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Abstract

We will consider set–covering models for diagnostic tasks han-

dling uncertain knowledge. Because these models have to be

build manually by domain experts, we will show how this ef-

fort can be reduced by an incremental development of the set–

covering models. Thus simple models can be enhanced by sim-

ilarities, weights and uncertainty to increase the quality of the

knowledge and the resulting system. We will also present mecha-

nisms for generating set–covering models when higher level knowl-

edge about causation effects is available. Finally, we will moti-

vate how our approach can be used for implementing diagnosis

systems including therapy effects.

Keywords: set–covering model; model–based diagnosis; abductive reason-

ing; applied uncertainty; applied causality
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1 Introduction

This paper will focus on the problem of developing knowledge based diagnosis
systems. The work was motivated by the experience we have made with experts,
who tried to build complex models from scratch [11] but did not have enough
samples for machine learning algorithms. Even simplifications of complex models
did not help to cope with the complexity of the structure (e.g. handle numerical
probabilities and conditional independence assumptions).

For this reason we developed an inverse approach: Starting with an extremely
simple model the expert is able to formulate the basic structure of the diagnosis
problem in a qualitative manner. For improving the quality he/she is able to ex-
tend this model by qualitative or/and quantitative knowledge without loosing the
fundamental relations of the simple model. Our representation is able to handle
diagnosis problems including the accounting of therapy effects, which can change
observed findings but keep the original diagnosis in focus.
A set–covering model consists of a set of diagnoses (solutions), a set of find-
ings (observations) and covering relations between the elements of these two sets.
There exists a covering relation between a diagnosis and a finding, iff the diagnosis
forces the observation of the finding. The basic idea of set–covering diagnosis is
the detection of a reasonable set of diagnoses which can explain the given obser-
vations. To do this we propose an abductive reasoning step: Firstly, hypotheses are
generated in order to explain the given observations. In a second step, we define a
quality measure for ranking competing hypotheses.

Abductive reasoning with set–covering models has got a long tradition in diag-
nostic reasoning: One of the earliest approaches might be Patil’s system ABEL [5],
which describes abnormal behavior models with multi-level nets. Edges between
the state nodes can describe causal, associative or grouping knowledge. However,
ABEL cannot represent uncertain information about causal relationships. The as-
sessment of a diagnosis is defined by the completeness with which it can explain
the observations. Another significant approach are the set–covering models de-
fined by Reggia and Nau [10]. In [9] they introduce numeric probabilities to de-
scribe covering relations in more detail and discuss a transformation to the The-
orem of Bayes. Similarly, Long [3] uses probabilistic covering models related to
Bayesian networks, but allows the use of forward–loops and conditional links. The
system MOLE [1] implements a similar covering–and–differentiate method, which
solves the diagnostic task by first proposing candidates that will cover findings
specified by the user and then trying to obtain more information that will differ-
entiate the candidates. The system uses ordinal preferences instead of numerical
probability measures for ranking the competing hypotheses. Recently, Lucas et.
al. [4] have presented a diagnostic system for reprogramming pacemakers using
a covering model with Horn formulas. Uncertainty is represented by an assump-
tion literal in the precondition of the formula. But there is no qualifying assess-
ment of the competing hypotheses, since a hypothesis can be either suggested or
confirmed. Another interesting aspect is the combination of set–covering knowl-
edge with other problem-solving methods in order to allow for knowledge reuse.
Therefore Puppe [7] presents an inference structure for diagnostic problem solv-
ing, which integrates set–covering knowledge into other formalisms like heuristic
rules or decision trees.

All of these approaches have one major shortcoming: They only provide
the evaluation of existing and implemented covering relations between diagnoses
and observations. Nevertheless it would be interesting to include therapies into
set–covering models. Therapies combined with diagnostic covering models can
change the observations in many ways. Also the handling of severities of diag-
noses is not possible in the systems above, although it has been proven that they
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are helpful for real world applications. In this paper we will give an introduction
to a new interpretation of set–covering models, which allows for the diagnosis of
observations including therapy effects. We will show, how to build such mod-
els in an incremental fashion in order to provide a minimum effort of knowledge
acquisition.

