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Abstract:  We concern ourselves with the situation Here we investigate an extension of the basic concept of
in which we use the Dempster-Shafer belief structure to a compatibility relation to allow for the representation
provide a representation of a random variables in which of non-monotonic knowledge in the framework of the
our knowledge of the probability distribution is D-S theory..
imprecise.  We discuss the role of compatibility
relations as a means of enabling inference about one 2. Dempster-Shafer Structure and
variable, the secondary variable, based upon knowledge Information
about another variable, the primary.  We define
monotonicity as a condition in which an increase in A D-S belief structure [2] on a set X is a mapping
information about the primary variable in an inference

m: 2x → [0, 1], called a basic probability assignment
should not result in a decrease in information about the

(bpa), such 
secondary variable.  We show what are the conditions

(1) ∑
A⊂ X

m(A) = 1required of a compatibility relation to lead to monotonic
and nonmonotonic inferences.  We provide some

(2)  m(∅ ) = 0.examples of nonmonotonic relations.
The subsets of X for which m(A) ≠ 0 are called the focal
elements of m.  We shall find it convenient to denote1. Introduction
these focal elements as Aj.

One use of this structure is that of representingThe pioneering work of Dempster and Shafer [1, 2]
information about the probability distribution of ahas resulted in the development of an uncertainty
variable V taking its value in the set X in the case inmodeling framework which can be used to provide a
which the probability distribution is impreciselygeneralization of probability theory by allowing the
known.  In this interpretation the assignment m(Aj) =imprecise knowledge of the probabilities.  Here our
aj is meant to indicate that in some unknown manner ajknowledge about the probabilities of the various events

is usually expressed in terms of interval in which it units of probability are to be divided among the
lies, it lacks specificity.  Increase in information about elements in Aj.  
the underlying probabilities results in a narrowing of Example: A simple example will illustrate type of
these intervals. representation.  Assume we are about to have a

Within this D-S framework a concept which plays presidential election and are concerned about the interest
rates that will result.  Assume there are three candidatesa central role is the compatibility relation, it provides
for president, Tom, Dick and Harry.  The polls tell usknowledge about the allowable solutions to one variable
the probability of each candidate winning: Prob(Tom) =given information about a second variable [3].  It is
0.5, Prob(Dick) = 0.3 and Prob(Dick) = 0.2.  In additionclosely related to the concept of a rule in knowledge
each candidate has specified his policy regarding interestbased systems.  A fundamental inference schema within
rates, Tom said he wants low interest rates, between 4%

the Dempster-Shafer theory involves the use of a
and 6%, Dick said he wants interest rates between 5%

compatibility relation and a belief structure on one of and 8% and Harry said he wants interest rates between
the variables, called the primary variable, to infer a 7% and 10%.  This information induces a D-S belief
belief structure on the secondary variable.  A structure on the set X of possible interest rates.  Here
compatibility relation is called monotonic if an increase our focal elements are A1 ={x/ 4% ≤ x ≤ 6%}, A2 ={x/
in information about the primary variable can't result in 5% ≤ x ≤ 8%} and A3 ={x/ 7% ≤ x ≤ 10%} and
a loss of information about the secondary variable.



m(A1) = Prob(Tom) = 0.5, m(A2) = Prob(Dick) = 0.3 In [4] Yager has introduced an idea of containment
of two D-S structures.and m(A3) = Prob(Harry) = 0.3.
Definit ion:   Assume m1  and m2  are two D-SAssume m is a D-S belief structure on X, two
structures on X.  Let Ai be the q focal elements of m1,important measures associated with this are plausibility

and belief.  Let B be any subset of X the plausibility of where m1(Ai) = ai.  Let Bj be the n focal elements of

B, denoted Pl(B), is defined as Pl(B) = ∑
A⊂ X

Poss[B/A] m2, where m2(Bj) = bj.  If a set of values cij for i = 1

to q and j = 1 to n, can be found which have the
m(A) where Poss[B/A] = Maxx[B(x) ∧ A(x)], B(x) and following properties,

