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Abstract: We concern ourselves with the situation
in which we use the Dempster-Shafer belief structure to
provide a representation of a random variablesin which
our knowledge of the probability distribution is
imprecise. We discuss the role of compatibility
relations as a means of enabling inference about one
variable, the secondary variable, based upon knowledge
about another variable, the primary. We define
monotonicity as a condition in which an increase in
information about the primary variable in an inference
should not result in a decrease in information about the
secondary variable. We show what are the conditions
required of acompatibility relation to lead to monotonic
and nonmonotonic inferences. We provide some
examples of nonmonatonic relations.

1. Introduction

The pioneering work of Dempster and Shafer [1, 2]
has resulted in the development of an uncertainty
modeling framework which can be used to provide a
generalization of probability theory by allowing the
imprecise knowledge of the probabilities. Here our
knowledge about the probabilities of the various events
is usually expressed in terms of interval in which it
lies, it lacks specificity. Increase in information about
the underlying probabilities results in a narrowing of
theseintervals.

Within this D-S framework a concept which plays
a central role is the compatibility relation, it provides
knowledge about the allowable solutions to one variable
given information about a second variable [3]. Itis
closely related to the concept of a rule in knowledge
based systems. A fundamental inference schema within
the Dempster-Shafer theory involves the use of a
compatibility relation and a belief structure on one of
the variables, called the primary variable, to infer a
belief structure on the secondary variable. A
compatibility relation is called monotonic if an increase
in information about the primary variable can't result in
aloss of information about the secondary variable.

Here we investigate an extension of the basic concept of
a compatibility relation to allow for the representation
of non-monotonic knowledge in the framework of the
D-S theory..

2. Dempster-Shafer Structure and

Infor mation

A D-S belief structure [2] on aset X is a mapping
m: 2X _ [0, 1], called a basic probability assignment
(bpa), such

L S mA=1
AOX
(2) m(O) =0.

The subsets of X for which m(A) # 0 are called the focal
elements of m. We shall find it convenient to denote
these focal elements asAj.

One use of this structure is that of representing
information about the probability distribution of a
variable V taking its value in the set X in the casein
which the probability distribution is imprecisely
known. In this interpretation the assignment m(Aj) =
g is meant to indicate that in some unknown manner g

units of probability are to be divided among the
elementsin Aj.

Example: A simple example will illustrate type of
representation. Assume we are about to have a
presidential election and are concerned about the interest
rates that will result. Assume there are three candidates
for president, Tom, Dick and Harry. The polls tell us
the probability of each candidate winning: Prob(Tom) =
0.5, Prob(Dick) = 0.3 and Prob(Dick) = 0.2. In addition
each candidate has specified his policy regarding interest
rates, Tom said he wants low interest rates, between 4%
and 6%, Dick said he wants interest rates between 5%
and 8% and Harry said he wants interest rates between
7% and 10%. This information induces a D-S belief
structure on the set X of possible interest rates. Here
our focal elements are A1 ={x/ 4% < x < 6%}, Ao ={x/

506 < x < 8%} and A3 ={x/ 7% < x < 10%} and



m(A4) = Prob(Tom) = 0.5, m(A5) = Prob(Dick) = 0.3
and m(A3) = Prob(Harry) = 0.3.

Assume m is a D-S belief structure on X, two
important measures associated with this are plausibility
and belief. Let B be any subset of X the plausibility of
B, denoted PI(B), is defined as PI(B) = Z PosgB/A]

AOX
m(A) where Poss[B/A] = Maxy[B(x) O A(x)], B(x) and
A(X) being the characteristic functions of the sets A and
B and 0 = min. The second measure, the belief of B,
denoted Bel(B), is defined as Bel(B) = z Cert[B/A]
AOX
m(A) where Cert[B/A] = 1 — Poss[B/A].
Observation: If Aj are the focal elements of m then
P(B) = z m(Aj) and Bel(B) = Z m(AJ-)
j,AjnB#D j,AjDB
Observation: If By 0 Bo then PI(B1) < PI(Bp) and
Bel[B4] < Bel[B5].
Observation: If B # O then PI(B) = Bel(B)

In interpreting a D-S belief structure as providing
imprecise information about the probability of a
variable V the significance of these two measuresiis that
they provide upper and lower bounds on the probability
of B [1],

Bel(B) < Prob(V O B) < FI(B).