The rest of the paper is organized as follows: In Section 2 we will give a
short formal introduction to set–covering models and to the ideas of reasoning
with these models. We will motivate the idea of having the facility to build set–
covering models in an incremental way. Beginning with the simple covering model
in Section 3 we will focus on the knowledge enhancements. We will show, how
to incrementally apply similarities, weights, and uncertainty. Beyond these static
models we will introduce dynamic models using causal set–covering relations in
Section 4. In Section 5 we will give a short survey of further extensions we want
to work on in the future.

2 A Framework for Diagnosis in
Set–Covering Models

Covering models describe relations like:

If a diagnosis D is true, then the parameters (attributes) A1, . . . , An

are observed with corresponding values v1, . . . , vn.

We call these relations covering relations; each single covering relation is denoted
by D → (A = v). We call the assignment (A = v) of a value v to a parameter
A a finding, and we say that the finding (A = v) is covered by the diagnosis
D. Figure 1 exemplifies a covering model for the diagnoses D1 and D2. Edges
indicate explicit covering relations. For example the net states, that diagnosis D1

forces the observation of the parameters A1, A2 and A3. In this way the three
covering relations D1 → (A1 = a), D1 → (A2 = b) and D1 → (A3 = c) hold.

A =a1 A =b2
A =c3 A =d4

D1 D2

Figure 1: Covering net for the diagnoses D1 and D2 and the parameters
A1, . . . , A4.

The basic algorithm for set–covering diagnosis is very simple: Given a set of
observed findings, it uses a simple hypothesize–and–test strategy, which picks a
hypothesis (coined from diagnoses) in the first step and tests it against the given
observations in a second step. The test is defined by calculating a quality measure,
which expresses the covering degree of the hypothesis regarding the observed find-
ings. The generation and evaluation of the hypotheses is an iterative process, which
stops when a satisfying hypothesis has been found or all hypotheses have been
considered. Normally the algorithm will look at single diagnoses, compute the
corresponding quality measure, and then it will generate hypotheses with multiple
diagnoses, if needed. In principle the detection of the most suitable hypothesis
will be similar to a search in an exponentially large search space, since there are
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2n possible hypotheses for n diagnoses. However the focus of this paper is the
evaluation of a given hypothesis on the basis of a quality measure.

The basic sets for this task are the following: ΩD is the set of all possible
diagnoses included in the model, and ΩA is the set of all possible parameters
(attributes). To each parameter A ∈ ΩA a range dom(A) of values is assigned, and
ΩV = ∪A∈ΩAdom(A) is the set of all possible values for the parameters. Further
we assume FΩA to be the (universal) set of findings (A = v), where A ∈ ΩA is a
parameter and v ∈ dom(A) is a possible value. We will call FO ⊆ FΩA the set of
observed findings. As well, we will call a set of diagnoses H ⊆ ΩD a hypothesis,
e.g., H = {D1,D2}. FH ⊆ FΩA denotes the set of all findings (A = v), which
are covered by the diagnoses D ∈ H, i.e., such that D → (A = v) holds. We
will call FH the set of predicted findings. For a given set F of findings, let α(F)
be the set of all parameters A for which findings (A = v) ∈ F exist. For all
A ∈ α(F) we define F(A) = v to be the value assigned to the parameter A
and we assume that there exists only one finding (A = v) for each parameter A.
We will call α(FH) and α(FO) the sets of predicted and observed parameters,
respectively. E.g., for FO = { (A1 = a), (A2 = b), (A3 = e), (A4 = d) }, we
get α(FO) = {A1, A2, A3, A4}. These definitions lead us to a couple of sets used
by the reasoning algorithm.

1. The set α(FH,FO) = α(FO) ∩ α(FH) contains all parameters, which
are observed and predicted. Corresponding to α(FH,FO) we define the
set FH,O = {(A = v) ∈ FH|A ∈ α(FO)} which contains all predicted
findings (A = v) such that A is observed (i.e., α(FH,FO) ⊆ α(FH,O)).

2. The set α+(FH,FO) ⊆ α(FH,FO) of positively observed parameters
contains all observed parameters which are observed with the value that
is predicted by the hypothesis.

3. The set α−(FH,FO) ⊆ α(FH,FO) of negatively observed parameters
contains all observed parameters which are observed with another value
than predicted by the hypothesis.

