
Link�oping Electronic Articles in
Computer and Information Science

Vol. 6(2001): nr ?

Link�oping University Electronic Press
Link�oping, Sweden

http://www.ep.liu.se/ea/cis/2001/???/

Ontologies in RDF(S)

Ste�en Staab

Michael Erdmann

Alexander Maedche

Institute AIFB
Karlsruhe University

76128 Karlsruhe, Germany

fstaab, erdmann, maedcheg@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS

Published on 30. December, 2001 by

Link�oping University Electronic Press

581 83 Link�oping, Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN 1401-9841

Series editor: Erik Sandewall

c2001 S. Staab, M. Erdmann, A. Maedche

Typeset by the authors using LATEX

Formatted using �etendu style

Recommended citation:

<Authors>. <Title>. Link�oping Electronic Articles in

Computer and Information Science, Vol. 6(2001): nr ?.

http://www.ep.liu.se/ea/cis/2001/???/. 30. December, 2001.

This URL will also contain a link to the authors' home pages.

The publishers will keep this article on-line on the Internet

(or its possible replacement network in the future)

for a period of 25 years from the date of publication,

barring exceptional circumstances as described separately.

The on-line availability of the article implies

a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged

for any non-commercial research and educational purpose,

including making copies for classroom use.

This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are

conditional on the consent of the copyright owners.

The publication of the article on the date stated above

included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries

like all other written works published in Sweden.

The publisher has taken technical and administrative measures

to assure that the on-line version of the article will be

permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies

at least until the expiration of the publication period.

For additional information about the Link�oping University

Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to

its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

RDF(S)1 constitutes a newly emerging standard for metadata

that is about to turn the World Wide Web into a machine-

understandable knowledge base. It is an XML application that

allows for the denotation of facts and schemata in a web-compatible

format, building on an elaborate object-model for describing

concepts and relations. Thus, it might turn up as a natural

choice for a widely-useable ontology description language. How-

ever, its lack of capabilities for describing the semantics of con-

cepts and relations beyond those provided by inheritance mecha-

nisms makes it a rather weak language for even the most austere

knowledge-based system. This paper presents an approach for

modeling ontologies in RDF(S) that also considers axioms as ob-

jects that are describable in RDF(S). Thus, we provide exible,

extensible, and adequate means for accessing and exchanging ax-

ioms in RDF(S). Our approach follows the spirit of the World

Wide Web, as we do not assume a global axiom speci�cation

language that is too intractable for one purpose and too weak

for the next, but rather a methodology that allows (communities

of) users to specify what axioms are interesting in their domain.

This paper is a revised version of a paper presented at the

ECDL-2000Workshop on Semantic Web, Lisbon, Portugal, Septem-

ber 2000.

1We use \RDF(S)" to refer to the combined technologies of RDF and RDFS.

1

1 Introduction

The development of the World Wide Web is about to mature from a techni-
cal platform that allows for the transportation of information from sources
to humans (albeit in many syntactic formats) to the communication of
knowledge from Web sources to machines. The knowledge food chain has
started with technical protocols and preliminary formats for information
presentation (HTML { HyperText Markup Language) over a general method-
ology for separating information contents from layout (XML { eXtensible
Markup Language, XSL { eXtensible Stylesheet Language) to reach the
realms of knowledge provisioning by the means of RDF and RDFS.

RDF (Resource Description Framework) is a W3C recommendation
(Lassila & Swick, 1999) that provides description facilities for knowledge
pieces, viz. for triples that denote relations between pairs of objects. To
exchange and process RDF models they can be serialized in XML. RDF
exploits the means of XML to allow for disjoint namespaces, linking and re-
ferring between namespaces and, hence, is a general methodology for sharing
machine-processable knowledge in a distributed setting. On top of RDF the
simple schema language RDFS (Resource Description Framework Schema;
(Brickley & Guha, 1999)) has been de�ned to o�er a distinguished vocabu-
lary to model class and property hierarchies and other basic schema primi-
tives that can be refered to from RDF models. To phrase the role of RDFS
in knowledge engineering terminology, it allows to de�ne a simple ontol-

ogy that particular RDF documents may be checked against to determine
consistency.

Ontologies have shown their usefulness in application areas such as in-
telligent information integration or information brokering. Therefore their
use is highly interesting for web applications, which may also pro�t from
long term experiences made in the knowledge acquisition community. Nev-
ertheless, while support for modeling of ontological concepts and relations
has been extensively provided in RDF(S), the same cannot be said about
the modeling of ontological axioms | one of the key ingredients in ontology
de�nitions and one of the major bene�ts of ontology applications.

RDF(S) o�ers only the most basic modeling primitives for ontology mod-
eling. Even though there are good and bad choices for particular formal
languages, one must face the principal trade-o� between tractability and
expressiveness of a language. RDF(S) has been placed nearer to the low
end of expressiveness, because it has been conceived to be applicable to
vast web resources! In contrast to common knowledge representation lan-
guages, RDF(S) has not been meant to be the de�nitive answer to all knowl-
edge representation problems, but rather an extensible core language. The

namespace and rei�cation mechanisms of RDF(S) allow (communities of)
users to de�ne their very own standards in RDF(S) format | extending the
core de�nitions and semantics. As RDF(S) leaves the well-trodden paths
of knowledge engineering at this point, we must reconsider crucial issues
concerning ontology modeling and ontology applications. To name but a
few, we mention the problem of merging and mapping between namespaces,
scalability issues, or the de�nition and usage of ontological axioms.

In this paper we concentrate on the latter, namely on how to model
axioms in RDF(S) following the stipulations, (i), that the core semantics of
RDF(S) is re-used such that \pure" RDF(S) applications may still process
the core object-model de�nitions, (ii), that the semantics is preserved be-
tween di�erent inferencing tools (at least to a large extent), and, (iii), that
axiom modeling is adaptable to reect diverging needs of di�erent com-

2

munities. Current proposals neglect or even conict with one or several
of these requirements. For instance, the �rst requirement is violated by
the ontology exchange language XOL (Karp et al., 1999) making all the
object-model de�nitions indigestible for most RDF(S) applications. The in-
terchangeability and adaptability stipulation is extremely diÆcult to meet
by the parse-tree-based representation of MetaLog (Marchiori & Saarela,
1998), since it obliges to �rst-order logic formulae. We will show how to
adapt a general methodology that we have proposed for axiom modeling
(Staab & Maedche, 2000) to be applied to the engineering of ontologies with
RDF(S). Our approach is based on translations of RDF(S) axiom speci�ca-
tions into various target systems that provide the inferencing services. As
our running example, we map axiom speci�cations into an F-Logic format
that has already served as the core system for SiLRi, an inference service
for core RDF (Decker et al., 1998). Our methodology is centered around
categorization of axioms, because this allows for a more concise description
of the semantic meaning rather than a particular syntactic representation
of axioms. Thus, we get a better grip on extensions and adaptations to
particular target inferencing systems.