Assuming that V isarandom variable, its generated

by a probability distribution, the best knowledge we can
have about V is specific knowledge of the probability of
each subset. For any subset B we shall define R(B) =
[Bel(B), PI(B)], our range of indefiniteness about the
probability of the subset B. The smaller R(B) the more
we know about the probability of B.
Definition: Assume mq and my are two D-S
structures on X if Rq(B) O Ry(B) for al B O X, we
shall say mq is more specific than my and denote this
as mq S my.

It is clear that the more specific a D-S structure the
more information we have about the probability
distribution.

Observation: If @ <aand b' = b and it is known that
Prob(B) O [a, b] and then we can infer that Prob(B) [
(&, b]

This observation allows us to introduce a logical
entailment principle associated with D-S structures [4]:
if we know that mq is a valid representation of the
probability structure on X and if mq S my then my

also represents a valid, although less informative,
picture of the probability structure on X.

In [4] Yager has introduced an idea of containment
of two D-S structures.
Definition: Assume mq and my are two D-S

structures on X. Let Aj be the g focal elements of mq,
where my(A;) = &. Let Bj be the n focal elements of
mp, where ma(B;) = bj. If aset of values gjj fori =1
togandj =1 to n, can be found which have the
following properties,

OSCij <1

n

2 Gj=g i=1toq
=1

q

z Cijzbj j=1ltom
j=1

Gij > Oonlyif Aj O Bj
then we say mq 0 mop
Y ager [4] has proved the following theorem,
Theorem: mq O my - mq Smo.
Let us briefly look at the issue of combining belief
structures. Assume m4 and my are two bpa on X

providing information about V. The effect of both
pieces of information, obtained via Dempster's rule [1,
2], is a conjuncted bpa m on X denoted m = mq n my

wheremfor each A # [
m(A)=_—1 >

1- AinBj=A
here Aj and B; are the focal elements of mj and mp and
K= > m@A) mo(B)).

AinBj=0

In above K is interpreted as the degree of conflict
between mq and mp, if K = 1 they are completely
conflicting while if K = 0 there is no conflict.

m(A}) mo(B).

3. Compatibility Relations and

Inference in D-S Structures

Information about one variable can be obtained

using information about another variable if we have
some knowledge about how they are related, this forms
the basis of most inference systems. Assume V and U
are two variables taking their valuesin the sets X and Y
respectively. In D-S theory compatibility relations are
used to represent this knowledge.
Definition: A type | compatibility relation C
between V and U isarelation on X x Y such that for
each x [0 X there exists at least one y such that (x, y) O
C and for each y 0 Y there exists at least one x [0 X
suchthat (x,y) O C. If Aj={y|C(xj,y) =1} and Bj =
{x]C(x, yj) = 1} then we require A; # O and Bj 0.



From a knowledge-base perspective we can use a
compatibility relation to represent the knowledge that if
V = x; then Aj is the subset of values of Y that are

possible solutions for the variable U.

We now describe some examples of compatibility
relations which represent some familiar forms of
knowledge. Let X = {xq, ....., xq}, Y ={y1, s Y}
and B ={yq, ..., Yg} €<n.

Consider the knowledge:if V = xq then U [J B this can
be represented by the relation C
C(x1,y)=1foryOB
C(x1,y)=0 forydB
C(x,y) =1for x # Xq,
Consider now the knowledge
if V. =xq thenU OB and if V # xq then U 0 B.

This is represented by the compatibility relation C
where

C(x1,y)=1 yOB
Cx,y)=0 yOB
Cx,y)=1 xixlandyDE
Cx,y)=0 x¢x1andyD§
(see matrix below)
- 1 - . ¥ Fe+l . . ¥n-
I all ones | all zexos
X2
X3
_ all zeros all ones
*q L il
More generally if A = {xq,...,xk} (k < q) the
compatibility relation
Cx,y)=1 xOAandy([B
Cx,y)=0 xOAandy([B
Cx,y)=1 xOA.

is representative of the knowledge "if V O A then U O
B".
Assume Kj are r pieces of knowledge about the

relationship between V and U each of which is
representable as a compatibility relation Cj. The effect
of al of these pieces of knowledge is the conjunction of
the individual pieces of knowledge "K41 and Ko, . . .
and K" which results in an overall compatibility
relation C, where C=Cq n Co ....... n Cr.