4. The set αu(FH,FO) = α(FO) \ α(FH) of unspecific observed parame-
ters contains all observed parameters which are not predicted by the given
hypothesis. These parameters cannot be explained by the given hypothesis.

�( , )F FH O �( )FO

unspecific parameters

( , )�
u

F FH O

positively observed parameters

( , )�
�

F FH O

negatively observed parameters

( , )�
�

F FH O

A1

A2

A3

A4

Figure 2: The subsets α+(FH,FO), α−(FH,FO) and αu(FH,FO) of the
observation set α(FO)

Figure 2 gives a graphical representation of these sets for the covering relations
stated in Figure 1 and the assumption that we observe FO = { (A1 = a), (A2 =
b), (A3 = e), (A4 = d) } with hypothesis H = {D1}. Thus, we get FH =
{ (A1 = a), (A2 = b), (A3 = c) } and α+(FH,FO) = {A1, A2}. Param-
eters in α−(FH,FO) = {A3} are predicted by H, but they are observed with
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another value as predicted by H. This property distinguishes it from the set
αu(FH,FO) = {A4}, which contains parameters that are not predicted by H.
It always holds that

α(FO) = α+(FH,FO) ∪ α−(FH,FO) ∪ αu(FH,FO).

Quality Measures. The quality measures are based on a binary difference
function ‖ ., . ‖ : 2FΩA × 2FΩA → R, and on an unary weight function ‖ . ‖ :
2FΩA → R, for sets of findings:

1. Given FH,FO ⊆ FΩA , then ‖FH,FO‖ measures the difference between
the predicted and the observed findings.

• In the simplest case, ‖FH,FO‖ = |FH ∩ FO| is the number of find-
ings, for which the predicted value is also observed.

• In Section 3 we will discuss more refined difference functions, which
can assign different weights to the different parameters A, which can
take into account the similarity between the predicted value v and
the observed value v′ of a parameter A, and which can deal with
probabilities.

2. Given F ⊆ FΩA , then ‖F‖ is the weight of the set F of findings. In the
simplest case, ‖F‖ = |α(F)| is the number of parameters A for which
findings (A = v) are given in F . This means that all parameters A have
the same weight w(A) = 1. In Section 3 we will assign different weights
w(A) to different parameters A.

Definition 2.1 (Quality Measures)

1. The precision π(FH,FO) relates the predicted findings, for which the val-
ues are as observed, to the weight of all predicted findings:

π(FH,FO) =
‖FH,FO‖
‖FH,O‖

(1)

2. The covering rate κ(FH,FO) relates the weight of the predicted findings
to the weight of the observed findings:

κ(FH,FO) =
‖FH,O‖
‖FO‖

(2)

3. The quality �(FH,FO) of a hypothesis H is given by

�(FH,FO) = π(FH,FO) · κ(FH,FO) =
‖FH,FO‖
‖FO‖

. (3)

The quality of a hypothesis is defined as the ratio of observed and predicted find-
ings and the overall number of observed findings. Ideally, all observed findings are
also predicted and we would obtain a quality value �(FH,FO) = 1. Sometimes
it might be interesting to have more subtle measures than the quality value (e.g.,
for the candidate generation of hypotheses). Therefore we define the quality � as
a product of the covering rate κ and the precision π. The precision π is optimal
(i.e., π(FH,FO) = 1) if all predicted observations are assigned to the same values
as noted in the covering relations. On the other hand the covering rate κ deter-
mines how many of the observed parameters are currently predicted by the given
hypothesis and which therefore can explain the observation.
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The quality measure is only considered meaningful, if the hypothesis is suffi-
ciently complete: Given a completeness value cv(D) ∈ [0, 1] for each diagnosis D,
which has to specified by the expert, we call a hypothesis H sufficiently complete,
if for each diagnosis D ∈ H the ratio between the number of observed parameters
covered by D and the number of all predicted parameters of D exceeds cv(D):

|α(F{D},FO)|
|α(F{D})|

≥ cv(D) (4)

The introduction of the term sufficiently complete hypothesis is motivated by the
fact, that a covering model for a diagnosis will contain more findings than the di-
agnosis will cause in an average case. Nevertheless in most cases the observation
of a percentage of the modeled findings will legitimate the validation of this di-
agnosis. To emphasize this percentage the modeler has to specify a completeness
value cv(D). Unless this factor is reached by the observation set in the current
case, the diagnosis may not be considered as a valid subset of any hypothesis.

