisition model WISDOM

3.1 Learning Attribute Relevancy (Sensory Input Mod-
ule, Attributes Selection Module)

As mentioned in section 1, there are many input data to be potentially
used in concept learning. Human being selects only those attributes which
are relevant to describe given objects. In order to model this feature, we
designed a mechanism for selecting an appropriate evaluation function from
a set of functions prepared for each category. It is a kind of switch box
controlled by categorical information of the object to be learned. Each



evaluation function in turn is a linear combination of relevant attributes to
the corresponding category. In order to model the learning capability of
relevant attributes selection which human perception mechanism realizes,
we need to incorporate Weight learning in evaluation functions (Weight
Learner). In our first experiment, we predefined those weights by hand.
The automatic weight adjustment is one of our future research targets.

Note that this mechanism should avoid the difficulty of bridging objects
perception and words acquisition.

3.2 Inductive Learning of Concept Definition (Word
Learner)

ILP [8, 2] is a framework for learning relational concepts when a set of pos-
itive and negative examples are given together with background knowledge
in the form of horn clauses. More precisely, ILP searches the concept lattice
formed by the combinations of background knowledge, and finds the best
hypothesis which explains most of the positive and few of the negative ex-
amples together with background knowledge. On one hand, the standard
ILP systems require at least several positive and negative examples before
learning, and those adopt compression gain, or the MDL principle as the
evaluation function. On the other hand, the system in our ILP model for
the children’s vocabulary acquisition continuously repeats the generation
and revision of the concept description during the life time. It can work
even if only one or few examples are provided because a new evaluation
function reflecting the cognitive bias is implemented.

We briefly explain how actual word learning corresponds to ILP in our
model. We assume that children can correctly identify the object with which
the word i.e. label is associated. Note that the label is given separately by,
say, their mother as oral signal (Label Input Module). The properties of
the object are divided into two kinds, which we call Categorical Classifier
and General Attribute. Categorical Classifiers correspond to children’s in-
nate ontology, thus they indicate ontological categories such as ‘animate’,
’countable’, etc. General Attributes such as ‘having-four-legs’ or ’furred’
include all objects properties other than those represented as Categorical
Classifiers. The General Attributes are further divided into some subtypes
such as shapes, colors, textures, etc. Based on these assumptions, we feed
both observations (sensory inputs) on an object and a label on it to the
system in the form of logical formula which ILP can directly handle.

Since each label presents the category to which the object belongs, the
concept to be learned is indicated by the label. The objects are given as
examples and their properties are given as background knowledge. When
the system takes an object and its label as a pair (we call them current object
and current label respectively), the system learns or revises the concept
indicated by the current label by generalizing the current object if necessary.
At this time, the current object and all objects named by the current label
(which are given in the previous learning processes) are used as positive
examples. The negative examples are selected from the rest of the examples
based on word learning biases.

The concept hierarchy is utilized for providing further positive and neg-
ative examples. For example, positive example objects for a subordinate
category of the current label are regarded as positive examples for the cur-
rent label. Contrastly, negative examples for a superordinate category are
regarded as also negative for the current label.

In our model the concepts are learned in two steps. First, the model



determines a Supercategory or a domain for the label using the Categorical
Classifier/s of the current object. Then, relevant General Attributes for the
Supercategory are selected for generalization of the given example.

Obvious benefit of adopting the above two-steps procedure is that one
can reduce relevant background knowledge in computing generalization.

