
LIN

Erik Sandewall

Self-description of Agents and Sessions

Leonardo Implementation Note

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

This implementation note pertains to the development of the Leonardo system.

Identified as PM-lin-004, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/lin/004/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2011-02-27



1

1 Introduction

This note describes the entities and global variables that are used in a
Leonardo session for describing its current state. This information is iden-
tified and assigned during the session startup process. Its representation
has evolved over time, with the effect that there are both currently recom-
mended entities and legacy entities with the same or related contents. The
legacy entities are intended to be phased out but are allowed to remain for
the time being, but they should not be used when new code is written.

The reader should first be familiar with the general character of the Leonardo
system, in particular those aspects that are described in the memo “Leonardo
Installation, Startup and Self-Description.”

We shall describe currently recommended entities and legacy entities in
separate sections. After this there are some additional sections describing,
for example, the entities and global variables that are used by the facility
for message-passing.

The term “entities” here and henceforth will include both Leonardo entities
and global Lisp variables. We distinguish between the following kinds of
such session-describing entities and attributes:

• Persistent entities and attributes whose values are stored in entityfiles
and obtained to the session when those entityfiles are loaded.

• Session entities and attributes that are assigned and used for the
duration of the session.

• Startup entities and attributes that are used during the startup pro-
cess and unused thereafter.

• Legacy entities and attributes that have belonged to some of the pre-
vious groups but which are no longer in use or are being phased out.
They are documented briefly here in case there should be remaining
usage of them somewhere in the code.

A number of entityfiles are loaded in sequence in order to start a session.
This session startup sequence includes the following entityfiles, so these are
the ones to look at in order to understand in more detail how the session-
describing entities are assigned their values.

• The boot ef (entityfile), e.g. startleo.leo if the session is started
using startleo.bat

• The ef bootfuns.leo in the Process/Boot/ directory

• The ef session-init.leo in core-kb i.e. the Core directory

• The ef load-envir.leo in indiv-kb

• The ef clonemon-defs.leo also in indiv-kb

• The ef indivmap-oper.leo in els-kb

These are the ’procedural’ files in the sense of ef that they contain definitions
of commands, functions, and other procedural constructs. They may also
contain assignments to the session-describing entities mentioned above. In
addition, the following ef are loaded during that early stage of the session
startup sequence merely in order to load declarative information:



2

• selfdescr.leo

• clonemon.leo

• self-kb.leo

• kb-catal.leo

• core-kb.leo

The first one of these contains the attribute assignments for the agent’s
proper name, described below as the value of the global variable *my-id*.
The clonemon file contains information for detecting when a Leonardo in-
dividual has been cloned, and the last three are catalogs describing the
locations of other entityfiles.

Many of these entityfiles are loaded from their .leos representation since
they are loaded before the KRE parser, or for reasons of speed.

Finally there is the file /Process/main/State/cl/sessionmode.cl which
contains parameters specifying some aspects of the conduct of the command-
line dialog. It is described in Section 7.1.

The following text will specify, for each self-description entity, the ef where
it is assigned its value.

2 Entities for Agents and Individuals

Note: the first two subsections of this section are identical to subsections in
the memo Self-description of Agents and Sessions.

2.1 The Persistent Representation of Agents

The persistent representation of an agent is as a directory with its sub-
directories and files in the computer’s memory, or on a detachable memory
device (DMD) such as a USB stick. This will be called the agent directory.
A Leonardo agent can only execute if it is located in a Leonardo individual
containing one or more, related agents and some auxiliary information for
them. An individual directory is therefore a directory containing one or more
agent directories as immediate subdirectories, plus an additional subdirec-
tory called Indivmap that contains a number of catalogs with information
about the computing environment and neighboring individuals.

Leonardo agents and individuals are mobile in the sense that they can be
moved from one host to another and execute sessions on each of these. The
internal information in the agent is preserved as the agent is moved. It can
obtain information from each host that it visits, and accumulate it, and the
agent can also leave information behind when it moves on. For example, an
agent that is located on a USB stick can be moved between hosts simply
by moving this memory device. It is also possible to move an agent in the
sense of moving its entire file structure from one memory device to another,
for example from a USB to a hard disk, or from the hard disk of one host
to the hard disk of another one. These possibilities are used very frequently
in our own work.



3

There is also a stronger sense of “mobile agent” where the agent decides by
itself to move from one host to another. This is useful in some applications
and the Leonardo system design is prepared for this functionality, but it has
not yet been needed in any of our own applications.