In the following, we introduce the RDF(S) data model and describe how
to de�ne an object model in RDF(S) including practical issues of ontology
documentation (Section 2). Then we describe our methodology for using
RDF(S) such that axioms may be engineered and exchanged. We describe
the core idea of our approach and illustrate with several examples how to re-
alize our approach (Section 3). In a case study (Section 4) we illustrate the
application of our approach in our ontology engineering environment, On-
toEdit, and our semantic community web portal, KA2Portal (Staab et al.,
2000). Before we conclude, we give a brief survey of related work.

2 Modeling Concepts and Relations in RDF(S)

In this section we will �rst take a look at the core ontology engineering
task, i.e. at the RDF(S) data model proper, and then exploit RDF(S) also
for purposes of practical ontology engineering, viz. for documentation of
newly de�ned or reused ontologies. This will lay the groundwork for the
modeling of axioms in Section 3.

2.1 The RDF(S) Data Model

RDF(S) is an abstract data model that de�nes relationships between entities
(called resources in RDF) in a similar fashion as semantic nets. Statements
in RDF describe resources, that can be web pages or surrogates for real
world objects like publications, pieces of art, persons, or institutions. We
illustrate how concepts and relations can be modelled in RDF(S) by present-
ing a sample ontology in the abstract data model and only afterwards show
how these concepts and relations are presented in the XML-serialisation of
RDF(S).

2.1.1 RDF

As already mentioned RDF(S) consists of two closely related parts: RDF
and RDF Schema. The foundation of RDF(S) is laid out by RDF which
de�nes basic entities, like resources, properties, and statements. Anything
in RDF(S) is a resource. Resources may be related to each other or to
literal (i.e. atomic) values via properties. Such a relationship represents a

3

confirmedBy

rdf: objectrdf:subject
rdf:predicate

lastNamefirstName firstName lastName

rdf:type

lastNamefirstName firstName lastName

marriedWith

confirmedBy

lastNamefirstName

http://www.foo.com/W.Simth http://www.foo.com/S.Smith

http://www.vatican.va/holy_father

marriedWith

rdf:Statement

http://www.foo.com/W.Simth http://www.foo.com/S.Smith

http://www.vatican.va/holy_father

http://www.foo.com/W.Simth http://www.foo.com/S.Simth

http://www.foo.com/W.Simth http://www.foo.com/S.Smith

http://www.vatican.va/holy_father

marriedWith

rdf:Statement

http://www.foo.com/W.Simth http://www.foo.com/S.Smith

http://www.vatican.va/holy_father

http://www.foo.com/W.Simth http://www.foo.com/S.Simth

William Smith SmithSusan

William Smith SmithSusan

William Smith SmithSusan

William Smith SmithSusan

William Smith SmithSusan

William Smith SmithSusan

firstName lastName

marriedWith

a)

b)

c)

Figure 1: An example RDF data model.

statement that itself may be considered a resource, i.e. rei�cation is directly
built into the RDF data model. Thus, it is possible to make statements
about statements. These basic notions can be easily depicted in a graphical
notation that resembles semantic nets. To illustrate the possibilities of
pure RDF the following statements are expressed in RDF and depicted in
Figure 12:

� Firstly, in part (a) of Figure 1 two resources are de�ned, each carrying
a firstName and a lastName property with literal values, identify-
ing the resources as William and Susan Smith, respectively. These
two resources come with a URI as their unique global identi�er and
they are related via the property marriedWith, which expresses that
William is married with Susan.

� Part (b) of the illustration shows a convenient shortcut for express-
ing more complex statements, i.e. reifying a statement and de�ning
a property for the new resource. The example denotes that the mar-
riage between William and Susan has been con�rmed by the resource
representing the Holy Father in Rome.

� The RDF data model o�ers the prede�ned resource rdf:statement and
the prede�ned properties rdf:subject, rdf:predicate, and rdf:object

to reify a statement as a resource. The actual model for the example
(b) is depicted in part (c) of Figure 1. Note that the rei�ed state-
ment makes no claims about the truth value of what is rei�ed, i.e. if
one wants to express that William and Susan are married and that
this marriage has been con�rmed by the pope then the actual data
model must contain a union of part (a) and part (c) of the example
illustration.

2Resources are represented by ovals, literal values by shaded rectangles and properties

by directed, labeled arcs.

4

2.1.2 RDFS

As a companion standard to RDF, the schema language RDFS is more
important with respect to ontological modeling of domains. RDFS o�ers
a distinguished vocabulary de�ned on top of RDF to allow the modelling
of object models with cleanly de�ned semantics. The terms introduced in
RDFS build the groundwork for the extensions of RDF(S) that are proposed
in this paper. The relevant RDFS terms are presented in the following list.

� The most general class in RDF(S) is rdfs:Resource. It has two sub-
classes, namely rdfs:Class and rdf:Property (cf. Figure 23). When
specifying a domain speci�c schema for RDF(S), the classes and prop-
erties de�ned in this schema will become instances of these two re-
sources.

� The resource rdfs:Class denotes the set of all classes in an object-
oriented sense. That means, that classes like appl:Person or appl:Organisation
are instances of the meta-class rdfs:Class.

� The same holds for properties, i.e. each property de�ned in an ap-
plication speci�c RDF schema is an instance of rdf:Property, e.g.
appl:marriedWith

� RDFS de�nes the special property rdfs:subClassOf that de�nes the
subclass relationship between classes. Since rdfs:subClassOf is tran-
sitive, de�nitions are inherited by the more speci�c classes from the
more general classes and resources that are instances of a class are
automatically instances of all superclasses of this class. In RDF(S) it
is prohibited that any class is an rdfs:subClassOf itself or of one of
its subclasses.

� Similar to rdfs:subClassOf, which de�nes a hierarchy of classes, an-
other special type of relation rdfs:subPropertyOf de�nes a hierarchy of
properties, e.g. one may express that fatherOf is an rdfs:subPropertyOf

parentOf.