Furthermore, it reduces the hypothesis space by restricting negative
examples to only meaningful ones. Let us consider the case in which we
learn a concept ‘cat’. Assume that the given object named cat has ‘animate’
as its Categorical Classifier and ‘having-four-legs’ as its General Attribute.
Assume also that an object having a label ‘desk’ has already been given in
the previous inference process and it had ‘having-four-legs’ and ‘inanimate’
as its General Attribute and Categorical Classifier respectively. In this case,
although the object named ‘desk’ is obviously negative example for the
concept ‘cat’ because the label is different, the model excludes this object
from the negative examples for learning because the Categorical Classifiers
‘animate’ and ‘inanimate’ are mutually exclusive. If this dynamic selection
of negative examples could not be done, the concept ‘cat’ could not have
been inferred because the property ‘having-four-legs’, which may be crucial
for this concept, could not be included in the definition of ‘cat’. Furthermore
we can reduce the hypothesis space by excluding the candidates having
Categorical Classifiers used in selecting negative examples.

3.3 Role of bias in ILP and Realization of Constraint
Theory

Cognitive biases correspond neither to declarative nor to procedural biases
in ILP directly. We describe how the cognitive biases are implemented in
this subsection.

Let us consider a part of the ‘reference problem’ of the word acquisition.
When a label is associated with an object, what aspect of the object should
the label be mapped on to? This is an essential problem for our model
because it determines kinds of concept our model can learn. In our current
design, the model assumes that every label refers to the entirety of an object
according to Whole Object Bias (see section 2). Therefore the model can
learn only labels of objects as a whole, while it cannot learn other kinds of
concept such as a property or a part of object, an action, an event, and so
on. For example, the word ‘dog’ and ‘desk’ can be learned, but the word
‘ear’ (the part of object) and ‘running’ (the action) cannot be learned.

The first feature of Taxonomy Bias, the tendency of generalization, is
automatically implemented in our model because ILP by its nature is used
for generalization. That is, the model automatically assumes that a label
refers to a category. The second feature, the ability of restricting learning
domains, is realized by Domain Selection Module.

When two labels are judged to be not similar by Shape Bias, the model
obeys Mutual Exclusivity Bias and the labels are not allowed to share the
same object. On the other hand, when two labels are judged to be similar
by Shape Bias, the model obeys the Principle of Contrast and the labels are
allowed to be hierarchically related.

In our model, the evaluation criterion is introduced so that it reflects the
Shape Bias. This allows the model to select an appropriate hypothesis even
if only few positive examples are given. Like an ILP system Progol, this
evaluation criterion is basically based on the description length of the con-
cept, but some weights are added to each atom consisting of the concept. In
our current implementation, the weight of a General Attribute about shape



is set 1.5 times heavier than that of an other type General Attributes, and
the weight of a Categorical Classifier twice heavier than that of a General
Attribute.

When we learn the concept belonging to a Supercategory or a domain
CCj in the children’s innate ontology, the general expression of our evalua-
tion function is defined as:

Cco, = —PE+ NE — wge * |CCj| — 5 (w5q" * GA;)

where PE and NE are the number of positive and negative examples ex-
plained by the candidate hypothesis respectively; |CC;| and wcc are the
number of the Categorical Classifiers appearing in the candidate hypothesis
and the uniform weight of Categorical Classifiers, respectively. GA; and
wgij * are the number of the General Attributes whose subtype is i in the
candidate hypothesis and the weight of a General Attribute of that subtype,
respectively.

In this evaluation function, Shape Bias can be realized by putting the
heavier weight on the attribute about shape as mentioned earlier. We can
also realize some kind of context switching mechanism, i.e. Taxonomy Bias
by introducing different sets of evaluation functions and weights for each
task depending on the Supercategory of the target concept. By the way,
Shape Bias is not always applied. With the increase of conceptual knowl-
edge, children gradually come to realize that shape similarity is not the
most essential factor for determining the membership of an object category.
We believe that this bias shift can be simulated by weight learning in the
evaluation function.

3.4 Building Concept Hierarchy (Hierarchy Construc-
tor)

As mentioned in section 2, we human beings have knowledge called taxon-
omy on concepts universe. Materials (like water or rice) are different from
shaped objects (like a car or a cat) in the aspects to be referred by labels.
In vocabulary acquisition, it is not the issue to classify them; yet the issue
is to differentiate water from rice, and also car from cat. The shape of the
whole object makes no sense when we separate rice from water, while the
probability that an arbitrary car and an arbitrary cat have the same shape
is very low.