0 ≤ cij ≤ 1A(x) being the characteristic functions of the sets A and
B and ∧  = min.  The second measure, the belief of B,

∑
j=1

n
cij = ai     i = 1 to qdenoted Bel(B), is defined as Bel(B) = ∑

A⊂ X

Cert[B/A]

∑
j=1

q

cij = bj     j = 1 to mm(A) where Cert[B/A] = 1 – Poss[B —/A].
Observation: If Aj are the focal elements of m then

cij > 0 only if Ai ⊂ BjPl(B) = ∑
j, Aj ∩B≠∅

m(Aj) and Bel(B) = ∑
j, Aj ⊆ B

m(Aj)
then we say m1 ⊂ m2

Yager [4] has proved the following theorem,Observation:  If B1 ⊂ B2 then Pl(B1) ≤ Pl(B2) and
Theorem:  m1 ⊂ m2 → m1 S m2.

Bel[B1] ≤ Bel[B2].
Let us briefly look at the issue of combining belief

Observation: If B ≠ ∅  then Pl(B) ≥ Bel(B)
structures.  Assume m1 and m2 are two bpa on X

In interpreting a D-S belief structure as providing
providing information about V.  The effect of bothimprecise information about the probability of a
pieces of information, obtained via Dempster's rule [1,variable V the significance of these two measures is that
2], is a conjuncted bpa m on X denoted m = m1 ∩ m2they provide upper and lower bounds on the probability
where m for each A ≠ ∅of B [1], 

m(A) = 1
1 - K

∑
Ai∩Bj = A

m(Ai) m2(Bj).Bel(B) ≤ Prob(V ∈ B) ≤ Pl(B).
Assuming that V is a random variable, its generated

by a probability distribution, the best knowledge we can here Ai and Bj are the focal elements of m1 and m2 and
have about V is specific knowledge of the probability of

K = ∑
Ai∩Bj = ∅

m(Ai) m2(Bj).each subset.  For any subset B we shall define R(B) =
[Bel(B), Pl(B)], our range of indefiniteness about the

In above K is interpreted as the degree of conflictprobability of the subset B.  The smaller R(B) the more
between m1 and m2, if K = 1 they are completelywe know about the probability of B.
conflicting while if K = 0 there is no conflict. Definit ion:   Assume m1  and m2  are two D-S

structures on X if R1(B) ⊆ R2(B) for all B ⊆  X, we
3.  Compatibil i ty Relations andshall say m1 is more specific than m2 and denote this
Inference in D-S Structures

as m1 S m2.

It is clear that the more specific a D-S structure the Information about one variable can be obtained
more information we have about the probability using information about another variable if we have
distribution. some knowledge about how they are related, this forms
Observation: If a' ≤ a and b' ≥ b and it is known that the basis of most inference systems.  Assume V and U
Prob(B) ∈ [a, b] and then we can infer that Prob(B) ∈ are two variables taking their values in the sets X and Y
[a', b'] respectively.  In D-S theory compatibility relations are

This observation allows us to introduce a logical used to represent this knowledge.
entailment principle associated with D-S structures [4]: Definition: A  type I compatibility relation C
if we know that m1 is a valid representation of the between V and U is a relation on X × Y such that for
probability structure on X and if m1 S m2 then m2 each x ∈ X there exists at least one y such that (x, y) ∈

C and for each y ∈ Y there exists at least one x ∈ Xalso represents a valid, although less informative,
such that (x, y) ∈ C.  If Ai = {y | C(xi, y) = 1} and Bj =picture of the probability structure on X.  
{x | C(x, yj) = 1} then we require Ai ≠ ∅  and Bj ≠ ∅ .  