An important implication of thisis that if C isthe
effective compatibility relation under K1, ....., K, and
if we get additional information about the relationship
between V and U in terms of another piece of

information, K41, this results in an effective relation
C* =Cn Cyyq where C* O C, C*(x, y) < C(x, y) for
al x, y. Thus more information usually results in a
smaller compatibility relation in the sense of
containment. The combining of individual
compatibility relations can result in combined
compatibility relationship C for which there exists
some x such that there existsnoy O Y for which C(x,
y) = 1. In this case we shall say that our knowledge
about the relationship between U and V is
conflicting. If the conjunction of knowledge leads to
a conflict, we must resolve this conflict before
proceeding to use the resulting relationship. We shall
not address this issue here and assume al conjunctions
are non-conflicting.

A second, though less pernicious problem that
arises when we combine compatibility relations is
degeneracy. We shall say arelation C is degenerate if
there exists ay 0 Y for which there exists no x such
that C(x, y) = 1. Degeneracy doesn't preclude our using
the resulting C.

An important type of inference occurs in the
situation in which we have some information about a
variable V in terms of a D-S belief structure m on X,
additionally we have knowledge about the relationship
between V and U in terms of a compatibility function C
on X xY and we are interested in obtaining knowledge
about U in terms of a D-S belief structure m* on Y.
Once realizing that a compatibility relationship can be
viewed as D-S belief structure on X x Y having one
focal element C, the procedure for obtaining this
information involves an application of Dempster's rule.
Assuming A; are the focal elements of m our inference

procedureis asfollows:

1. Extend m to be abpaon X xY such that m(A;
xY)=m(Aj).

2. Apply Dempster's rule to C and m to obtain a
D-S structure m* on X x Y with focal elements Ej =

(Aj xY) n Cwhere m*(Ej) = m(A)).

3. Project m* onto Y obtaining the D-S structure
m* with focal elements F; = Projy[Ei] ={y lif X y)
= 1 for some x} and where m*(Fj) = m(A;j).
(Effectively Fj(y) = Maxy[Ej(x, y)].

Symbolically we shall denote the process of
inferring m* from C and m as m* = CO m.
Informally a compatibility relation can be seen as being
monotonic if knowing more about the distribution on V
allows us to know more about the distribution on U.
Definition: Let C be a compatibility relation on
X xY and let mq and my be any two bpa on X such



Ifm*1=CD mlandeCD mo

then C is said to be monotonic if My S M.

The following theorem addresses the monotonicity
property for type | compatibility functions.
Theorem: Every type | compatibility relation is
monotonic

We note this theorem tells us that it is impossible
to represent a non-monotonic relationship with these
type | compatibility relations. Another interesting
result which relates to the concept of monotonicity can
be obtained using the results of the following theorem.

that mq S mo.

Theorem: Assume C and C are two compatibility
relationson X x Y suchthat CO C. Let m be a D-S
Ifm*=COmandm*=C0Om

then m* O m* and hencem* S m* .

This theorem says that the smaller the
compatibility relationship the more information
obtained, this of course makes sense in that the smaller
the relationship the less possible U values for agiven V
value. There are however some further implications of
this theorem for knowledge based systems. Let Cj for

=1 to g be a collection nonconflicting compatibility

relationsrelating V and U. Effectively these impliesin
q

a compatibility relation C= N C]
j=1

the acquisition of another piece of non-conflicting

knowledge Cq+l, this results in a new effective

structure m on X.

Consider now

compatibility relation C Cn Cq+1 smceC O C, the

above therefore says we get better information using C
then using C. The implication here is that adding
nonconflicting information in terms additional
compatibility relations generally results in a increase,
can't cause a decrease, in our knowledge about the
inferred belief structure.

Another implication of this theorem is the
following. Assume C1 is the compatibility between V
and U and Cy is another relation such that C1 0 Co. If
we use Co instead of Cq to do our inferring, we shall
get a correct inference although it may be less specific
than one we would have gotten had we used C1.

4. Type Il Compatibility Relations

Assume V and U are two variables taking valuesin
the set X and Y respectively. Let X be the power set of
X minus the null element, thus T O X is a non-null
subset of X.

Definition: A type Il compatibility relation R on X
xY isarelation such that for each T O X there exists
a least oney O Y such that R(T, y) = 1.

In our framework the understanding to be accorded a
type Il compatibility relation is that if V is T, V is
known certainly to be one of the elementsin T, V the
condition R(T, y) = 1 impliesthat y is a possible value
for U. We shall find useful to denote V is T asV Og
T.