So, first of all, children need to distinguish materials from objects before
they learn vocabulary. We refer groups like materials or objects as taxon-
omy class or Supercategory. Supercategories which dominate large part of
vocabulary universe, such as the ones given above, may be known to chil-
dren prior to language learning. Experiments involving infants provided
some evidence for this [3].

On the other hand, at the lower level of taxonomy, that is, at rather more
concrete parts of vocabulary universe, we cannot give a priori categories.
For example, artificial tools used in our daily life are classified in various
categories. A flower pot is similar to a bowl for dietary use in shape, though
the former has hole/s to let water flow out. The former appears in scenes
of gardening, while the latter does in meals. We must have learned such
categories through the daily life. In other words, such categories are culture-
dependent. Flower pot category and bowl category are both created and
developed under the Supercategory of shaped objects. What we refer as
concept hierarchy building includes such introduction and following updates
of low-level, local and cultural categories.



Note that culture-dependent categories include universal ones. As shown
in section 2, some children think that plants are non-living, but in any cul-
ture on the planet plants are separated from non-living things like rocks.

The existence of a higher level Supercategory for the concept to be
learned helps a lot in learning its definition. ‘A cat’ is learned as a concept
within the Supercategory of living animate objects, while ‘a bowl’ is non-
living static objects. Children also know that both of them refer concepts
within the shaped objects’ Supercategory. Such knowledge prevents chil-
dren from diffusing into irrelevant attributes during object analysis. When
children see a bowl related with a label ‘bowl’, they analyse its shape, and
possibly, other additional attributes like its material, location and so on.
In order to observe and analyse its properties, they may give it pressure
with their fingers, palms, or teeth; they may rub it with their dry and/or
wet fingers; or they may taste it with their tongues. However, they do not
observe its way of locomotion. They interpret that locomotion is irrelevant
as soon as they see the object.

Concept hierarchy is basically united knowledge of hierarchical relations
among named concepts. Assume that a child knows the following things:
first, a ‘dog’ is an ‘animal’; second, a ‘terrier’ is a ‘dog’. From these propo-
sitions, the child can tell that a terrier is an animal. This inference is purely
deductive. Note that no sensory device is needed in such inference.

This is an important competence for human beings to understand his
or her environments. Our knowledge includes tacit component, like the
judging ability whether a given object is a dog, which occupies large parts
in our entire knowledge. However, explicit pieces of distributed knowledge
such as relationships among labeled concepts are integrated to systematic
knowledge by conducting logical inference.

Concept hierarchy enforces vocabulary developing. Recall that children
are supported by database which include domain-specific heuristics in learn-
ing new names. Concept hierarchy conveys properties of higher concepts to
lower concepts. Suppose a child knows what a ‘dog’ is and an adult comes
to tell him ‘That is a terrier.’ pointing a dog. Unless he adopts Mutual
Exclusivity Bias for this accident, he may interpret a ‘terrier’ is another
name of the object, and may think that the category ‘terrier’ differs from a
‘dog’, encompassed by the Principle of Contrast.

The previous story of a dog labeled ‘terrier’ shows a typical example of
hierarchical relationship between two objects. Suppose the learner already
knows one of these two concepts, and then sees the other. In hierarchical
case, since one of them includes the other, it is typical that the pointed
object already has a label.

We show representation of one of such cases in our model. On the top
of figure 2, a learned concept intension corresponding to a known label dog
is shown. Next three clauses are observations on objects obj001, obj002,
obj003. Assume that each of these was related with the label dog when it
was observed. Novel category names can be introduced referring to one of
these objects. Such a name can be cat, which should be mutually exclusive
with dog; or terrier, which should be subordinate of dog.