From a knowledge-base perspective we can use a information, Kr+1, this results in an effective relation
compatibility relation to represent the knowledge that if C* = C ∩ Cr+1 where C* ⊆ C, C*(x, y) ≤ C(x, y) for
V = xi then Ai is the subset of values of Y that are all x, y.  Thus more information usually results in a
possible solutions for the variable U. smaller compatibility relation in the sense of

We now describe some examples of compatibility containment.  The combining of individual
relations which represent some familiar forms of compatibility relations can result in combined
knowledge.  Let X = {x1, ....., xq}, Y = {y1, ....., yn} compatibility relationship C for which there exists
and B = {y1, ....., ye} e ≤ n. some x such that there exists no y ∈ Y for which C(x,

y) = 1.  In this case we shall say that our knowledgeConsider the knowledge:if V = x1 then U ∈ B this can
about the relationship between U and V isbe represented by the relation C
conflicting.  If the conjunction of knowledge leads toC(x1, y) = 1 for y ∈ B
a conflict, we must resolve this conflict before

C(x1, y) = 0  for y ∉ B
proceeding to use the resulting relationship.  We shall

C(x, y) = 1 for x ≠ x1, not address this issue here and assume all conjunctions
Consider now the knowledge are non-conflicting.
if V = x1 then U ∈ B and if V ≠ x1 then U ∈ B. A second, though less pernicious problem that

arises when we combine compatibility relations isThis is represented by the compatibility relation C
degeneracy.  We shall say a relation C is degenerate ifwhere
there exists a y ∈ Y for which there exists no x suchC(x1, y) = 1       y ∈ B
that C(x, y) = 1.  Degeneracy doesn't preclude our usingC(x1, y) = 0       y ∉ B
the resulting C.

C(x, y) = 1         x ≠ x1 and y ∈ B An important type of inference occurs in the
C(x, y) = 0         x ≠ x1 and y ∉ B situation in which we have some information about a

variable V in terms of a D-S belief structure m on X,(see matrix below)
additionally we have knowledge about the relationship
between V and U in terms of a compatibility function C
on X × Y and we are interested in obtaining knowledge
about U in terms of a D-S belief structure m* on Y.
Once realizing that a compatibility relationship can be
viewed as D-S belief structure on X × Y having one
focal element C, the procedure for obtaining this
information involves an application of Dempster's rule.
Assuming Ai are the focal elements of m our inferenceMore generally if A = {x1, . . . , xk} (k ≤ q) the
procedure is as follows:compatibility relation

1.  Extend m to be a bpa on X × Y such that m(AiC(x, y) = 1      x ∈ A and y ∈ Β
× Y) = m(Ai).C(x, y) = 0      x ∈ A and y ∉ Β

C(x, y) = 1      x ∉ A. 2.  Apply Dempster's rule to C and m to obtain a
is representative of the knowledge "if V ∈ A then U ∈ D-S structure m+ on X × Y with focal elements Ei =
B".

(Ai × Y) ∩ C where m+(Ei) = m(Ai).Assume Kj are r pieces of knowledge about the
3.  Project m+ onto Y obtaining the D-S structurerelationship between V and U each of which is

m* with focal elements Fi = Projy[Ei] = {y |if Ei(x, y)representable as a compatibility relation Cj.  The effect
= 1 for some x} and where m*(Fi) = m(Ai) .of all of these pieces of knowledge is the conjunction of
(Effectively Fi(y) = Maxx[Ei(x, y)].the individual pieces of knowledge "K1 and K2, . . .

Symbolically we shall denote the process ofand Kr" which results in an overall compatibility
inferring m* from C and m as m* = C ⊗  m .

relation C, where C = C1 ∩ C2 ....... ∩ Cr. Informally a compatibility relation can be seen as being
An important implication of this is that if C is the monotonic if knowing more about the distribution on V

effective compatibility relation under K1, ....., Kr and allows us to know more about the distribution on U.  
Definition: Let C be a compatibility relation onif we get additional information about the relationship
X × Y and let m1 and m2 be any two bpa on X suchbetween V and U in terms of another piece of



that m1 S  m2.  If m1
* = C ⊗  m 1 and m2

* C ⊗  m 2 Definition:  A type II compatibility relation R on X
× Y is a relation  such that for each T ∈ X there exists

then C is said to be monotonic if m1
* S  m2

*.
at least one y ∈ Y such that R(T, y) = 1.