Extensions. The rest of the paper will concentrate on extensions of the simple
covering model presented in Figure 1. Starting with simple covering relations we
can apply additional information to improve the diagnostic quality. Each addition
forms a supplementary component of the covering model. The extensions were
motivated by real world problems in the area of chronical polyarthritis (pcP) and
so we will use simplified medical examples for each single extension.

Suppose we have the covering relation "pcP → (Pain = very high)" and we
can observe (Pain = high). In the simple covering model this observation would
be negatively observed and be treated exactly like (Pain = normal), although the
values very high and high are much more similar than very high and normal. As a
consequence we will introduce similarities between findings as the first extension
to set–covering models. Another knowledge component adds weights for findings.
For example if we have the relations "pcP → (morning stiffness = true)" and "pcP
→ (rheumatic blood parameter = high)" the high blood parameters may be more
valuable to the diagnostic process than the parameter morning stiffness. Because
of this we will add weights to parameters to emphasize their diagnostic power in
comparison to other parameters. Furthermore in most real world applications only
uncertain knowledge is available. Uncertainty can be expressed through proba-
bilistic covering relations, e.g., it usually holds that "pcP → (Pain = very high)",
which will be introduced as a single knowledge component. Beyond that, one
can build generic models by defining causal relationships between severities of di-
agnoses and parameter values. For example if the disease pcP has the severities
normal, weak, strong, we can easily model a covering relation to a parameter Pain
that increases the value of Pain depending on the severity of pcP. Thereby all ex-
tensions can be combined with each other, but it is recommendable to start with
similarities, weights and uncertain covering relations. To deal with more complex
models including therapies one should add severities and effect relations. The fol-
lowing sections will introduce these concepts in more detail and show how the
functions ‖ . ‖ and ‖ . , . ‖ will vary upon the available knowledge.

3 Static Set–Covering Models

In this section we will introduce the knowledge components available to static
set–covering models. We will call these models static because the structure of the
covering relations is specified by the expert in advance and will not change during
the problem solving process.
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Starting with the simple covering model the engineer is only able to define
ordinary covering relations between diagnoses and findings. An example for a
simple covering model is depicted in Figure 1. The functions are then defined
as simple cardinality functions: ‖FH,FO‖ = |α+(FH,FO)| and ‖F‖ = |F|.
Further extensions will build upon this model.

3.1 Similarities between Parameter Values

Consider a parameter A with the value range dom(A) = {no, si, mi, hi }, with
the meanings normal (no), slightly increased (si), medium increased (mi), and
heavily increased (hi), where (A = hi) is predicted. We clearly see that the obser-
vation (A = mi) deserves a better covering rate than the observation (A = no).
Nevertheless the simple covering rate considers both observations as negatively
observed parameters and makes no difference between the similarities of the pa-
rameter values.

For this reason we want to define similarities as the first extension to set–
covering models. We define the similarity function sim : ΩV × ΩV → [0, 1] to
capture the similarity between two values assigned to the same parameter. The
boundary value 0 means no similarity and the value 1 indicates two equal values.
In cluster analysis problems this function is also called distance function (c.f. [2]).
We obtain the quality for models with similarities, when we define the functions
‖ ., . ‖ and ‖ . ‖ as follows:

‖FH,FO‖ =
∑

A∈α(FH,FO)

sim(FH(A),FO(A)), ‖F‖ = |F|. (5)

As a special case, we get the simple covering rate, if we define sim(v, v′) =
0, if v 	= v′, and sim(v, v′) = 1, if v = v′.

3.2 Weighted Findings in Covering Models

The introduction of weights for observed values is another common generalization
of the simple covering model. Given a weight function w : ΩA → IN+, we define

‖FH,FO‖ =
∑

A∈α+(FH,FO)

w(A), ‖F‖ =
∑

A∈α(F)

w(A). (6)

to get the quality of weighted models. If all findings have the same utility, i.e.,
w(A) = 1 for all A ∈ ΩA, then the weighted covering model reduces to the
simple covering model.