Suppose that one of such labels is newly introduced related only one
of these three objects in input, and that the learner then learns a concept
named by this label. The learned concepts are also shown in figure2 below
the list of observations on the objects. Note that we need to identify the case
either ‘mutually exclusive’ or ‘subordinate’. For this purpose, we employ a
kind of similarity measure (Similarity Calculation Module). If the similarity
between the concept dog and the introduced one is small, the learner would



(Intension of dog)
labeling(dog, A) :-
tax(A, animation, animate), attr(A, shape, short_tail).

(Observations of objects)

tax(obj001, animation, animate). tax(obj002, animation, animate).
attr(objO01, shape, hanging ears). attr(obj002, shape, short_tail).
attr(obj001, covering, furred). attr(obj002, shape, hanging_ears).

tax(obj003, animation, animate).
attr(obj003, shape, short_tail).
attr(obj003, covering, furred).

(Derived intensions)
labeling(label001, A) :-

tax(A, animation, animate),

attr(A, shape, hanging ears), attr(A, covering, furred).
labeling(label002, A) :-

tax(A, animation, animate),

attr(A, shape, short_tail), attr(A, shape, hanging ears).
labeling(label003, A) :-

tax(A, animation, animate),

attr(A, shape, short_tail), attr(A, covering, furred).

Figure 2: List of intension of dog and observations for 3 objects

interpret that they are hierarchically related, according to the Principle
of Contrast and Taxonomy Bias. Or, if the similarity is large, he would
interpret that they are mutually exclusive based on Mutual Exclusivity Bias.

These three objects have differences on how much typical dogs they are.
The intension of 1abel001 relating only with obj001 seems the least similar
to the concept intension of dog. In other words, objO01 seems the least
typical dog of the three, since there appears no General Attribute descriptor
short_tail in its observation. Of the rest two objects, obj002 seems a less
typical dog, because there appears a different descriptor hanging_ears from
short_tail on shape dimension. It follows that the last object obj003
seems the most typical of three. Accordingly, it should lead to the following
result: the new label related with objO01 would get the smallest similarity
between the intensions of the dog and the one related with obj003 would
get the largest similarity.

We assume that the similarity between two learned concepts is inversely
proportional to the concept distance between their intensions. Concept dis-
tance between two concept intensions is measured basically by the number
of descriptors which occur in one concept intension but do not in the other.
Descriptors are weighted based on their importance. First, Categorical Clas-
sifiers (represented in the predicate tax) are counted 2 times more than basic
attr predicate descriptors. Additionally, General Attributes (represented
in attr predicate) can have varying scores by different kind attributes of the
descriptor. For example, in the Supercategory animate, we put 1.5 points
per one difference on shape dimension than the other attr predicates.

In this case, we count that difference of existence of General Attribute
furred on covering as 1 point. And we give weights for other descriptors as
mentioned above: General Attributes on shape are given 1.5 points, while
Categorical Classifiers are given 2 points. Similarities between dog and
the newly introduced categories become as follows: 0.25 with labelOO01,
approximately 0.67 with 1abel1002 and 1.00 with 1abel003, respectively.



We let the model judge whether the relation with dog is hierarchical
for each object by similarities calculated above. Giving threshold, below
which the relation is interpreted mutually exclusive and above which it is
interpreted hierarchical, is a simple method. In this case, we set the thresh-
old at 0.17 = 1/6. This threshold allows us to admit the total occurrence
of supportive attributes to the target category up to four less than that of
non-supportive ones.

It leads that all three introduced categories are interpreted as being
hierarchically related with dog. 1labelOO1 is difficult to judge at current
status, but more information and further learning process may be necessary
to verify the judgement.

Our computational model WISDOM creates and revises hierarchical and
mutual exclusive relations between concepts through the successive learning.
The whole of such relations represents knowledge of concept hierarchy.