The following theorem addresses the monotonicity
In our framework the understanding to be accorded a

property for type I compatibility functions.
type II compatibility relation is that if V is T, V is

Theorem:   Every type I compatibility relation is
known certainly to be one of the elements in T, V the

monotonic
condition R(T, y) = 1 implies that y is a possible value

We note this theorem tells us that it is impossible
for U.  We shall find useful to denote V is T as V ∈ Eto represent a non-monotonic relationship with these
T.type I compatibility relations.  Another interesting

When X = {x1, x2, x3} and Y = {y1, y2, y3} anresult which relates to the concept of monotonicity can
example of a type II compatibility relation isbe obtained using the results of the following theorem.

.

Theorem:  Assume C and C are two compatibility

relations on X × Y such that C ⊆ C.  Let m be a D-S

structure m on X.  If m* = C ⊗ m and m* = C ⊗  m

then m* ⊆ m* and hence m* S  m * .
This theorem says that the smaller the

compatibility relationship the more information
obtained, this of course makes sense in that the smaller
the relationship the less possible U values for a given V

In this example if we know that V = x1 then the onlyvalue.  There are however some further implications of
this theorem for knowledge based systems.  Let Cj for j possible solution for U is is y1.  If we know that V =
= 1 to q be a collection nonconflicting compatibility x3 then possible values for U are y2 and y3.  If we
relations relating V and U.  Effectively these implies in know that V ∈ {x1, x2} then the possible solutions of

a compatibility relation C = ∩
j =1 

q

Cj.  Consider now
U are y1 and y2.  

The following terminology and definitions shall be
useful in discussing type II compatibility relations.  Wethe acquisition of another piece of non-conflicting
shall call the subsets of X which are singletons theknowledge Cq+1, this results in a new effective
principle elements of X .  We shall denote these

compatibility relation C= C ∩ Cq+1 since C ⊆ C, the principle elements as Ti where Ti = {xi}.  For any
above therefore says we get better information using C T ∈  X we shall let W be the subset of Y which are
then using C.  The implication here is that adding possible values of U when V ∈ E T, W = {y | if R(T, y)
nonconflicting  information in terms additional = 1}.  We call W the associated set of T and denote
compatibility relations generally results in a increase, this pair as T → W.  For the principle elements we
can't cause a decrease, in our knowledge about the denote the associated sets as Wi, Ti → Wi.inferred belief structure.

We now provide a classification of these type II
Another implication of this theorem is the

relations
following.  Assume C1 is the compatibility between V

Definition:  Assume R is a compatibility relation of
and U and C2 is another relation such that C1 ⊂ C2.  If type II:
we use C2 instead of C1 to do our inferring, we shall    i. It  shall be called regular if for all Ta, Tb and
get a correct inference although it may be less specific Tc where Tc = Ta ∪ Tb we have Wc = Wa ∪ Wb.
than one we would have gotten had we used C1.    ii. It shall be called irregular if there exists a

triple Ta, Tb and Tc where Tc = Ta ∪ Tb such that
4. Type II Compatibility Relations Wc is strictly contained in Wa ∪ Wb, Wc ⊂ Wa ∪ Wb.

   iii. It shall be called super-regular if there
Assume V and U are two variables taking values in exists a triple Ta, Tb and Tc where Tc = Ta ∪ Tb such

the set X and Y respectively.  Let X be the power set of that Wc ⊃ Wa ∪ Wb.
X minus the null element, thus T ∈ X is a non-null We note these three definitions exhaustively cover
subset of X. all possible type II relations.  While regularity excludes



it from being any of the other two, it is possible for a The following theorem indicates that under normality
relationship to be both irregular and super regular. there exists some relationship between super-regularity

A quality that should be inherent in any rational and irregularity.
representation of relational knowledge is captured by the Theorem:   Every normal super-regular type II
following principle of rationality. compatibility relation is irregular.