� RDFS allows to de�ne the domain and range restrictions associated
with properties. For instance, these restrictions allow the de�nition
that persons and only persons may be marriedWith and only with
other persons.

As depicted in the middle layer of Figure 2 the domain speci�c classes
appl:Person, appl:Man, and appl:Woman are de�ned as instances of rdfs:Class.
In the same way domain speci�c property types are de�ned as instances of
rdf:Property, i.e. appl:marriedWith, appl:firstName, and appl:lastName.

2.1.3 The use of XML Namespaces in RDF(S)

The XML namespace mechanism plays a crucial role for the development
of RDF schemata and applications. It allows to distinguish between dif-
ferent modeling layers (cf. Figure 2 and 3) and to reuse and integrate ex-
isting schemata and applications. At the time being, there exist a number
of canonical namespaces, e.g. for RDF, RDFS, and Dublin Core (cf. Sec-
tion 2.2). We here introduce two new namespaces that aim at two di�erent

3The reader may note that only a very small part of RDF(S) is depicted in the

RDF/RDFS layer of the �gure. Furthermore, the relation appl:marriedWith in the

data layer is identical to the resource appl:marriedWith in the schema layer.

5

R
D

F
/R

D
F

S
la

y
e

r
a

n
d

n
a
m

e
s

p
a

c
e

a
p

p
li

c
a

ti
o

n
s

p
e

c
if

ic
s

c
h

e
m

a
a

n
d

n
a

m
e
s

p
a

c
e

a
p

p
li
c

a
ti

o
n

s
p

e
c
if

ic
a
c

tu
a

l
d

a
ta

appl:lastNameappl:firstName

rdfs:Resource

rdfs:Class rdf:Property

appl:Person

appl:Man appl:Woman

appl:firstNameappl:marriedWith

appl:lastName

appl:Organisation

http://www.foo.com/W.Smith http://www.foo.com/S.Smith

rdfs:Resource

rdfs:Class rdf:Property

appl:Person

appl:Man appl:Woman

appl:firstNameappl:marriedWith

appl:lastName

appl:Organisation

http://www.foo.com/W.Smith http://www.foo.com/S.Smith

William Smith SmithSusanWilliam Smith SmithSusan

appl:firstName appl:lastName

appl:marriedWith

subClassOf (rdfs:subClassOf)

instanceOf (rdf:type)

Figure 2: An example RDF schema and its embedding in RDF(S).

objectives, viz. the comprehensive documentation of ontologies and the cap-
turing of our proposal for the modeling of ontological axioms

An actual ontology de�nition occurs at a concrete URL4. It de�nes short-
hand notations which refer to our actual namespaces for ontology documen-
tation and modeling of ontological axioms, abbreviated odoc and o, respec-
tively. An actual application that uses our example ontology will de�ne a
shorthand identi�er like appl in order to refer to this particular, application-
speci�c ontology. Figures 2 and 3 presume these shorthand notations for
the namespaces we have just mentioned.

2.1.4 XML serialization of RDF(S)

One important aspect for the success of RDF in the WWW is the way RDF
models are represented and exchanged, namely via XML. In the following
excerpt of the RDF schema document http://ontoserver.aifb.uni-karlsruhe.de/schema/example.rdf,
the classes and property types de�ned in Figure 2 are represented in XML
and the domains and ranges of the properties are de�ned using the RDF
constraint properties rdfs:domain and rdfs:range.

<rdf:Description ID="Person">

<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>

<rdfs:subClassOf

rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource"/>

</rdf:Description>

<rdf:Description ID="Man">

<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdf:Description ID="Woman">

<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

4The reader may actually compare with the documents that appear at these URLs,

e.g. http://ontoserver.aifb.uni-karlsruhe.de/schema/example.rdf

6

<rdf:Description ID="Organisation">

<rdf:type resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Class"/>

<rdfs:subClassOf

rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource"/>

</rdf:Description>

<rdf:Description ID="firstName">

<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Description>

<rdf:Description ID="lastName">

<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Description>

<rdf:Description rdf:ID="marriedWith">

<rdf:type

resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Property"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Person"/>

</rdf:Description>

2.2 Modeling ontology metadata using RDF Dublin

Core

Metadata about ontologies, such as the title, authors, version, statistical
data, etc. are important for practical tasks of ontology engineering and
exchange. In our approach we have adopted the well-established and stan-
dardized RDF Dublin Core Metadata element set (Weibel & Miller, 1998).
This element set comprises �fteen elements which together capture basic
aspects related to the description of resources. Ensuring a maximal level of
generality and exchangeability, our ontologies are labeled using this basic el-
ement set. Since ontologies represent a very particular class of resource, the
general Dublin Core metadata description does not o�er suÆcient support
for ontology engineering and exchange. Hence, we describe further semantic
types in the schema located at

http://ontoserver.aifb.uni-karlsruhe.de/schema/ontodoc

and instantiate these types when we build a new ontology. The example
below illustrates our usage and extension of Dublin Core by an excerpt of
an exemplary ontology metadata description.

<?xml version='1.0' encoding='ISO-8859-1'?>

<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc = "http://purl.oclc.org/dc"

xmlns:odoc = "http://ontoserver.aifb.uni-karlsruhe.de/schema/ontodoc">

<rdf:Description about = "">

<dc:Title>An Example Ontology</dc:Title>

<dc:creator>

<rdf:Bag>

<rdf:li>Steffen Staab</rdf:li>

<rdf:li>Michael Erdmann</rdf:li>

<rdf:li>Alexander Maedche</rdf:li>

</rdf:Bag>

</dc:creator>

<dc:date>2000-02-29</dc:date>

<dc:format>text/xml</dc:format>

<dc:description>

An example ontology modeled for this small application

</dc:description>

<dc:subject>Ontology, RDF</dc:subject>

<odoc:url>http://ontoserver.aifb.uni-karlsruhe.de/schema/example.rdf</odoc:url>

<odoc:version>2.1</odoc:version>

<odoc:last_modification>2000-03-01</odoc:last_modification>

<odoc:ka_technique>semi-automatic text knowledge acquisition</odoc:ka_technique>

7

<odoc:ontology_type>domain ontology</odoc:ontology_type>

<odoc:no_concepts>24</odoc:no_concepts>

<odoc:no_relations>13</odoc:no_relations>

<odoc:no_axioms>9</odoc:no_axioms>

<odoc:highest_depth_level>4</odoc:highest_depth_level>

</rdf:Description>

</rdf:RDF>

3 Modeling of Axioms in RDF(S)

Having prepared the object-model and documentation backbone for ontolo-
gies in RDF(S), we may now approach the third pillar of our approach,
viz. the speci�cation of axioms in RDF(S). The basic idea that we pursue
is the speci�cation and serialization of axioms in RDF(S) such that they
remain easily representable and exchangeable between di�erent ontology
engineering, representation and inferencing environments. The principal
speci�cation needs to be rather independent of particular target systems
(to whatever extent this is possible at all) in order to be of value in a dis-
tributed web setting with many di�erent basic applications.