3.5 Co-Evolution of Concept Learning and Concept
Hierarchy Building

One of the most characteristic features of our model is the co-evolution
of concept learning and concept hierarchy building. Concept learning and
concept hierarchy building corresponds to two different learning activities:
concept learning is achieved by supervised learning whereas concept hier-
archy building is achieved by a kind of unsupervised learning. In concept
learning phase, concept hierarchy helps in identifying the Supercategory
which the target object belongs to and therefore in choosing an appropriate
set of attributes to classify it. On the other hand, in concept hierarchy
building, the definitions of related concepts can be used to build concept
hierarchy. One possible trigger to build concept hierarchy is during concept
learning when we apply the Principle of Contrast by assigning either super
class category or subordinate category to the labeled object to be learned.

4 Virtual Experiments

In this section, we compare two learning experiments by WISDOM. These
two experiments differs from each other in ontological domain. The domain
of the first experiment is of tools that we use when we have meals. The
domain of the other experiment includes animal categories. We intend to
find difference between sets of attributes used in intensions of named cate-
gories from each other. Each specific domain may be characterized by a set
of attributes used in explaining named categories.

In the first experiment, we provide two examples to WISDOM. One is
on a fork and the other is on a spoon. These two instruments are from the
same dining set. Both are made of stainless steel, have almost the same
length (19cm) and have handles in the same design. Then WISDOM tries
to make distinction between them by comparing the part having contact to
foods.

The input list for the fork given to WISDOM is shown in figure 4. They
are the first stimuli for the entirely novice learner. The first clause in the
list says that the appearing object is called a fork. The third term of this
and the next clause shows that this information is the first and the latest
for the learner.

! Precisely speaking, we sum up the attributes weights. Since 4 times 1.5 (the
shape score) is 6, the inverse becomes 1/6.
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obj051a2
objo51a5
obj052a
bjo51at
obj051b obj051b

a fork’ example  a ‘spoon’ example

Figure 3: Example objects obj051 and obj052 for the labels fork
and spoon

The clauses in figure 4 represent perceptual information on the object
on the left of figure 3. Assume that the object is put on a table with the
handle near to our body. The third clause whose predicate is tax says that
the object is not animate. The following 4 clauses with the predicate attr
give information on the whole object. Next 3 clauses with the predicates
subobj and connection say that the object has two parts connected to
each other with front-to-back placement. objO51b, the handle of the fork,
is in contact with the rest part at its backend (y_plus). The rest 20 unit
clauses of the list represent observations on part of the object.

After giving this input list to WISDOM, we let it start to learn. WIS-
DOM is set to induce the rule of labeling given latest. So it induces the
condition concluding labeling(fork, X). Selection of the most preferable
hypothesis is done based on the hypotheses evaluation function. The result
is shown in figure 4.

Although we omit the detailed input data for the spoon here, the reader
could easily imagine how they look like. They are similar to those for the
fork; the handle is represented in the same formalization and the rest part
is represented additionally. We only note that the spoon is given the object
identifier obj052.

After learning fork, we give the input data for the spoon and let the
learner to learn again. The result is shown in figure 5.

After starting the learning, WISDOM constructs a hypothesis. The
obj052 (a spoon) is of course used as a positive example. Note that obj051
is used as a negative example, because the learner interprets those except
explicit positive ones as negative examples by default.

Then the learner, WISDOM, tries to guess what the appearing object
is called. This is done by applying all rules whose head predicates are
labeling to obj052. Note that the current rule for the category fork is
strong; it says that every inanimate object is a fork. This suggests that
obj052 is called a fork as well as a spoon. However, the learner was
given that obj052 was not a positive example for the category fork, so it
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(Input on the fork object obj051)

labeling(fork, obj051, 1). newest_labeling(1).

tax(objO51, animation, inanimate).

attr(objO51, color, having reflection).

attr(obj051, color, shining). attr(obj051, shape, constant).
attr(objO51, direction, y_axis).

subobj(objO51a, objO51). subobj(obj051b, obj051).
connection(objO51la, yminus, objO51b, y_plus).