2.2 Configurations and Directory Names

It is the nature of things that there are different agents with different con-
tents, including both procedural contents and ‘data’ contents, but there are
also many situations where it is desirable to have several exemplars of the
same species of agents, that is, several copies that differ in some of the de-
tails but whose overall structure is the same. For example, if an application
is realized as a Leonardo individual containing one or more agents, then
one may wish to have one exemplar for production use and another one for
further development and testing. [1]

The following structure is used in order to organize the resulting multi-
tude of agents. Each species of agents is given a particular name; remus
and leoregistrar are examples of currently used species. Each individual
has a particular configuration which specifies what species must or may be
present in an individual with that configuration. For example, the config-
uration Registrar is specified to contain agents of the species remus and
leoregistrar.

An individual can not contain more than one agent of the same species.
Therefore, for communication within an individual it is sufficient to refer to
agents using their respective species name.

For communication between individuals it is necessary to distinguish bet-
ween different individuals with the same configuration. Therefore, each
individual has a directory name which is formed by appending a serial num-
ber to the name of its configuration, obtaining for example the directory
name Registrar-2. There is a server facility for registration of individu-
als, which is a mechanism for obtaining unique directory names within a
certain context.

Agents have proper names, similar to the directory names of individuals.
However, it is not possible to use the same serial number for the individual
and its agents, since some species are used in several configurations. The
assignment of proper names for agents is based on a particular aspect of the
design, namely, that some species are used as kernel agents that provide the
basic machinery for the individual, and each configuration of individuals
designates one particular agent species that is to be used as kernels. Conse-
quently, kernel agents are assigned proper names consisting of their species
name plus a serial number that is assigned by the registrar, and other agents
in the same individual obtain a proper name consisting of their species name
followed by the serial number of the kernel agent in the same individual.

For example, since the individual Registrar-2 consists of agents of the
species remus and leoregistrar, if the former agent has the proper name
remus-43 then the latter one will have the proper name leoregistrar-43.
One will then assume that there are other remus agents with numbers from

1In the English language the word ‘exemplar’ has a dual meaning, so it can
refer both to one out of many copies of e.g. a book, and also to a prototype that
copies are made from. We use the word in the former sense.



4

1 to 42, but there is no similar assumption for agents of the leoregistrar
species.

As already mentioned, the persistent representation of a Leonardo individ-
ual is as a directory having immediate subdirectories for each of the agents
in the individual. It is strongly recommended that the directory of the in-
dividual is named by the individual’s directory name. It is also required
that the directory of each of the included agents is named by the agent’s
species (not its proper name). In our example, the directory Registrar-2
will have subdirectories remus and leoregistrar.

2.3 Attributes of Agent Proper Names

Each agent contains an entityfile that is located at

Process/main/Defblock/selfdescr.leo

as seen from the agent’s main directory. This entityfile contains one sig-
nificant entity, namely, the agent’s proper name. The type of this entity is
leo-agent. This entity and its attributes are persistent.

*my-id* - Within each session, the global variable *my-id* has the agent’s
proper name as its value. Notice that this design makes it possible for a
session to load the entity-descriptions for the proper names of other agents,
without interfering with its own entity-description, but at the same time it
is well defined how it can identify the entity for its own proper name. This
entity is the starting point for arriving at a species of other information
about the entity. The following are its most important attributes.

• leoname - The name of its species, e.g. remus

• has-owner - An identifier for the person ’owning’ the agent, for
example /Larsson.Lars

• created-on - Date of creation of this agent, e.g. 2011-02-22

• in-society - Described below

• indivmap-name - Described below

2.4 Network Level Names

Directory names of individuals and proper names of agents are convenient to
use, but unfortunately they can not be guaranteed to be unique in a larger
scale system. The Leonardo architecture makes use of leosocieties as a way
of organizing situations involving many users. A leosociety is a structure
for the maintenance of a family of individuals and their constituent agents,
including registration, assignment of the numbers for directory names and
agent proper names, agent catalogs that provide addressing information
for message-passing, software updates, and so forth. For example, if each
student in a class receives her or his own software individual for use in course
projects, then it may be appropriate to create a separate leosociety for this
purpose.

It follows that directory names and agent proper names are unique within
each leosociety, but not necessarily between them. Therefore there is a



5

more elaborate naming scheme, called network names or indivmap names
that guarantees uniqueness and that is also used for registration purposes.
These network names and their attributes are persistent.