3.1 Axioms are Objects, too

Representation of interesting axioms that are deemed to be applied in dif-
ferent inferencing applications turns out to be diÆcult. The reason is that
typically some kind of non-propositional logic is involved that deals with
quanti�ers and quanti�er scope. Axioms are diÆcult to grasp, since the rep-
resentation of quanti�er scope and its likes is usually what the nitty-gritty
details of a particular syntax, on which a particular inferencing application
is based, are about. An ontology representation in RDF(S) should, however,
abstract from particular target systems.

A closer look at the bread and butter issues of ontology modeling reveals
that many axioms that need to be formulated aim at much simpler purposes
than arbitrary logic structures. Indeed, we have found that many axioms
in our applications belong to one of a list of major axiom categories:

1. Axioms for a relational algebra

(a) Reexivity of relations

(b) Irreexivity of relations

(c) Symmetry of relations

(d) Asymmetry of relations

(e) Antisymmetry of relations

(f) Transitivity of relations

(g) Inverse relations

2. Composition of relations5

3. (Exhaustive) Partitions6

4. Axioms for subrelation relationships

5. Axioms for part-whole reasoning

5E.g., fatherInLawOf is composed by the relations fatherOf and

marriedWith.
6E.g., concepts Man and Woman share no instances.

8

6. Axioms that are derivations of the above mentioned

(a) Locally symmetric relations

(b) Locally transitive relations

(c) Locally inverse relations

Our principal idea for representing ontologies with axioms in RDF(S) is
based on this categorization. The categories allow to distinguish between
the structures that are repeatedly found in axiom speci�cations from a cor-
responding description in a particular language. Hence, one may describe
axioms as complex objects (one could term them instantations of axiom
schemata) in RDF(S) that refer to concepts and relations, which are also
denoted in RDF(S). For sets of axiom types we presume the de�nition of
di�erent RDF schemata. Similar to the case of simple metadata structures,
the RDF schema responsible for an axiom categorization obliges to a partic-
ular semantics of its axiom types | which may be realized in a number of
di�erent inferencing systems like description logics systems (e.g., (Horrocks,
1998)) or frame logic systems (Decker et al., 1998). The schema de�ned in
our namespace http://ontoserver.aifb.uni-karlsruhe.de/schema/ontordf

stands for the semantics de�ned in this and our previous papers (Maed-
che et al., 2000; Staab & Maedche, 2000).7 The schema is also listed in the
appendix of this paper (cf. Section A). Other communities may, of course,
�nd other reasoning schemes more important, or they may just need an
extension compared to what we provide here.

At the symbol level, we provide a RDF(S) syntax (i.e. serialization) to
denote particular types of axioms. The categorization really constitutes a
knowledge level that is independent from particular machines. In order to
use an ontology denoted with our RDF(S) approach, one determines the
appropriate axiom category and its actual instantiation found in a RDF(S)
piece of ontology, translates it into a corresponding logical representation
and executes it by an inferencing engine that is able to reason with (some
of) the relevant axiom types.

Figure 3 summarizes our approach for modeling axiom speci�cations in
RDF(S). It depicts the core of the RDF(S) de�nitions and our extension
for axiom categorizations (i.e. our ontology meta layer). A simple ontology,
especially a set of application speci�c relationships, is de�ned in terms of
our extension to RDF(S).

In the following subsections, we will further elucidate our approach by
proceeding through a few simple examples of our categorization of axiom
speci�cations listed above. In particular our scheme is, (A) to show the rep-
resentations of axioms in RDF(S) and (B) to show a structurally equivalent
F(rame)-Logic representation that may easily be derived from its RDF(S)
counterpart (cf. (Kifer et al., 1995; Decker, 1998) on F-Logic). Then, (C) we
exploit the expressiveness of F-Logic in order to specify translation axioms
that work directly on the F-Logic object representation of axioms. Thus,
(B) in combination with (C) describes a formally concise and executable
translation. For better illustration, we �nally, (D), indicate the result of
our translation by exemplary target representations of the axioms stated in
RDF(S).

The reader should note here that we do neither believe that F-Logic ful-
�lls all the requirements that one might wish from an ontology inferencing
language, nor do we believe that the axiom types we mention exhaust all

7The reader may note that we have chosen names to coincide with many conventional

names, e.g. \symmetry" of relations.

9

R
D

F
/R

D
F

S
la

y
e
r

a
n

d
n

a
m

e
s

p
a

c
e

A
p

p
li

c
a
ti

o
n

-s
p

e
c

if
ic

s
c

h
e

m
a

a
n

d
n

a
m

e
s
p

a
c

e

A
p

p
li

c
a
ti

o
n

-
s

p
e

c
if

ic
a

c
tu

a
l

d
a
ta

William Smith

appl:lastNameappl:firstName

SmithSusan

appl:firstName appl:lastName

appl:marriedWith

o
n

to
lo

g
y

m
e
ta

la
y

e
r

a
n

d
n

a
m

e
s
p

a
c

e

o:secondComponent
o:firstComponent

o:com
posee

rdfs:Resource

rdfs:Class rdf:Property

appl:Person

appl:Man appl:Woman appl:fatherInLaw appl:marriedWithappl:fatherOf

appl:Organisation

http://www.foo.com/W.Smith http://www.foo.com/S.Smith

o:Relationo:Partition

o
:P

a
rt

O
fR

e
l

o
:i
s
In

ve
rs

e
R

e
la

ti
o

n
O

f

o:Composition

o
:R

e
fl
e
x
iv

e

o
:I
rr

e
fl
e

x
iv

e

o
:A

s
y
m

m
e
tr

ic

o
:T

ra
n

s
it
iv

e

o
:S

y
m

m
e
tr

ic

o:Partonomic-

RolePropagation

rdfs:Resource

rdfs:Class rdf:Property

appl:Person

appl:Man appl:Woman appl:fatherInLaw appl:marriedWithappl:fatherOf

appl:Organisation

http://www.foo.com/W.Smith http://www.foo.com/S.Smith

o:Relationo:Partition

o
:P

a
rt

O
fR

e
l

o
:i
s
In

ve
rs

e
R

e
la

ti
o

n
O

f

o:Composition

o
:R

e
fl
e
x
iv

e

o
:I
rr

e
fl
e

x
iv

e

o
:A

s
y
m

m
e
tr

ic

o
:T

ra
n

s
it
iv

e

o
:S

y
m

m
e
tr

ic

o:Partonomic-

RolePropagation

instanceOf (rdf:type)

subClassOf (rdfs:subClassOf)