attr(objO51b, direction, y_axis). attr(obj051b, shape, board).
attr(objO51b, shape, x_axis/[y_plus, y-minus]).

subobj(objO51al, objO51a). subobj(objO51a2, objO51a).
subobj(objO51a3, obj05la). subobj(objO5lad, objO51a).
subobj(objO51ab, objO51a).

connection(objO51al, x minus_y plus, objO51a2, yminus).
connection(objO51al, y_plus, objO51a3, yminus).
connection(objO51al, y_plus, objO5la4, y minus).
connection(objO51lal, x_plus_y_plus, objO51a5, y minus).
attr(objO51a2, direction, y._axis). attr(objO5la2, shape, pyramid).
attr(obj051a3, direction, y._axis). attr(objO051a3, shape, pyramid).
attr(objO51a4, direction, y_axis). attr(objO51a4, shape, pyramid).
attr(objO51ab, direction, y._axis). attr(objO5lab, shape, pyramid).

(Result of the first induction)
labeling(fork, A) :- tax(A, animation, inanimate).

Figure 4: Input and output on the object obj051 associated with the
label fork

labeling(fork, A) :- tax(A, animation, inanimate).
labeling(spoon, A) :-tax(A, animation, inanimate),
subobj(B, A), attr(B, shape, oval_semisphere).

obj052 is a fork.
obj052 is a spoon.
Need induction for [fork].

labeling(spoon, A) :- tax(A, animation, inanimate),
subobj(B, A), attr(B, shape, oval_semisphere).
labeling(fork, A) :- tax(A, animation, inanimate),

subobj (B, A), subobj(C, B), attr(C, shape, pyramid).

obj052 is a spoon.
Need induction for [].

Figure 5: Result list of learning the label spoon after learning fork
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(Acquired description for cat)
labeling(cat, A) :-tax(A, animation, animate).

(Result of learning dog over the knowing cat)

labeling(cat, A) :- tax(A, animation, animate).

labeling(dog, A) :- tax(A, animation, animate),
subobj (B, A),attr(B, direction, z_axis).

0bj032 is a cat.
obj032 is a dog.
Need induction for [cat].

labeling(dog, A) :- tax(A, animation, animate),subobj(B, A),
attr(B, direction, z_axis).
labeling(cat, A) :- tax(A, animation, animate),

attr (A, shape, barrel).

obj032 is a dog.
Need induction for [].

Figure 6: List on animate categories learning

labeling(dog, A) :- tax(A, animation, animate),subobj(B, A4),

attr(B, direction, z_axis).

Figure 7: Result explanation on dog

thinks that the rule on fork is not correct any longer. It starts learning the
category fork again, with no additional stimuli to obtain more reasonable
rule for the fork.

Then we proceed to the second experiment. Figure 6 shows the result
of the experiment. In this experiment, we provide inputs for two animal
instances; a cat, and a dog. This learning is independent from the for-
mer experiment. Like the experiment of dining instruments shown above,
the learner starts from the status where it does not know any of labeled
categories.

At one time, the information for one object is given, as the experiment
shown above. The first input list is for the cat, and the second is for the
dog. The given lists are not shown because of space limitation, but they
represent their shapes in detail like the dining instruments experiment, and
their colors. Additionally, covering attribute is used. The cat is laid on
the ground, while the dog stands.

After learning the category cat from the first stimuli set for the cat,
WISDOM acquires the knowledge shown in figure 6.

By giving inputs for the dog to the learner having this knowledge, the
rule (shown in figure 7) is learned.

Both a cat and a dog have their heads, four legs, and tails. In this aspect,
they have same parts of their bodies, while each corresponding parts have
difference.

In this experiment, the difference in posture and figure appears. The
direction z_axis is of a leg of the standing dog; the cat is laid and its legs
are along x and y axes. Shape barrel is of the trunk of the cat; the dog
has no part whose shape is barrel.

If we give more examples in which animals make varied postures, the at-
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tribute which represent their shapes of their heads should play more central
role.