When X = {x1, xp, x3g} and Y ={yq, y2, y3} an
example of atype Il compatibility relation is

_ A ¥z
iXq1 1 0

{x2} 1

{x31 0
{X1, X2} 1
{x1, X3} 1
{x2, X3} 1
{X1, X2, X3} 1

L et ™ I e I e |
¥

0
1
1
1
1
1

In this example if we know that V = x4 then the only
possible solution for U isisyq. If we know that V =
X3 then possible values for U are yp and y3. If we
know that V O {x1, X2} then the possible solutions of
U areyq and yo.

The following terminology and definitions shall be
useful in discussing type Il compatibility relations. We
shall call the subsets of X which are singletons the
principle elements of X. We shall denote these
principle elements as T; where T; = {x;}. For any
T O X we shall let W be the subset of Y which are
possible values of U whenV O T, W = {y | if R(T, y)

= 1}. Wecal W the associated set of T and denote
this pair as T -~ W. For the principle elements we
denote the associated setsas Wi, Tj - W;.

We now provide a classification of these type Il
relations
Definition: Assume R is a compatibility relation of

typell:
i. It shall be called regular if for all T,, Ty and

Towhere To =Tz 0 Ty we have W = W5 O W,

ii. It shall be called irregular if there exists a
triple Ty, Tpand T, where To = T O Ty such that
W isdtrictly contained in W4 O Wy, W O W4 O Wy,

iii. It shall be called super-regular if there
exists atriple Ty, Ty and T where T = Tg O Ty such
that W O Wg O Wy,

We note these three definitions exhaustively cover
al possible type Il relations. While regularity excludes



it from being any of the other two, it is possible for a
relationship to be both irregular and super regular.

A quality that should be inherent in any rational
representation of relational knowledge is captured by the
following principle of rationality.

Principle of Rationality: Since the
knowledge V Og T implies that the value of V must be
some x O T, any solution for U that is possible under
T, any y O W, must be possible under some x; O T.

The concept of a normal compatibility relations
plays aimportant role in rationality.
Definition: We call a type Il compatibility relation
R normal if for every par T - W

wo O w
ist.x OT

A relation is normal if the associated set of T is
contained in the union of the associated sets of principle
elements making up T.
Theorem: All rational compatibility relations must
be normal.
Definition: Assume R is a compatibility relation
with T; — Wj. We cal R* its normalizing relation if
R* is defined such that the principle elements of R*
have the same associated sets as R and for all T not

principledlements T - Wwherew = [ w;.
istx; AT

For any R we define Ry to be its normalized
version where

RN(T, YY) = R(T, y) OR*(T, y). (Ois the min).
This process is caled normalization. If R is normal
than RN =R.

Since the principle of rationality provides aform of
universal knowledge that can always be applied to any
compatibility relation.

Imposition of Rationality — Any non-normal
compatibility relation can be replaced by its normalized
version.

It should be noted that normality doesn't preclude
either super regularity or irregularity as the following
relationship illustrates

yly2y3

{x1} | i

{x2}

{x3}

{x1, x2}
{x1, x3}
{x2, x3}
{x1, x2, x3}

PORRLROOR
POOOORrO
PR RPROROO

The following theorem indicates that under normality
there exists some relationship between super-regularity
and irregularity.

Theorem: Every normal super-regular type Il
compatibility relation isirregular.

Proof: Assume R is a normal super-regular relation.
LetTqg - Wg Tp - Wphand T — W be asuper-regular
triple,ie. T=Ta0 Tgand W O W OW. Lety* [
W but y* 0 W4 and y* 0 W, Because of normality
there exists some x* O T such that {x*} - Z* and y*
0 z*. Furthermore since T = Ty O Tp, X* must be
contained in at least one of the two sets. Without loss
of generality assume x* 0 T, Consider the triple {x*}
- Z*, Tg - Wgand T4 -~ W, We note here
{x*} 0 Tq=T, LetWz0O Z* =W sincey* 0 Z*
but y* 0 W then W4 O W thus W, 0 W, O Z* and R
isirregular.

Thus if ® is the set of al normal type Il
compatibility relations it can be broken up into two
mutually exclusive classes ®, 1 and ®, p such that B, =
® 1 0 ® > where ® 1 are the regular relations and
R o are the irregular relations. We note that while all
super-regular relations must be irregular, there exist
irregular relations that are not super-regular. We shall
cal anirregular relation that is not super regular strictly
irregular.