Figure 3: An excerpt of the example object model and an instantiation of
classes, properties, and axioms in RDF(S)

relevant types. Rather we believe that our experiences in particular domains
will push for further categorizations of axioms, further translation mecha-

nisms, and, hence, further extensions of the core RDF(S) representation.
All that will have to be agreed upon by communities that want to engi-
neer and exchange ontologies with interesting axioms across particularities
of inference engines. Our main objective is to acquaint the reader with our
principle methodology that is transportable to other translation approaches,
inferencing systems, and other axiom types, when need arises.

3.2 Axioms for a relational algebra

The axiom types that we have shown above are listed such that simpler
axioms tend to appear �rst. Axiom speci�cations that are referred to as
\axioms for a relational algebra" rank among the simplest ones. They de-
scribe axioms with rather local e�ects, because their implications only a�ect
one or two relations. We here show one simple example of these in order to
explain the basic approach and some syntax. The principle approach easily
transfers to all axiom types from 1.(a)-(g) to 5.

Let us consider an example for symmetry. A common denotation for the
symmetry of a relation marriedWith (such as used for \William is married
with Susan') in �rst-order predicate logic boils down to:

(1) 8X;Y marriedWith(X;Y) marriedWith(Y;X).

In F-Logic, this would be a valid axiom speci�cation, too. Most often,
however, modelers that use F-Logic take advantage of the object-oriented
syntax. Concept de�nitions in F-Logic for Person having an attribute
marriedWith and Man being a subconcept of Person is given in (2), while
a fact that William is a Man who is marriedWith Susan appears like in (3).

10

(2) Person[marriedWith)) Person].
Man::Person.

(3) William:Man[marriedWith !! Susan].

Hence, a rule corresponding to (1) is given by (4).

(4) 8X;Y Y [marriedWith!! X] X [marriedWith!! Y]:

We denote symmetry as a predicate that holds for particular relations:

(5) Symmetric(marriedWith).

In RDF(S), this speci�cation may easily be realized by a newly agreed
upon class o:Symmetric:

(6) <o:Symmetric rdf:ID="marriedWith"/>

For a particular language like F-Logic, one may then derive the impli-
cations of symmetry by a general rule and, thus, ground the meaning of
the predicate Symmetric in a particular target system. The corresponding

transformation rule (here in F-Logic) states that if for all symmetric rela-
tions R and object instances X and Y it holds that X is related to Y via

R, then Y is also related to X via R.

(7) 8R;X; Y Y [R!! X] symmetric(R) and X [R!! Y]:

This small example already shows three advantages:

1. The axiom speci�cation (6) is rather target-system independent.

2. It is easily realizable in RDF(S).

3. Our approach for denoting symmetry is much sparser than its initi-

tal counterpart (4), because (7) is implicitly assumed as the agreed
semantics for our schema de�nition.

The latter point deserves some more attention: Obviously, the agreement
cannot directly be described in RDF(S). Thus, it is subject to speci�cations
of RDF(S) terminology outside of the RDF(S) documents, which need to
be agreed upon by a community of users. This might be considered a
disadvantage, however, this is eventually the case for RDF, RDFS, and all
of their extensions like OIL or DAML+OIL.

Following our strategy sketched in the previous subsection, these steps
from RDF representation to axiom meaning are now summarized in Table 1.
For easier understanding, we will reuse this table layout also in the following
subsection.

A <o:Symmetric rdf:ID="marriedWith"/> RDF(S)

B Symmetric(marriedWith) F-Logic Representation

C 8R;X; Y Y [R!! X] Symmetric(R)

and X[R!! Y]: Translation Axiom

D 8X;Y X[marriedWith!! Y]
Y [marriedWith!! X]: Target Axiom

Table 1: Symmetry

11

A <o:Composition rdf:ID="FatherInLawComp">

<o:composee rdf:Resource="fatherInLawOf"/>

<o:firstComponent rdf:Resource="fatherOf"/>

<o:secondComponent rdf:Resource="marriedWith"/>

</o:Composition>

B Composition(fatherInLawOf, fatherOf, marriedWith)

C 8R;Q;S;X; Y; Z X[S !! Z]
Composition(S;R;Q)andX[R!! Y] and Y [Q!! Z]:

D 8X;Y; Z X[fatherInLawOf!! Z]
X[fatherOf!! Y] and Y [marriedWith!! Z]:

Table 2: Composition

3.3 Composition of relations

The next example concerns composition of relations. For instance, if a �rst
person is fatherOf a second person who is marriedWith a third person
then one may assert that the �rst person is the fatherInLawOf the third
person. Again di�erent inferencing systems may require completely dif-
ferent realizations of such an implication. The object description of such

an axiom may easily be denoted in F-Logic or in RDF(S) (cf. Table 2).
The transformation rule works very similarly as the transformation rule for
symmetry.

3.4 Locally inverse relations

In our practice of implementing several knowledge portals8 we found that
the inferences brought about by categories 1 to 5 were extremely useful.
However, we also felt that these categories were often too general to be
applied directly or when they were applied they easily yielded overly generic
results.

For instance, given a conceptual model with concepts WeddingParty,
Person, PartyService and properties hasMember, partyAt, and serve. The
de�nition of inverses is desirable. However, de�ning that the inverse of
partyAt is hasMember and that the inverse of serve is also hasMember

leads to undesired consequences, viz. it entails that for every person who
does partyAt a particular wedding party there is a | correct |- relation,
hasMember, from the party to this person and an | incorrect | relation,
serve, from that person to that party. Thus, without intricate changes
to the conceptual model one would have to live without the de�nition of
inverses.

An easily viable way around the problem is the de�nition of local in-
verseness that also consider the domain of a relation9, before asserting an
inverse relationship. Thus, (8) asserts that the inverse of hasMember is
partyAt, only if the corresponding domain is restricted to WeddingParty.