Principle of  Rationality :  Since the Proof:  Assume R is a normal super-regular relation.
knowledge V ∈ E T implies that the value of V must be Let Ta → Wa, Tb → Wb and T → W be a super-regular

some x ∈ T, any solution for U that is possible under triple, ie. T = Ta ∪ Ta and Wa ∪ Wb ⊂ W.  Let y* ∈
T, any y ∈ W, must be possible under some xi ∈ T. W but y* ∉ Wa and y* ∉ Wb.  Because of normality

The concept of a normal compatibility relations there exists some x* ∈ T such that {x*} → Z* and y*
plays a important role in rationality. ∈ Z*.  Furthermore since T = Ta ∪ Tb, x* must be
Definition:  We call a type II compatibility relation contained in at least one of the two sets.  Without loss
R normal if for every pair T → W of generality assume x* ∈ Ta.  Consider the triple {x*}

W ⊆ ∪
i s.t. xi ∈ T

Wi. → Z*, Ta → W a and Ta → W a.  We note here

{x*} ∪  Ta = Ta.  Let Wa ∪ Z* = W since y* ∈ Z*
A relation is normal if the associated set of T is

but y* ∉ Wa then Wa ⊂ W thus Wa ⊂ Wa ∪ Z* and R
contained in the union of the associated sets of principle

is irregular.elements making up T.
Thus if Â is the set of all normal type IITheorem:  All rational compatibility relations must

compatibility relations it can be broken up into twobe normal.
mutually exclusive classes Â1 and Â2 such that Â  =Definition:  Assume R is a compatibility relation

with Ti → Wi.  We call R* its normalizing relation if Â1 ∪ Â 2 where Â 1 are the regular relations and
R* is defined such that the principle elements of R* Â2 are the irregular relations. We note that while all
have the same associated sets as R and for all T not super-regular relations must be irregular, there exist
principle elements T → W where W = ∪

i s.t. xi ∈ T

Wi. irregular relations that are not super-regular.  We shall
call an irregular relation that is not super regular strictly

For any R we define RN to be its normalized irregular.
Based upon the definition of regular, we observeversion where

that a regular type compatibility relation is completely    RN(T, y) = R(T, y) ∧  R*(T, y). (∧  is the min).
characterized by the associated sets of the principleThis process is called normalization.  If R is normal
elements.than RN = R.
Observation:   Assume R is a regular type two

Since the principle of rationality provides a form of
compatibility relation on X × Y.  Let Ti be the primaryuniversal knowledge that can always be applied to any
elements of X and Wi their associated sets.  If T is anycompatibility relation.

Imposition of Rationality – Any non-normal other element of X the W associated with T is the union
compatibility relation can be replaced by its normalized of the Wi's such that xi ∈ T.
version.

It should be noted that normality doesn't preclude 5. Nonmonotonicity and type II
either super regularity or irregularity as the following Compatibility Relations
relationship illustrates

1 0 0
0 1 0
0 0 1
1 0 0
1 0 1
0 0 1
1 1 1

{x1}
{x2}
{x3}

{x1, x2}
{x1, x3}
{x2, x3}

{x1, x2, x3}

y1 y2 y3 We shall now describe the reasoning process used
when we have a type II compatibility relation.  Let V
and U be variables taking value in X and Y.  Assume
our information about V is given in terms of a D-S
belief structure m on X where Ai are the focal elements

and m(Ai) = ai.  Assume our knowledge of the

relationship between V and U is given by a type II
compatibility relation R: X  × Y → [0, 1].  We are
interested in obtaining a bpa m* on Y providing the
information about U.  The procedure is essentially the



same as in the case of a type I compatibility relation there exists a unique regular type II relation, its regular
after an initial space transformation is made. extension, and each regular type II relation is unique to

0. Transform m to an equivalent bpa m on X where one type I relation.  We shall call a pair C and its
regular extension R, a type I-II representation pair.