Based upon the definition of regular, we observe
that a regular type compatibility relation is completely
characterized by the associated sets of the principle
elements.

Observation: Assume R is a regular type two
compatibility relation on X x Y. Let T; be the primary
elements of X and W; their associated sets. If T is any

other element of X the W associated with T isthe union
of the Wj's such that x; O T.

5. Nonmonotonicity and

Compatibility Relations

type Il

We shall now describe the reasoning process used
when we have a type Il compatibility relation. Let V
and U be variables taking value in X and Y. Assume
our information about V is given in terms of a D-S
belief structure m on X where A; are the focal elements
and m(A;j) = g. Assume our knowledge of the
relationship between V and U is given by atype Il
compatibility relation R: X xY - [0, 1]. We are
interested in obtaining a bpa m* on Y providing the
information about U. The procedure is essentially the



same as in the case of a type | compatibility relation
after an initial space transformation is made.

0. Transform m to an equivalent bpar?1 on X where
m has focal elements Aj O X where A; = {Aj} and
rﬂ(z\i) = m(Aj) = g. (The focal elements of m are
singleton subsets of X whose element is afocal element
in X, if Aj ={xq, x2} then Aj ={{x1, X2}}).

1. Extend M to be abpaon X x Y wherexi xY
are the focal elements and rﬁ(;\i xY) =g

2. Conjunct R and m. This results in a bpa m*
on X xY with focal elements Ej = (A; xY) n R and
m*(§) = &

3. Project m* onto Y. This results in the bpa m*
on Y with focal elements Fj = Projy (E;j), that is
Fi(y) = Maxox[Ei(T, y)]. and where m* (Fj) = m(A).

We shall denote the process of inferring m* from R
and mas m* = R O m. We should note that the
following simple expression of this inference process
can be obtained. Assume m is a bpa on X foca
elements Aj. Let R be atype Il compatibility relation
such that WAi is the set associated with Aj,
Aj - Wp,. Thenif m* =R U m, the focal elements
of m* a\reWAi and m*(WAi) =m(A)).

Definition: We shall say that a type | compatibility
relation C is equivalent to atype Il compatibility
relation R, denoted R = C, if for every knowledge
structure m about V their inferred values for V are the
same, for dl mwehave RO m=C 0O m.

Definition: Assume C is a type | compatibility
relation on X x Y, we call R its regular extension
totypell if Risatypell relation defined as follows

(1) For any primary element, T; = {xj}, R(Tj, y)
= C(xj, y), that is Wj = {y | C(xj, y) = 1}, the set
associated with T under R is the same as that associated
with xj under C.

(2) For any non-primary element T of X, its
associated set W is the union of the Wj'sfor x; O T.
Observation: If R is the regular extension of C then
R < C

It can be easily shown that every regular type Il
compatibility relation is an extension of a unique type |
relation. More specifically there exists a one to one
correspondence between type Il regular relations and
type | compatibility relations obtained by the regular
extension. Thusto each type | compatibility relation

there exists a unique regular type Il relation, its regular
extension, and each regular type Il relation is unique to
one type | relation. We shall call a pair C and its
regular extension R, a type I-Il representation pair.
Since we have previously shown that the two elements
in a representation pair C-R are equivalent as far as
inferences and we have also indicated that every type |
relation is monotonic, we obtain the following
theorem.
Theorem:
monotonic.

As we have previously indicated the set of all
normal (rational) type Il compatibility relations ®, =
® 1 0 ® o.where ® 1 is the set of regular relations
and ®, o isthe set of irregular relations and where ®,
and ®, o are disoint. We have just shown that all
relationsin ®, 1 are monotonic. We will now proceed
to show that all the relations in ®, 5 are nonmonotonic,
all irregular relations are nonmonotonic.

We recall that a relation R is monotonic if for
every myq and my on X such that mq [ my we have My
0 mzwherem’i: RO mq and m} =R0Omyp We
say that R is non-monotonic if there exists a pair mq
and my on X where mq O m» such that R 0 mq O
RO my. We now proceed to show that all irregular

are non-monotonic.