(8) LocalInverse(WeddingParty; hasMember;Person; partyAt)

Table 3 captures the corresponding translation and target axioms.

8Cf. (Staab et al., 2000; Staab & Maedche, 2001; Staab et al.,

2001) and http://ontobroker.aifb.uni-karlsruhe.de/demos.html,

http://ontobroker.semanticweb.org/.
9Actually, we have extended the model to consider either restrictions of the domain

of a property or of its range or of its domain and its range.

12

A <o:LocalInverse rdf:ID="hasMemberVsPartyAt">

<o:firstDomain rdf:Resource="WeddingParty"/>

<o:firstRelation rdf:Resource="hasMember"/>

<o:secondDomain rdf:Resource="Person"/>

<o:secondRelation rdf:Resource="partyAt"/>

</o:LocalInverse>

B LocalInverse(WeddingParty;hasMember;Person; partyAt)

C 8X;Y;R;C;Q;D Y [Q!! X]
LocalInverse(C;R;D;Q) and X[R!! Y] and X : C:

8X;Y;R;C;Q;D Y [R!! X]
LocalInverse(C;R;D;Q) and X[Q!! Y] and X : D:

D 8X;Y Y [partyAt!! X]
X[hasMember!! Y] and X : WeddingParty:

8X;Y Y [hasMember!! X] X[partyAt!! Y] and X : Person:

Table 3: Locally inverse

3.5 General axioms

Our approach of axiom categorization is not suited to cover every single

axiom speci�cation one may think of. Hence, we still must allow for axioms
that are speci�ed in a particular language like �rst-order predicate logic
and we must allow for their representation in RDF(S). There are principally
two ways to approach this problem. First, one may conceive a new RDF(S)
representation format that is dedicated to a particular inferencing system for
reading and performing inferences. This is the way that has been choosen
for OIL (Horrocks et al., 2000), which has a RDF(S) style representation
for a core description logics, or Metalog (Marchiori & Saarela, 1998), which
represents Horn clauses in RDF(S) format.

The alternative is to fall back to a representation that is even more
application speci�c, viz. the encoding of ontological axioms in pure text, or
\CDATA" in RDF speak (cf. the example below). In fact, the latter is a
very practical choice for many application-speci�c axioms | once you make
very deep assumptions about a particular representation, you are also free
to use whatever format you like.

<o:GeneralAxiom rdf:ID="WhoPaidForTheWeddingParty">

<o:text lang="flogic">

<![CDATA[

FORALL w, x, y, z

w:Wedding[groom->x, bride->y, billTo->z] <-

z[fatherInLawOf->x:Man] AND x[marriedWith->y].

]]>

</o:text>

</o:GeneralAxiom>

4 Case Study: Semantic Community Web Por-

tal

4.1 Setting

The semantic community Web portal, KA2Portal, that we have built for
the knowledge acquisition community (Staab et al., 2000) serves as an entry
point for linking to and sharing knowledge about the knowledge acquisition
research community and its work. Information may be provided and ac-

13

cessed using ontology structures for easier discovery of ressources as well as
for easier development and maintenance of the portal.

Figure 4 depicts the overall framework. Based on the community ontol-
ogy, actual facts are contributed by the knowledge acquisition community
or crawled from their web sites, e.g. annotated web pages or RDF sources.
The SiLRi reasoning engine (Decker et al., 1998) provides the ontology ser-
vice and allows for querying the accumulated knowledge base. Thus it acts
as the back end for the actual portal. Users may either query the inference
engine by clicking together a query or they may use forms of the web portal
to retrieve knowledge.

Semantic inferences are crucial for the service that is provided by the
KA2Portal. So far, people could contribute semantic information, e.g. by
providing RDF sources. However, it was so far impossible to provide seman-
tics about these RDF sources beyond the means that are inherent in core
RDF(S). Conversely, the ontology was described in F-Logic (Kifer et al.,
1995). Therefore, people could look at the KA2 ontology, but the ontology
was initially not built with the spirit of the Semantic Web, as it was not
transparent to software agents on the Web and not reusable by them.

Annotated web pages

BibTeX Bibliography
Database

RDF

HTML-A

HTML-A

HTML-A

Categorized &
Instantiiated

Axioms

...

Community
Ontology

query

Community Web Portal

Crawl

instantiate

instantiate

SiLRi Reasoning
Ontology + Service

Figure 4: KA2Portal

Hence, there came up the need for representing the whole ontology,
including axioms, on the Web. Thereby we felt two needs. First we did
not want to come up with our own ideosyncratic syntax, but rather wanted
to adhere to RDF(S) mechanisms as elaborated above. Second, we wanted
to provide some tool support for engineering axioms. The framework that
we have shown above allowed us both. We will show some excerpt of its
application in the KA2Portal in the following.

4.2 Modeling the core ontology

We use our Ontology Engineering Environment OntoEdit for engineering
class and property de�nitions in RDF(S) with graphical means. In partic-
ular, we may express that (cf. Figure 5 left and upper right window)

14

� Book, Journal, and Article are all subclasses of Publication

� A Book containsArticle Article

� A Journal containsArticle Article

� An Article is inBook Book

� An Article is inJournal Journal

This is speci�ed in RDF(S) as follows:

<rdfs:Class rdf:ID="Publication"/>

<rdfs:Class rdf:ID="Article">

<rdfs:subClassOf rdf:resource="Publication"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Book">

<rdfs:subClassOf rdf:resource="Publication"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Journal">

<rdfs:subClassOf rdf:resource="Publication"/>

</rdfs:Class>

<rdf:Property rdf:ID="containtsArticle">

<rdfs:domain rdf:resource="Publication"/>

<rdfs:range rdf:resource="Article"/>

</rdf:Property>

<rdf:Property rdf:ID="inBook"/>

<rdfs:domain rdf:resource="Article"/>

<rdfs:range rdf:resource="Book"/>

</rdf:Property>

<rdf:Property rdf:ID="inJournal"/>

<rdfs:domain rdf:resource="Article"/>

<rdfs:range rdf:resource="Journal"/>

</rdf:Property>

The ontology de�nes the conceptual backbone for contributing RDF

metadata, e.g. bibliography entries:

<ka2:Book rdf:ID="book:WeavingTheWeb">

<ka2:author rdf:resource="http://w3c.org/person/tbl"/>

<ka2:title>Weaving The Web</ka2:title>

....