3.3 Uncertainty in Covering Relations

An important enhancement of covering models is the possibility to state uncertain
covering relations. Thereby the diagnosis forces observations of specified findings
not in any case but only with a specified probability. To facilitate such proposi-
tions and their integration in the computation of covering models we need some
assumptions.

Assumptions and additional knowledge.

1. For each diagnosis D ∈ ΩD the apriori probability PD is given and the
occurrence of a diagnosis is independent from other diagnoses. As a conse-
quence, the apriori probability for a hypothesis H = {D1, . . . , Dn} is the
product of the single probabilities.



7

2. For each covering relation D → (A = v) the conditional probability
PD(A = v) of the occurrence of this relation is given in the model. The
occurrence of the covering relation is independent of the occurrence of any
other covering relation.

As an implication of the second item, the probability PH(A = v) is calculated
from the probabilities of events causing the occurrence of A and belonging to
the combined hypothesis H = {D1, . . . , Dn}. The causing events are defined as
subsets of the hypothesis H reflecting the possible combinations. For example,
assuming H = {D1,D2} we have to take the events (D1), (D2) and (D1 ∧ D2)
for causing (A3 = c) into account. It holds that

PH(A = v) =
∑

H′⊆H

∏
D∈H′

(
PD(A = v) ·

(
1 −

∏
D∈H\H′

PD(A = v)
))

(7)

Now we can define the quality measure for probabilistic covering models.

Probabilistic covering models. We view

PH =
∏

D∈H

(
PD ·

∏
D′∈ΩD\{D}

(1 − PD′)
)

(8)

as the apriori probability of H given by the diagnoses included in H. The quality
measure for a probabilistic covering model is defined given the following functions
‖FH,FO‖ and ‖F‖:

‖FH,FO‖ =
∑

A∈α(FH,FO)

PH · PH,FO (A = v) , ‖F‖ = |F|. (9)

The function PH,FO is defined as follows:

PH,FO (A = v) =

{
PH(A = v) for A ∈ α+(FH,FO),
1 − PH(A = v) for A ∈ α−(FH,FO)

(10)

For the expert these equations serve as an intuitive understanding of the model. A
more appropriate procedure for handling uncertainty would be the introduction of
a leaky–diagnosis. A leaky–diagnosis Dl captures the idea, that no model can be
a complete view of the domain and that there are always other reasons that can
cause a given finding. These “other reasons” are collected in the leaky–diagnosis,
which is categorically connected to all available findings. To shrink the emerging
number of probabilities, we assume a constant probability for all covering relations
between the leaky–diagnosis and a finding. If the model contains weights it is
easy to see that the leaky probabilities can be adapted with respect to the weights.
Large weights will decrease the leaky probability whereas small weights increase
the probability. As a consequence, for every hypothesis we have to consider the
leaky–diagnosis to be included in the hypothesis as well. It is easy to understand
that with the usage of the leaky–diagnosis there will be no unspecific observed
parameters because the leaky–diagnosis holds covering relations to all findings by
default. So αu(FH,FO) will be empty for all H and all FO.

Taking a few assumptions into account it can be shown that the probabilistic
covering rate form an approximation for the conditional probability of a given hy-
pothesis according to the Theorem of Bayes. Due to the limited space we omit the
description of the transformation between the covering relations and the Bayesian
probabilities.
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3.4 Combining the Different Components of Knowledge

In the section above we introduced different components of knowledge to include
in the covering model. Each component supplies an additional support for the
calculation of the covering rate, if it is available in the given model. However, if
one component does not appear, it cannot contribute to the quality of the model
and therefore will not appear in the calculation. For this reason we will introduce
the abbreviations wc, sc, and pc: if the corresponding knowledge is available,
then we set wc(A) = w(A), sc(A) = sim(FH(A),FO(A)), and pc(A) = PH ·
PH,FO (A = v); otherwise, wc(A) = sc(A) = pc(A) = 1, i.e., wc, sc, and pc
are omitted in the calculation. The quality of a model will be computed by the
following functions ‖ . , . ‖ and ‖ . ‖:

‖FH,FO‖ =
∑

A∈α(FH,FO)

wc(A) ·pc(A) · sc(A) , ‖F‖ =
∑
A∈F

wc(A) (11)

It is easy to derive that these formulas are generalizations for the equations given
above, when in each equation only one knowledge component is considered.