Theorem: All irregular relations are nonmonotonic.
Proof: Assume R is an irregular relation. This
implies that there exists at least three elements Ty, Ty

and T of X such that T, 0 Ty =Tgand W O W5 O
Wy, that is there exists one y* such that y* 00 W4 or y*
0 Wp but y* O W. Consider now the two bpa mq and
mo on X such that mq is defined by mq(T5) = a and
m1(Tp) = 1 —awherea> 0 and where my is defined by
mo(Te) = 1. It is obvious that mq O my, since Ty O
Teand Ty O T If mp = R O my then mj(W,) = aand
my(Wp) =1—a If my =R 0 my then my(Wg) = 1.
Consider the subset D = {y*} of Y,

Pl1(D) = a Poss[D/Wg] + (1 — &)
Posg[ D/Wp]

Plo(D) = Poss|D/W¢].
Since y* 0 W, then Poss[D/W] = 0 and Plx(D) = 0.
Sincey isin at least one of W4 or Wy, without loss of
generality, assume it is definitely in Wy then
Poss[D/Wg,4] = 1 and hence Pl{(D) > a Therefore

[Bel1(D), P11(D)] O [Bel5(D), Plo(D)] thusmj O m3

Every regular type Il relation is



and the theorem is proven.

This result taken with our previous results indicates
that not only are all irregular relations non-monotonic
but the only way to represent a non-monotonic
compatibility relation in terms of normal relations is
viaan irregular relation.

We see that the non-monotonicity residesin triples
T4 T, and Te such that T, = T4 O Ty and where W O
Wo O Wp. We shall call these non-monotonic triples.
Assume R is an irregular relation. Let {Sq, ...., Sy} be
the set of all elements in X which participate in non-
monotonic triples. Let Card(S;j) be the number of
elements in §j and let Lg = Minj Card(Sj). We shall
call LR the nonmonotonicity level of R. If L =1 we
called it a primary nhon-monotonicity.

Let m be abpaon X with focal elements Aj.. We
let Ly, = Minj[Card(Aj)] and call it the imprecision
level of m. Assume m4q and my are bpaon X such that
m4 O my, it follows from the definition of containment
that mp O my — Lml < Lm2.

Observation: Assume R is an irregular relation with
level of non-monotonicity Lg. Let T; = {x;} be the
primary elements of R. Let T be a subset of X such
that Card(T ) < LR. Then the associated W set of T
stisiesw= [ w;

istx; OT

In essence R appears regular for al T such that
Cad(T) <LR.

Theorem: Assume R is an irregular relation with
non-monotonicity level Lr. Let my be a bpaon X
such that Lmy, < LR Letmg be another bpa on X

such that mq O mo. Ime:RD m4 and m;:

R O my, that mi 0 m;.

Proof: If {Ay} arethefocal elements of mj and B; are
the focal elements of my then Card(Ai) < Lg and Card
Bj < Lr. In this situation all our operations are

performed within the monotonic or regular range of R
and hence we get monotonicity property associated with
regular relations. For agiven Rand m, if Ly <Lg we
shall say that m is the regular range or under the non-
monotonicity of R.

We recall that if we have some information about
V in terms of abpamq and if we get another piece of

information mo, this results in an effective bpa mg =
mq n my where mg 0 myq. Using this we can now see

an important implication of the previous result. If we
reached a state of our knowledge about V which is under

the non-monotonicity level of R then the gaining of
more information about V will allow us to move
monotonically along in our knowledge about U.

6. Dispositional and Hierarchical
Compatibility Relations

A important class of non-monotonic compatibility
relations are those representing default rules [5]. In this
section we discuss some classes on nonmonotonic
compatibility relations in the spirit of default rules.
Consider an ordinary rule such asif athen b, it has an
antecedent and consequent. Three conditions can bein
effect regarding this rule, we know the antecedent to be
true, we know it to be false or we don't know whether it
istrue or false. If we know the antecedent is satisfied
then we infer the consequent. If the antecedent is false
then we can't infer anything, similarly if the truth of the
antecedent is unknown we don't infer consequent. Inthe
case of a what we shall call a dispositional rule we
act differently, in the case in which the truth of the
antecedent is unknown, we infer the consequent. In
essence in these dispositional rules if the antecedent is
possible, not known to be unsatisfied, then we infer the
consequent. These rules are useful in that they allow us
to act in situations in which we don't have all the
information.