</ka2:Book>

4.3 Modeling an ontology with axioms in RDF(S)

The axioms complete the core ontology. For KA2Portal we use locally
inverse relations in order to express that:

� If a particular book containsArticle a particular article, this article
is related via inBook to that book.

� If a particular article appears inBook in a particular book, this book
is related via containsArticle that article.

� If a particular journal containsArticle a particular article, this article
is related via inJournal to that book.

� If a particular article appears inJournal in a particular journal, this
journal is related via containsArticle that article.

15

Left: KA2 Taxonomy; Right: Interface for Inverseness and Local
Inverseness of Relations explanation!!

Figure 5: Snapshot of OntoEdit Web Ontology Workbench

Speci�ed in our RDF(S) style denotation of axioms this boils down to:

<o:LocalInverse>

<o:firstDomain rdf:Resource="Book"/>

<o:firstRelation rdf:Resource="containsArticle"/>

<o:secondDomain rdf:Resource="Article"/>

<o:secondRelation rdf:Resource="inBook"/>

</o:LocalInverse>

<o:LocalInverse>

<o:firstDomain rdf:Resource="Journal"/>

<o:firstRelation rdf:Resource="containsArticle"/>

<o:secondDomain rdf:Resource="Article"/>

<o:secondRelation rdf:Resource="inJournal"/>

</o:LocalInverse>

OntoEdit allows to provide the components, o:firstDomain, o:firstRelation,
o:secondDomain, o:secondRelation, in a table (cf. last two lines in table of
right lower window in Figure 5). If o:firstDomain and , o:secondDomain are
provided, OntoEdit outputs the speci�cation for locally inverse relations. If
only o:firstRelation and o:secondRelation are provided, they are assumed
to be immediate inverses.

5 Related Work

The proposal described in this paper is based on several related approaches,
viz. we have built on considerations made for the RDF inference service
SiLRi (Decker et al., 1998), the ontology engineering environments ODE
(Bl�azquez et al., 1998) and Prot�eg�e (Grosso et al., 1999), the ontology in-
terchange language OIL (Horrocks et al., 2000), considerations made by

16

Gruber (Gruber, 1993), and our own earlier work on general ontology engi-
neering (Maedche et al., 2000; Staab & Maedche, 2000).

A purpose similar to our general goal of representing ontologies in RDF(S)
is pursued with OIL (Horrocks et al., 2000). Actually, OIL might be consid-
ered a very sophisticated instantiation of our approach, as the de�nition of
concepts and relations in description logics is equivalent to the instantiation
of a small number of axiom schemata in a particular logical framework (cf.
(Brachman, 1979)).

There are a numer of other approaches for ontology exchange and rep-
resentation in XML formats that we do not want to elaborate here, as they
did not intend to support the RDF(S) metadata standard, which is one of
our primary concerns (e.g. (Marchiori & Saarela, 1998; Karp et al., 1999;
Hein & Hendler, 2000)).

Concerning inferencing rather than representation, SiLRi (Decker et al.,
1998) was one of the �rst approaches to provide inferencing facilities for
RDF. It delivers most of the basic inferencing functions one wants to have
in RDF and, hence, has provided a good start for many RDF applications.
In fact, it even allows to use axioms, but these axioms may not be de-
noted in RDF, but only directly in F-Logic. It lacks capabilities for axiom
representation in RDF(S) that our proposal provides.

Concerning engineering, we have discussed how to push the engineering
of ontological axioms from the symbol level onto the knowledge level in our
earlier proposals (Maedche et al., 2000; Staab & Maedche, 2000). There we
follow and extend the general arguments made for ODE (Bl�azquez et al.,
1998) and Ontolingua (Fikes et al., 1997). This strategy has helped us here
in providing an RDF(S) object representation for a number of di�erent ax-
iom types. Nearest to our actual RDF(S)-based ontology engineering tool
is Prot�eg�e (Grosso et al., 1999), which provides comprehensive nd sophisti-
cated support for editing RDFS and RDF. Nevertheless, Prot�eg�e currently
lacks any support for axiom modeling and inferencing | though our ap-
proach may be very easy to transfer to Prot�eg�e, too.

6 Discussion

We have presented a new approach towards engineering ontologies in RDF
and RDFS. Our objectives aim at the usage of existing inferencing services
such as provided by deductive database mechanisms (Decker et al., 1998)
or description logics systems (Horrocks, 1998). We reach these objectives
through a methodology that classi�es axioms into axiom types according
to their semantic meaning. Each type receives an object representation
that abstracts from scoping issues and is easily representable in RDF(S).
Axiom descriptions only keep references to concepts and relations necessary
to distinguish one particular axiom of one type from another one of the
same type.

Our proposed extension of RDF(S) has been made with a clear goal
in mind | the complete retention of the expressibility and semantics of
RDF(S) for the representation of ontologies. This includes the relationship
between ontologies and instances, both represented in RDF(S). Especially,
the notion of consistency (cf. (Brickley & Guha, 1999)) between an RDF
model and a schema also holds for ontologies expressed in RDF(S). The
integration of the newly de�ned resources has been carried out in a such
a way that all RDF processors capable of processing RDF schemas can
correctly interpret RDF models following the ontology schema, even if they

17

do not understand the semantics of the resources in the o-namespace.
Special applications like OntoEdit (Maedche et al., 2000) can interpret

the o-namespace correctly and thus fully bene�t from the richer modelling
primitives, if the RDF model is valid10 according to the de�ned ontology
schema.

Acknowledgements. The research presented in this paper has been par-
tially funded by BMBF under grant number 01IN802 (project \GETESS")
and by EU in the IST-1999-10132 project On-To-Knowledge. We thank
our student Dirk Wenke who implemented large parts of the RDF(S)-based
ontology editor and our colleague Stefan Decker who �rst proposed RDF(S)
for speci�cation of ontologies.

References

Bl�azquez, M., Fern�andez, M., Garc�ia-Pinar, J. M., & G�omez-P�erez, A. (1998).

Building ontologies at the knowledge level using the ontology design envi-

ronment. In Proc. of the 11th Int. Workshop on Knowledge Acquisition,

Modeling and Mangement (KAW'98), Ban�, Canada, October 1998.

Brachman, R. (1979). On the epistomological status of semantic networks. Asso-

ciative Networks, pages 3{50.

Brickley, D. & Guha, R. (1999). Resource description framework (RDF) schema

speci�cation. Technical report, W3C. W3C Proposed Recommendation.

http://www.w3.org/TR/PR-rdf-schema/.