In this section, we showed knowledge acquired as results of 2 cases. Let
us compare these results. The spoon and the fork has same attribute value
on their surfaces, so their difference appears in shapes of parts. The learner
picks the fact up that the spoon has a part whose shape is oval_semisphere,
while it concerns that the fork has a part whose shape is pyramid. This
pyramid-shaped part is a part of a part of the whole, so difference of
connection structures between instruments seems important. In the latter
experiment, the model concerns on the standing leg/s of the dog and the
shape of the cat’s trunk.

The information relating to shape is used in both results. Such infor-
mation includes shape name attribute, direction of whole or partly objects,
connectivity among parts of an object, relative lengths along axes of one
object, relative size between different objects, and so on. Detailed analysis
down to objects’ parts seems effective, especially where the model is given
shape-relating input information.

Description like ‘object obj001 has four legs’ is difficult to use in category
induction even the learner knows what a leg is, for two instances of animals
can be quadruped having different position, shapes of legs. Such minor
difference seems to be important for differentiating categories.

5 Related Work

Our study is a proposal for computational model of children’s language
acquisition. Several researchers are proposing alternative methods focused
on various aspects of this problem.

Siskind [12] proposed a logical induction system, which is named MAI-
MRA. It accepts a scene consisting of serial snapshots. Through the learning
process, word labels are inductively associated with certain status changes
implicitly appearing in scenes.

Munro et al. [9] constructed a neural network which learns the mean-
ings of propositions. This network shows the ability to associate multiple
meanings to one label, e. g. ‘cracks in a cup’ and ‘a boat in the lake’, and
to output the labels at a proper context.

Both of them let the learner to construct the meaning from a given set
of attributes. They do not give unnamed complete concept.

Nakagawa et al. [10] conducted interesting experiment where the ma-
chine learner (1) segments given voice and extract the referring labels and
(2) constructs referred meaning from attributes in a scene. Although they
give only a constant set of attributes, it is outstanding because they realized
the co-evolution between concept construction and label extraction.

Our approach intends to let the machine learner to learn the concept
inductively, which is similar to those studies mentioned above. Comparing
to others, we originally implement biases suggested in cognitive science. Ad-
ditionally, we stress on the learning process where concept acquisition and
concept hierarchy construction help each other. Inductive logic program-
ming seems to provide the most appropriate framework for such knowledge.

6 Conclusion and Future Work

This paper presented a computational model WISDOM for children’s lan-
guage acquisition using ILP. We proposed a model consisting of two parts;
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concept learning and concept hierarchy building. In the model, we incor-
porated cognitive constraints or cognitive biases such as Taxonomy Bias,
Shape Bias, Mutual Exclusive Bias and the Principle of Contrast to reduce
search space in building concept description.

In concept learning, we adopted the learning scheme of Inductive Logic
Programming to induce associations between the target concept and various
knowledge which children acquired in the past.

In concept hierarchy building, we introduced a kind of similarity mea-
sure to judge 1. whether the given target object belongs to some category
or not and 2. whether a given label to the target denotes a superordinate
or subordinate concept to the conflicting category.

In WISDOM, concept learning and concept hierarchy building co-evolve
each other. This feature is very important because it drastically accelerates
the learning ability. The usage of taxonomy information in learning phase
introduces the notion of context because each Supercategory defines each
context in which concept learning becomes a relatively small and easy task.

We built a learning program (we call the program as WISDOM also)
based on our model and simulated language learning tasks for two animals
and also for two dining instruments.

In these experiments, we gave shape attributes in detail. We found that
we needed different attributes sets for these two tasks. Furthermore we
found that common attributes like having-four-legs do not work in differen-
tiating concepts in a domain, but rather subtle attributes such as the shape
of trunks are crucial.

We also noted the importance of selecting a relevant domain not only for
reducing the entire search space but also for eliminating irrelevant negative
examples, which made it even possible to learn the right concept efficiently.