In the following we shall introduce a general
structure for these dispositional relations. Let V and U
be variables taking their valuesin X and Y. Let A bea
subset of X, the antecedent . Let B1 and Bo be subsets

of Y where B, 1 B4. Let R be atype Il compatibility
relationship between V and U, R: X - Y. In the case
of what we call as dispositional rules the relation R

must satisfy the following conditions. For any T O X
and any bpa mt having the single focal element T it

must be the case that
ROmy=B1 if PosSA/T] =1
ROmy =By if PosSA/T] =0
Thus we see that R is a function of Poss[A/T]. We
note that PosgJA/T] = 1if A n B # [0 and Poss[A/T] =
0 otherwise. It should be emphasized that the structure
of Rissuch for any T O X its associated value, W = Bq
if Poss/A/T] =1 and W = By if PosgA/T] = 0. We
shall indicate this as R = D(A, Bq, Bp) and cdll it a
standard dispositional rule. An important special case
occurswhenBo =Y.
Theorem: A standard dispositional rule is a
nonmonotonic compatibility relation.
Proof: 1. Let T be a subset of X which is contained



neither in A or A then T =T, 0 Ty where T; 0 A and
TpOA. 1f T;0A then PosgA/Tg] =1and Ty - Wy
= By and if T, O A then Poss[A/Tp] = 0 and
Tp -OWp=By.SinceAn Tz OthenT - W =
B1. SinceWy 0 Wp =B 0By 0B1=WthentheR
is irregular. Since irregularity imposes
nonmonotonicity these standard dispositional rules are
nonmonotonic.
Theorem: A standard dispositional rule D(A, B, Bo)
has a primary non-monotonicity level.
Proof: Letxq OA and xp 0 A then with T1 = {x4},
To={xo} and T ={xq, X2}, T1 - B1, T2 - Bp and
T - B we have primary nonmonotonicity

Assume the relationship between V and U is
expressed by R = D(A, B1, Bo) and our knowledge of
V is modeled by the bpa m with focal elements A;,
m(Aj)= g. If m* = RO m then m* has focal
elements Wi, the associated sets of the Aj and m* (W) =
g. Since W; = B1 if Poss|A/Aj] =1 and W; = By if
Poss[A/Aj] = 0 thus m* is obtained as

r
m(By) = 3 PosAVA] mA)] = PI(A)
=

r a—
m*(Bp) = Z (1—PosgA/Aj]) m(A;).= Bel(A).

i=1
An useful type of rule is what we shall call a

hierarchical dispositional rule. Assume A;,i=1to
k, are a collection of exclusive and exhaustive subsets
k

of X,Ajn Aj=0and [J Aj=X. LetBj,i=1tok

i=1
be subsets of Y such that for i > j, B; U Bj. Wecall R:

X - Y a hierarchical dispositional relation if for any
TOX

RO mT = Bl if POSS[A]_/T] =1

RO mt =By if PosgA1/T] = 0 and Poss[A/T] =

RO my =Bj3
and Poss[A5/T] =1

if Poss{A1/T] = Poss{Ao/T] = 0

ROmy =Bk if PossfAj/T]=0,j=1tok-1
and Poss[A}/T] = 1.
We shall denote such arelation as H(Aq1, Ao, ..., Ay:
B1,....,Bg). It canbe show that these relations are
nonmonotonic relations. We note D(A, Bq, By) =

H(A, A: By, Bo).

A prototypical imperative which generates a
hierarchical compatibility relation is a rule "always fix
the easiest thing". Consider a device made up of three
partsqq, do, g3. Let xj indicate the proposition "part g
is busted" and let y; indicate the action "replace part i".
Furthermore assume the parts are such that g1 < gp < d3
where a < b mean b is more difficult to fix then a
Then the hierarchical relation R = H(A1, Ao, A3: By,
Bo, Bg) with Aj = {x;} and Bj = {y;}implements this
rule (see matrix following)

0o 1

{X1} 1 0 0
{X2} 0 1 0
{X3} 0 0 1
{X1, X2} 1 0 0
{X1, %3} 1 0 0
{X2, X3} 0 1 0
{XI,XZ, X3} 1 0 0

Finally if H(Al, A2, ey Aki Bl, Bz, ....,Bk) is
a compatibility relation between V and U and our
knowledge about V is the bpa m having q focal
elements F;. If m* = RO m then
q
m* (Bj) = '21 Poss[Aj/Fi] * Cert[éj_l/Fi] « m(Fj)
1=

j
where Gg =D andforj>1 G;= [I A;.
1

i=
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