3.5 An Example

For clarifying the equations defined for static covering models we will illustrate
the computation of the covering rate by an example. The covering model is given
in Figure 3, and we can observe the findings FO = {(A1 = a), (A2 = b), (A3 =
c′), (A4 = d)}; we assume that sim(c, c′) = 0.7 and PD1 = PD2 = 0.5. It holds
that P{D1} = P{D2} = P{D1,D2} = 0.25.

D1
cv=0.6

1010 3 7

D2
cv=0.6

P =0.5D1 P =0.5D2

A =a1 A =b2
A =c3 A =d4

0.8 0.70.60.9 0.9

Figure 3: Covering model for the example. Probabilities for the covering
relations are shown at the corresponding edges, weights are depicted under
the findings.

We will consider the three hypotheses H1 = {D1}, H2 = {D2} and H3 =
{D1,D2}, which are sufficiently complete, since D1 and D2 exceed their specified
completeness value cv(D1) = cv(D2) = 0.5.
To measure the quality of the hypotheses we have to calculate ‖FH,FO‖ and
‖FO‖. ‖FO‖ is constant for all hypotheses:

‖FO‖ =
∑

A∈α(FO)

w(A) = 10 + 10 + 3 + 7 = 30
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Hypothesis H1 = {D1}
We get

α+(FH1 ,FO) = {A1, A2},
α−(FH1 ,FO) = {A3},
αu(FH1 ,FO) = {A4}

‖FH1 ,FO‖ = PH1 ·
∑

A∈{A1,A2,A3}
w(A) · PH1,FO (A = v) · sim(FH1(A),FO(A)) =

= PH1 ·
(
10 · 0.8 · 1.0︸ ︷︷ ︸

A1

+ 10 · 0.9 · 1.0︸ ︷︷ ︸
A2

+ 3 · 0.6 · 0.7︸ ︷︷ ︸
A3

)
= PH1 · 18.26

Therefore �(FH1 ,FO) = PH1 · 0.61 = 0.15

Hypothesis H2 = {D2}
We get

α+(FH2 ,FO) = {A4},
α−(FH2 ,FO) = {A3},
αu(FH2 ,FO) = {A1, A2}

‖FH2 ,FO‖ = PH2 ·
(
3 · 0.7 · 0.7︸ ︷︷ ︸

A3

+ 7 · 0.9 · 1.0︸ ︷︷ ︸
A4

)
= PH2 · 7.77

Therefore �(FH2 ,FO) = PH2 · 0.26 = 0.06

Hypothesis H3 = {D1, D2}
We get

α+(H3,FO) = {A1, A2, A4},
α−(H3,FO) = {A3},
αu(H3,FO) = {}

Since the parameter A3 is covered by both diagnoses we cannot simply read off the
probability but have compute it by assuming the events (D1), (D2) and (D1∧D2)
to cause the occurrence of A3. Applying Equation 7 we receive:

PH3(A3 = c) = 0.6 · 0.3︸ ︷︷ ︸
{D1}

+ 0.6 · 0.7︸ ︷︷ ︸
{D2}

+ 0.18 · 0.28︸ ︷︷ ︸
{D1,D2}

= 0.88

‖FH3 ,FO‖ = PH3 ·
(
10 · 0.9 · 1.0︸ ︷︷ ︸

A1

+ 10 · 0.8 · 1.0︸ ︷︷ ︸
A2

+ 3 · 0.88 · 0.7︸ ︷︷ ︸
A3

+ 7 · 0.9 · 1.0︸ ︷︷ ︸
A4

)
=

= PH3 · 0.84

Therefore �(FH3 ,FO) = PH3 · 0.84 = 0.21

It is easy to see that the hypothesis H3 = {D1,D2} supplies the best covering
for the given observation FO = {(A1 = a), (A2 = b), (A3 = c′), (A4 = d)}.
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4 Dynamic Set–Covering Models

The previous sections viewed covering relations as static representations of diag-
nostic models. Now we will introduce a concept of cause–effect relations that
generates covering models dynamically. This approach will allow for integrating
therapies and their effects into covering models.