m has focal elements Ai ∈ X  where Ai = {Ai} and
Since we have previously shown that the two elements

m(Ai) = m(Ai) = ai. (The focal elements of m are in a representation pair C-R are equivalent as far as
inferences and we have also indicated that every type Isingleton subsets of X whose element is a focal element
relation is monotonic, we obtain the following

in X, if Ai = {x1, x2} then Ai = {{x1, x2}}). theorem.
1.  Extend m to be a bpa on X × Y where Ai × Y T h e o r e m :   Every regular type II relation is

monotonic.
are the focal elements and m(Ai × Y) = ai As we have previously indicated the set of all

2.  Conjunct R and m.  This results in a bpa m+ normal (rational) type II compatibility relations Â =

on X × Y with focal elements Ei = (Ai × Y) ∩ R and Â1 ∪ Â 2.where Â1 is the set of regular relations

and Â2 is the set of irregular relations and where Â1m+(Ei) = ai
and Â2 are disjoint.  We have just shown that all

3.  Project m+ onto Y.  This results in the bpa m*
relations in Â1 are monotonic.  We will now proceedon Y with focal elements Fi = ProjY (Ei), that is
to show that all the relations in Â2 are nonmonotonic,Fi(y) = MaxT∈ X[Ei(T, y)], and where m*(Fi) = m(Ai).
all irregular relations are nonmonotonic.We shall denote the process of inferring m* from R

We recall that a relation R is monotonic if forand m as m* = R ⊗  m.  We should note that the
every m1 and m2 on X such that m1 ⊂ m2 we have m1

*following simple expression of this inference process
can be obtained.  Assume m is a bpa on X focal ⊂ m2

* where m1
* = R ⊗  m1 and m2

* = R ⊗  m2   W e
elements Ai.  Let R be a type II compatibility relation

say that R is non-monotonic if there exists a pair m1such that WA i
 is the set associated with A i, and m2 on X where m1 ⊂ m2 such that R ⊗  m1 ⊄

Ai → WAi
.  Then if m* = R ⊗ m, the focal elements R ⊗ m2.  We now proceed to show that all irregular

of m* are WAi
 and m*(WAi

) = m(Ai). are non-monotonic.
Theorem:  All irregular relations are nonmonotonic.Definition:  We shall say that a type I compatibility
Proof:   Assume R is an irregular relation.  Thisrelation C is equivalent to a type II compatibility
implies that there exists at least three elements Ta, Tbrelation R, denoted R ⇔ C, if for every knowledge
and Tc of X such that Ta ∪ Tb = Tc and Wc ⊂ Wa ∪structure m about V their inferred values for V are the

same, for all m we have R ⊗ m = C ⊗ m. Wb, that is there exists one y* such that y* ∈ Wa or y*
Definition: Assume C is a type I compatibility ∈ Wb but y* ∉ W.  Consider now the two bpa m1 and
relation on X × Y, we call R its regular extension

m2 on X such that m1 is defined by m1(Ta) = a and
to type II if R is a type II relation defined as follows

m1(Tb) = 1 – a where a > 0 and where m2 is defined by    (1) For any primary element, Ti = {xi}, R(Ti, y)
m2(Tc) = 1.  It is obvious that m1 ⊂ m2, since Ta ⊂= C(xi, y), that is Wi = {y | C(xi, y) = 1}, the set
Tc and Tb ⊂ Tc.  If m1

* = R ⊗ m1 then m1
*(Wa) = a andassociated with Ti under R is the same as that associated

m1
*(Wb) = 1 – a.  If m2

* = R ⊗  m2 then m2
*(Wc) = 1.with xi under C.

   (2) For any non-primary element T of X , its Consider the subset D = {y*} of Y,
associated set W is the union of the Wi's for xi ∈ T. P l 1 (D) = a Poss[D/Wa ] + (1 – a)
Observation: If R is the regular extension of C then Poss[D/Wb]
R ⇔  C. Pl2(D) = Poss[D/Wc].