Decker, S. (1998). On domain-speci�c declarative knowledge representation and

database languages. In Proc. of the 5th Knowledge Representation meets

Databases Workshop (KRDB98), pages 9.1{9.7.

Decker, S., Brickley, D., Saarela, J., & Angele, J. (1998). A query and infer-

ence service for RDF. In QL'98 - The Query Languages Workshop. W3C.

http://www.w3.org/TandS/QL/QL98/.

Fikes, R., Farquhar, A., & Rice, J. (1997). Tools for assembling modular ontologies

in Ontolingua. In Proc. of AAAI 97, pages 436{441.

Grosso, E., Eriksson, H., Fergerson, R. W., Tu, S. W., & Musen, M. M. (1999).

Knowledge modeling at the millennium | the design and evolution of

Prot�eg�e-2000. In Proc. of the 12th International Workshop on Knowledge

Acquisition, Modeling and Mangement (KAW'99), Ban�, Canada, October

1999.

Gruber, T. (1993). A translation approach to portable ontology speci�cations.

Knowledge Acquisition, 5(1):199{220.

Hein, J. & Hendler, J. (2000). Dynamic Ontologies on the Web. In Proceedings

of American Association for Arti�cial Intelligence Conference (AAAI-2000).

Menlo Park, California, AAAI Press, pages 443{449.

Horrocks, I. (1998). Using an expressive description logic: FaCT or �ction? In

Proc. of KR-98, pages 636{647.

Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C.,

Harmelen, F. V., Klein, M., Staab, S., & Studer, R. (2000). The ontology

interchange language oil: The grease between ontologies. Technical report,

Dep. of Computer Science, Univ. of Manchester, UK/ Vrije Universiteit Am-

sterdam, NL/ AIdministrator, Nederland B.V./ AIFB, Univ. of Karlsruhe,

DE. http://www.cs.vu.nl/~dieter/oil/.

10cf. the \Validator" section in http://www.ics.forth.gr/proj/isst/RDF/ for a

set of operations to check for validity

18

Karp, P. D., Chaudhri, V. K., & Thomere, J. (1999). XOL: An XML-based

ontology exchange language. Technical report. Version 0.3.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented

and frame-based languages. Journal of the ACM, 42(4):741{843.

Lassila, O. & Swick, R. R. (1999). Resource description framework (RDF) model

and syntax speci�cation. Technical report, W3C. W3C Recommendation.

http://www.w3.org/TR/REC-rdf-syntax.

Maedche, A., Schnurr, H.-P., Staab, S., & Studer, R. (2000). Representation

language-neutral modeling of ontologies. In Frank, U. (Ed.), Proceedings of

the German Workshop "Modellierung-2000". Koblenz, Germany, April, 5-7,

2000. F�olbach-Verlag.

Marchiori, M. & Saarela, J. (1998). Query + metadata + logic

= metalog. In QL'98 - The Query Languages Workshop. W3C.

http://www.w3.org/TandS/QL/QL98/.

Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr,

H.-P., Studer, R., & Sure, Y. (2000). Semantic community web portals. In

WWW9 | Proceedings of the 9th International World Wide Web Confer-

ence, Amsterdam, The Netherlands, May, 15-19, 2000. Elsevier.

Staab, S. & Maedche, A. (2001). Knowledge portals | ontologies at work. AI

Magazine, 21(2).

Staab, S., Schnurr, H.-P., Studer, R., & Sure, Y. (2001). Knowledge processes

and ontologies. IEEE Intelligent Systems, 16(1).

Staab, S. & Maedche, A. (2000). Axioms are objects, too | ontology engineering

beyond the modeling of concepts and relations. In Benjamins, V., Gomez-

Perez, A., & Guarino, N. (Eds.), Proceedings of the ECAI 2000 Workshop

on Ontologies and Problem-Solving Methods. Berlin, August 21-22, 2000.

Weibel, S. & Miller, E. (1998). Dublin core metadata. Technical report.

http://purl.oclc.org/dc.

A The RDF schema for categories of relation-

ships

<?xml version='1.0' encoding='ISO-8859-1'?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

<rdfs:Class ID="Relation">

<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Class>

<rdfs:Class ID="Asymmetric">

<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Reflexive">

<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Transitive">

<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Irreflixive">

<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="Symmetric">

<rdfs:subClassOf rdf:resource="#Relation"/>

</rdfs:Class>

<rdfs:Class ID="PartOfRel">

<rdfs:subClassOf rdf:resource="#Relation"/>

19

</rdfs:Class>

<rdf:Description ID="isInverseRelationOf">

<rdf:type rdf:resource="#Relation"/>

</rdf:Description>

<!-- Definitions for LOCALLY-INVERSE-RELATIONS -->

<rdfs:Class ID="LocalInverse"/>

<rdf:Property ID="firstDomain">

<rdfs:domain rdf:resource="#LocalInverse"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Class"/>

</rdf:Property>

<rdf:Property ID="firstRelation">

<rdfs:domain rdf:resource="#LocalInverse"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdfs:Property ID="secondDomain">

<rdfs:domain rdf:resource="#LocalInverse"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Class"/>

</rdfs:Property>

<rdfs:Property ID="secondRelation">

<rdfs:domain rdf:resource="#LocalInverse"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Property>

<!-- Definitions for COMPOSITION -->

<rdfs:Class ID="Composition"/>

<rdf:Property ID="composee">

<rdfs:domain rdf:resource="#Composition"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property ID="firstComponent">

<rdfs:domain rdf:resource="#Composition"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdfs:Property ID="secondComponent">

<rdfs:domain rdf:resource="#Composition"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Property>

<!-- Definitions for PARTITION -->

<rdfs:Class ID="Partition"/>

<rdfs:Property ID="partitionee">

<rdfs:domain rdf:resource="#Partition"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Property>

<rdfs:Property ID="parts">

<rdfs:domain rdf:resource="#Partition"/>

<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>

</rdfs:Property>

<!-- Definitions for General Axioms-->

<rdfs:Class ID="GeneralAxiom">

<rdfs:subClassOf rdf:resource="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#Resource">

</rdfs:Class>

<rdf:Property ID="lang">

<rdfs:domain rdf:resource="GeneralAxiom"/>

<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Property>

<rdf:Property ID="text">

<rdfs:domain rdf:resource="GeneralAxiom"/>

<rdfs:range rdf:resource="http://www.w3.org/TR/xmlschema-2/#string"/>

</rdf:Property>

</rdf:RDF>