Up to now we can only represent covering relations for a single severity of a
diagnosis. This limitation restricts the modeling facilities in several ways:

1. To build a covering model for each diagnosis and each severity implies a
huge effort of knowledge acquisition for the expert.

2. It is impossible to model therapy effects on parameter values, since ther-
apy effects weaken or strengthen existing parameter values. This behaviour
cannot be modelled with the static covering models described so far.

For this reason we will introduce severities and severity effects as an extension
of the existing covering models. Diagnoses now can not only have the state
“true” or “false”, but can hold severities denoted in general by the set Ωsev =
{0, sev1, . . . , sevv} of all possible severities: 0 means that the diagnosis is absent,
sevv is the strongest occurrence of the diagnosis. In the following we will treat
therapies like diagnoses, since they also can hold different severities (dosages) and
have an effect on parameter values.

A
e(D,v )

i

T
e(
T,
v )k

D A
e(D,v )

iD

Figure 4: A single (only diagnosis D as a cause) and a binary effect (diag-
nosis D and therapy T as causes) on parameter A

For implementing these capabilities we want to give an intuitive definition for
an effect function e. It will be used to express effects from diagnoses/therapies to
findings. An important convention is that we only can define effect functions on
findings with a scalar range of values. So the values contained in the range need
to have an explicit order. For simplicity we define an abstract set E = {– – –, –
–, –, 0, +, ++, +++} of symbols for possible effects. For example the symbol “−”
means a slight decrease of the involved finding, whereas “+” defines an increase,
“0” maps no effect to the existing value; the other symbols are gradually stronger
or weaker movements of the findings.

As shown in Figure 4 effect functions are denoted at the edges between the
corresponding nodes. With the implementation of effects for covering models the
following problems arise:

1. Interpretation: In principle the symbolic effects in E are not clearly defined.
Nevertheless, we need a precise value to compute the quality measures. But
the effect (e.g., slight decrease of the parameter value) can be uncertain and
the movement of the value may result in different parameter values with
different probabilities.

2. Accounting: If a parameter receives more than one effect, then the question
arises, how these multiple effects should be accounted against each other to
compute the resulting parameter value.
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When proposing solutions for the problems above we have to keep in mind that
the representation has to stay as simple as possible to provide an easy knowledge
acquisition for the expert.

4.1 Interpretation

The simplest way to translate the effects into concrete findings is to define a cat-
egorical transformation between the symbols of set E to an integer. For exam-
ple we can declare the symbol “+” to stand for an increase of the finding by +1
unit. Then a parameter A starting with value vj and receiving an single effect “+”
would get the new value vj+1. In the covering model this will result in the finding
(A = vj+1).

For an uncertain interpretation of the effect we will introduce a membership
function µ : E → T for each symbol in E . T is defined as a set of tuples
[mov, p(mov)], where mov is an integer indicating how much the value of the
parameter will be moved (increased/decreased) and p(mov) the probability of this
movement.

µ(+) = { (0, 0.1), (+1, 0.8), (+2, 0.1) } (12)

In Equation 12 we can see an example for the symbol “+”, which denotes, that we
will have no movement at all with 10% probability, a shift of the parameter value
by +1 with 80% probability and an increase by +2 with 10% probability.

4.2 Accounting of Multiple Effects

The accounting of multiple effects on a parameter is not obvious and we will
present two options which are appropriate for different kinds of situations. When
bringing the effects into the covering relations the modeler has to decide about how
the multiple influences on a node should be handled and denote it at the influenced
node. We emphasize that these procedures are quite simple but keep the model
simple as well and the reasoning step understandable for the user. The two options
are:

Order–of–magnitude reasoning. In [8] this procedure is motivated by the
fact that larger magnitudes of effects might have a significantly larger impact on
a finding. E.g., if the diagnosis pcP increases the value of parameter inflamma-
tions by “+++” as well as another diagnosis increases inflammation by “+”, then
the second diagnosis may not have any additional significance on the value of the
parameter.
For a certain interpretation of the symbols we only count the largest magnitude
when all effects have the same sign. For an uncertain interpretation of the in-
volved effects we have to transform the symbols and calculate the possible events.
E.g., w.r.t. the binary effect in Figure 4 we assume that “e(D,A) = ++” and
“e(T,A) = +”. The symbols “++” and “+” are defined by the following equa-
tions:

µ(++) = {(+1, 0.1), (+2, 0.8), (+3, 0.1)},
µ(+) = {(0, 0.1), (+1, 0.8), (+2, 0.1)}.