It can be easily shown that every regular type II Since y* ∉ Wc then Poss[D/Wc] = 0 and Pl2(D) = 0.
compatibility relation is an extension of a unique type I Since y is in at least one of Wa or Wb, without loss of
relation.  More specifically there exists a one to one

generality, assume it is definitely in Wa then
correspondence between type II regular relations and

Poss[D/Wa] = 1 and hence Pl1(D) ≥ a.  Therefore
type I compatibility relations obtained by the regular

[Bel1(D), Pl1(D)] ⊄ [Bel2(D), Pl2(D)] thus m1
* ⊄ m2

*
extension.  Thus to each type I compatibility relation



and the theorem is proven. the non-monotonicity level of R then the gaining of
This result taken with our previous results indicates more information about V will allow us to move

that not only are all irregular relations non-monotonic monotonically along in our knowledge about U.
but the only way to represent a non-monotonic
compatibility relation in terms of normal relations is 6. Dispositional and Hierarchical
via an irregular relation. Compatibility Relations

We see that the non-monotonicity resides in triples
Ta, Tb, and Tc such that Tc = Ta ∪ Tb and where Wc ⊂ A important class of non-monotonic compatibility

relations are those representing default rules [5].  In thisWa ∪ Wb.  We shall call these non-monotonic triples.
section we discuss some classes on nonmonotonicAssume R is an irregular relation.  Let {S1, ...., Sn} be
compatibility relations in the spirit of default rules.

the set of all elements in X which participate in non- Consider an ordinary rule such as if a then b, it has an
monotonic triples.  Let Card(Si) be the number of antecedent and consequent.  Three conditions can be in
elements in Si and let LR = Mini Card(Si).  We shall effect regarding this rule, we know the antecedent to be
call LR the nonmonotonicity level of R.  If LR = 1 we true, we know it to be false or we don't know whether it

is true or false.  If we know the antecedent is satisfiedcalled it a primary non-monotonicity.
then we infer the consequent.  If the antecedent is falseLet m be a bpa on X with focal elements Aj..  We
then we can't infer anything, similarly if the truth of thelet Lm = Minj[Card(Aj)] and call it the imprecision
antecedent is unknown we don't infer consequent.  In thelevel of m.  Assume m1 and m2 are bpa on X such that
case of a what we shall call a dispositional rule we

m1 ⊂ m2, it follows from the definition of containment act differently, in the case in which the truth of the
that m1 ⊂ m2 → Lm1

 ≤ Lm2
. antecedent is unknown, we infer the consequent.  In

essence in these dispositional rules if the antecedent isObservation:  Assume R is an irregular relation with
possible, not known to be unsatisfied, then we infer thelevel of non-monotonicity LR.  Let Ti = {xi} be the
consequent.  These rules are useful in that they allow usprimary elements of R.  Let T be a subset of X such
to act in situations in which we don't have all thethat Card(T ) ≤ LR.  Then the associated W set of T
information.

satisfies W = ∪
i s.t. xi ∈ T

Wi. In the following we shall introduce a general
structure for these dispositional relations.  Let V and U

In essence R appears regular for all T such that be variables taking their values in X and Y.  Let A be a
Card(T) ≤ LR. subset of X, the antecedent .  Let B1 and B2 be subsets
Theorem:  Assume R is an irregular relation with of Y where B2 ⊄ B1.  Let R be a type II compatibility
non-monotonicity level LR.  Let m2 be a bpa on X relationship between V and U, R: X → Y.  In the case
such that Lm2

 ≤ LR.  Let m1 be another bpa on X of what we call as dispositional rules the relation R
must satisfy the following conditions.  For any T ∈ Xsuch that m1 ⊂ m 2.  If m1