We applied a simple similarity measure to judge whether two concept
descriptions refer to distinct objects or hierarchically related objects. We
could not distinguish three cases in our experiments. One reason may be due
to too simple similarity measure. In our future research, we are planning to
adopt further sophisticated similarity measure to improve the performance.
Another reason may be lack of experiences of the system. It may resolve
conflicts in such judgement by further experiments.

Another point is a set of weights assigned to different attributes. There
are no strict reasons why we put score 2 the Categorical Classifiers, score 1.5
for shape attributes and 1 for the rest. We need to find appropriate numbers
for these weights to establish the better solutions or better behaviors of the
system. It is a weights-adjusting problem and many algorithms are known
to perform such tasks.

One of our future work is to incorporate human brain functional archi-
tecture for performing learning. It consists of various components including
cerebrum, cerebellum, and paleocortex. To allocate different learning styles
conducted by cerebrum and cerebellum to different parts of our system is
one of the problems in the incorporation. Since learning in cerebellum is
simpler and more related to attaining efficiency, simple tasks associating
input stimuli with their corresponding labels could be realized finally using
cerebellum-type efficient learning. On the other hand, at the beginning of
learning, many input stimuli are investigated. Those activities fit rather
to cerebrum-type learning. For the super category selection, the process is
deeply related to the activity of paleocortex. The parameter adjustment
for the selection is considered as meta-learning of the evaluation function in
machine learning. This is one of the most attractive features to be pursued
both in machine learning and in human brain.



15

References

[1] Carey, S. Conceptual Change in Childhood, MIT Press, 1985.

[2] Furukawa, K., Ozaki, T. and Ueno, K. Inductive Logic Programming,
Kyoritsu-syuppan, 2001 (in Japanese).

[3] Gelman, R. First principles orgainize attention to and learning about
relevant data: Number and the animate-inanimate distinction as exam-
ples, Cognitive Science, 14, pp.79-106, 1990.

[4] Haryu, E. and Imai, M. Controlling the application of the mutual ex-
clusivity assumption in the acquisition of lexical hierarchies, Japanese
Psychological research, Vol.41, No.1, pp.21-34, 1999.

[5] Kawato, M. Computational Theory of Brain Sangyo Tosyo, 1996 (in
Janapese).

[6] Markman, E. M. Categorization and Naming in Children, MIT Press
series in learning, development and conceptual change MIT Press, 1989.

[7] Mitchell, T. M. MACHINE LEARNING, WCB/McGraw-Hill, 1997.

[8] Muggleton, S. Inverse Entailment and progol, New Generation Com-
puting, 13(4-5), pp.245-286, 1995.

[9] Munro, P., Cosic, C., Tabasko, M.: A Network for Encoding, Decoding
and Translating Locative Prepositions. In Connection Science, vol.3.,
pp.225-240, 1991.

[10] Nakagawa, S., Masukata, M.: Shichoukaku-jouhou no Tougouka ni Mo-
todzuku Gainen to Bunpou no Kakutoku-sisutemu (Acquisition System
of Concepts and Syntax based on Integration of Visual and Auditory
Sensory Information). Journal of Japanese Society for Artificial Intelli-
gence, vol.10, no.4, pp.129-137, 1995 (In Japanese).

[11] Quine, W. V. O. Word and Object, MIT Press, 1960.

[12] Siskind, J.M.: Acquiring Core Meanings of Words, Represented as
Jackendolf- Style Conceptual Structures, from Correlated Streams of
Linguistic and Non-Linguistic Input. In ”"Proceedings of the 28th Annual
Meeting of the Association for Computational Linguistics”, pp.143-156,
1990.

[13] Spelke, E. S., Phillips, A. and Woodward, A. L. Infants’ knowledge
of object motion and human action. In D. Sperber, D. Premack & A.
J. Premack (Eds.), Causal Cognition: A multidisciplinary debate, New
York: Oxford University Press, 1995.