(13)

It is easy to see that the possible movements of A caused by these two effects are
defined by Mov = {+1,+2,+3}. For the moment, we only want to compute the
probability that A is increased by +2. To simplify the calculations we abbreviate
the following events with ei:

e1 = [e(D,A) = (+2, 0.8)], e3 = [e(T,A) = (+1, 0.8)],
e2 = [e(T,A) = (±0, 0.1)], e4 = [e(T,A) = (+2, 0.1)].



12

A is shifted by +2 because of the events e1 ∧ e2 or e1 ∧ e3 or e1 ∧ e4. For the
overall probability of emov=+2 we compute

p(emov=+2) = e1e2 + e1e3 + e1e4 = 0.08 + 0.64 + 0.08 = 0.8.

The calculation of the probabilities for the events emov=+1 and emov=+3 is anal-
ogous. A problem arises, when we have two effects with different signs but equal
magnitude (e.g., + and −). In this case a general solution is not possible and the
modeler has to define a reasonable heuristic.

Accumulative reasoning. If a parameter is influenced not only by diagnoses
but also by therapies, then an accumulative approach seems to be appropriate.
Here we compute a final effect on the parameter by transforming each symbolic
influence into its numeric representation. Then we simply obtain the result by
the sum of the numeric values. As this procedure will work fine for categorical
effects we have to define this for uncertain effects more precisely. The idea is
that we have to compute the cartesian product to get all possible outcomes for an
influenced finding.
An example might clarify the procedure: Recalling the binary effect depicted in
Figure 4 and assuming that “e(D,A) = ++” and “e(T,A) = −”, the symbols
“++” and “−” are defined as follows:

µ(++) = {(+1, 0.1), (+2, 0.8), (+3, 0.1)},
µ(−) = {(−2, 0.1), (−1, 0.8), ( 0, 0.1)}

(14)

Computing these two effects we can see that the set of possible movements of
parameter A is defined as Mov = {−1, 0,+1,+2,+3}. If we want to know
the probability of the event emov=0 ("A does not move its value (mov = 0)"),
we simply have to consider the two events e1 = [(T = −1) ∧ (D = 1)] and
e2 = [(T = −2) ∧ (D = 2)]. Notice that the sub–events of e1 and e2 are
independent (see assumptions in Section 3.3), and so we compute

p(emov=0) = e1 + e2 = (0.8 · 0.1) + (0.1 · 0.8) = 0.16.

Thus, the covering relation r = [D ∧ T ] → [A = 0] has the probability p(r) =
0.16. The calculations for the other values contained in Mov are analogous.

We have shown how to integrate cause–effect relations into set–covering rela-
tions. W.r.t. the observations it is simple to compute the probabilities for the obser-
vations and to compute the quality measures for this generated model as described
in Section 3.

5 Summary and Future Work

In this paper we presented an incremental approach for building set–covering mod-
els using qualitative and quantitative knowledge combined in one formalism. Start-
ing with a simple qualitative model one can extend the covering net by similarities,
weights, uncertainty and severities. For all extensions we provided a formal de-
scription and a guidance to integrate it into the set–covering theory. The goal of
each extension is the improvement of the diagnostic quality achieved by the model.
Currently we are implementing a prototype of the problem–solver which will be
used by experts in the fields of medicine and geo–ecology.

So far we have only considered models containing one level of covering rela-
tions (e.g. D → (A = v)). In the future we want to consider multiple levels since
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we would like to represent covering relations like Di → Dk → (A = v). One
arising question is the handling of uncertainty in multi level nets. We are planing to
prove that an intuitive accounting of probabilities can be seen as an approximation
of the inference methods used in belief networks [6].
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