* = R ⊗  m 1  and m2
* =

and any bpa mT having the single focal element T it
R ⊗  m2, that m1

* ⊂ m2
*. must be the case that 

Proof:  If {Ak} are the focal elements of m1 and Bj are R ⊗ mT = B1      if Poss[A/T] = 1
the focal elements of m2 then Card(Ak) ≤ LR and Card R ⊗ mT = B2      if Poss[A/T] = 0
B j ≤ LR .  In this situation all our operations are Thus we see that R is a function of Poss[A/T].  We
performed within the monotonic or regular range of R note that Poss[A/T] = 1 if A ∩ B ≠ ∅  and Poss[A/T] =
and hence we get monotonicity property associated with 0 otherwise.  It should be emphasized that the structure
regular relations.  For a given R and m, if Lm ≤ LR we of R is such for any T ∈ X its associated value, W = B1
shall say that m is the regular range or under the non- if Poss[A/T] = 1 and W = B2 if Poss[A/T] = 0.  We
monotonicity of R.

shall indicate this as R = D(A, B1, B2) and call it aWe recall that if we have some information about
standard dispositional rule.  An important special caseV in terms of a bpa m1 and if we get another piece of
occurs when B2 = Y.information m2, this results in an effective bpa m3 =
T h e o r e m :   A standard dispositional rule is am1 ∩ m2 where m3 ⊂ m1.  Using this we can now see
nonmonotonic compatibility relation.an important implication of the previous result.  If we
Proof: 1. Let T be a subset of X which is containedreached a state of our knowledge about V which is under



neither in A or A — then T = Ta ∪ Tb where Ta ⊂ A and A prototypical imperative which generates a
hierarchical compatibility relation is a rule "always fixTb ⊂ A —.  If Ta ⊂ A then Poss[A/Ta] = 1 and Ta → Wa the easiest thing".  Consider a device made up of three

= B1  and if Tb  ⊂ A — then  Poss[A/Tb] = 0 and parts q1, q2, q3.  Let xi indicate the proposition "part qi
Tb →⊇ Wb = B2. Since A ∩ Τ ≠ ∅  then T → W = is busted" and let yi indicate the action "replace part i".
B1.  Since Wa ∪ Wb = B1 ∪ B2 ⊃ B1 = W then the R Furthermore assume the parts are such that q1 < q2 < q3
is irregular.   Since  i r regular i ty  imposes where a < b mean b is more difficult to fix then a.
nonmonotonicity these standard dispositional rules are Then the  hierarchical relation R =  H(A1, A2, A3: B1,
nonmonotonic.

B2, B3) with Ai = {xi} and Bi = {yi}implements thisTheorem:  A standard dispositional rule D(A, B1, B2)
rule (see matrix following)has a primary non-monotonicity level.

Proof:  Let x1 ∈ A and x2 ∈ A — then with T1 = {x1},

T2 = {x2} and T = {x1, x2}, T1 → B1, T2 → B2 and

T → B1 we have primary nonmonotonicity

 Assume the relationship between V and U is
expressed by R = D(A, B1, B2) and our knowledge of

V is modeled by the bpa m with focal elements Ai,

m ( A i) = ai.  If m* = R ⊗  m then m* has focal

elements Wi, the associated sets of the Ai and m*(Wi) =
Finally if H(A1, A2, . . . , Ak: B1, B2, ....,Bk) isai.  Since Wi = B1 if Poss[A/Ai] = 1 and Wi = B2 if

a compatibility relation between V and U and ourPoss[A/Ai] = 0 thus m* is obtained as
knowledge about V is the bpa m having q focal

     m*(B1) = ∑
i=1

r
Poss[Ai/A] m(Ai)] = Pl(A) elements Fi.  If m* = R ⊗ m then

m*(Bj) = ∑
i=1

q

Poss[Aj/Fi] * Cert[G —j-1/Fi] * m(Fi)     m*(B2) = ∑
i=1

r
(1 – Poss[A/Ai]) m(Ai).= Bel(A—).

where G0 = ∅  and for j > 1  Gj = ∪
i = 1

j

 Ai.
An useful type of rule is what we shall call a

hierarchical dispositional rule.  Assume   Ai, i = 1 to

k, are a collection of exclusive and exhaustive subsets

of X, Ai ∩ Aj = ∅ and ∪
i = 1

k
Ai = X.  Let Bi, i = 1 to k,
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