Network names are composite entities, i.e. expressions consisting of an
operator and its argument(s). The network name for an individual is formed
like in the following example for Registrar-2

(leoind: Registrar soc.root 2)

where the second argument of the operator specifies the leosociety that has
issued the serial number for this individual. The network name for a kernel
agent is formed like in the following example for remus-43

(kercl: soc.root 1 soc.root 43)

where soc.root 1 is the network characterization for the species remus,
formed as the leosociety that has registered the species and the number it
obtained, and then again soc.root for specifying that it was the same leo-
society that assigned the number 43 to the present examplar of the species.

Finally, the network name for a non-kernel agent is formed like in the follow-
ing example for leoregistrar-43

(agda: (kercl: soc.root 1 soc.root 43) leoregistrar)

representing that this is the leoregistrar agent in the individual whose
kernel agent is remus-43. The acronym agda stands for ‘agent daughter’.

indivmap-name - The proper name of an agent refers to the agent’s network
name using tye attribute indivmap-name

*curagent* - The value of this global session variable shall be the network
name of the current agent, i.e. it can be obtained as the value of

(get *my-id* ’indivmap-name)

The entities that are network names for individuals, kernel agents and other
agents have their entity descriptions in entityfiles with the following names,
respectively.

individuals-catal
kernel-agents-catal
agents-catal

These entityfiles are not stored within each agent, but in the separate direc-
tory Indivmap which is an immediate subdirectory of the individual direc-
tory. In this way it is shared by all the agents in the individual. The
following are the most important attributes of an individual network-name
entity.

• directory-name - its directory name

• has-owner - the owner, represented like in the agent’s attribute with
the same name

• in-host - the host where this individual is persistently located, in
those cases where this is the case. (Not applicable for individuals
that are stored on detachable memory devices).

• has-kernel - the network name of the individual’s kernel agent.



6

The following is one of the attributes of kernel-agent and non-kernel-agent
network names.

• in-individual - the network name of the individual that the present
agent belongs to.

A number of other attributes for the network names of agents are used for
specifying how to reach the agent in case of message-passing. The entityfiles
for catalogs of agents, individuals, hosts and so forth shall therefore con-
tain information about other individuals, so that message-passing becomes
possible. The registrar of the leosociety is the point of contact for exchang-
ing this information between individuals in the society, as well as (when
applicable) between leosocieties.

This design means in particular that the information about an agent is
partitioned between attributes for the agent’s proper name and attributes
for its network name. The former part is local to the agent itself whereas
the network name and its attributes are made public to other members of
the same leosociety by appearing in the Indivmap structure.

The one-to-one correspondence between the proper name and the network
name [2] is represented by the indivmap-name attribute on the proper name.
It is duplicated by the refers-to attribute on the proper name which shall
have the same value as the indivmap-name attribute. [3] In the reverse
direction there is an attribute referred-as on network names that have
the corresponding proper name as its value.

The indivmap-name attribute is persistent i.e. it is saved in the entityfile
containing the proper name, whereas the other two attributes are session
attributes whose values are constructed during session startup but not pre-
served.

3 Entities for Sessions and Episodes

3.1 Session Configuration Entities

The term ‘configuration’ is used for two different purposes in the Leonardo
architecture. Besides configurations for individuals that were introduced in
Subsection 2.2, there are also session configurations for use within agents.
Each session configuration specifies one particular way of starting a session.
Starting a session in a Linux environment or in a Windows environment
requires different configurations, for example. It is also possible to define
special configurations where a particular set of knowledgeblocks and entity-
files are loaded during startup.

Each available configuration is represented by an entityfile in the directory
Process/main/Boot/ . Two session configurations are used almost uni-
versally, namely startleo for use in Windows environments and linuleo
for Linux and Mac-OS environments.

2Notice however that this correspondence is only one-to-one within one specific
leosociety.

3This redundancy is for legacy reasons.



7

Each session configuration has a corresponding startup file, in particular
startleo.bat and the Linux executable file linuleo.lex in the directory
Process/main/ . The startup file startleo.bat invokes the CommonLisp
interpreter with Boot/cl/startleo.leos as its starting-file parameter [4]
and similarly for other session configuration entities. The .leos version of
the session configuration entityfile is therefore always the first file in the
startup sequence.

Session configuration entities are persistent.

*myconfig* - the global variable *myconfig* has the currently used config-
uration as its value. It is merely a startup entity, i.e. it is assigned during
the session startup phase and should not be used elsewhere. The attribute
configuration that is defined in the next section should be used instead.

3.2 Session Entities

The following global variables, entities and attributes are introduced and
assigned in ef session-init. These are session entities, i.e. they apply
only within one session. (The same applies for episode entities and session
history entities that are described in later subsections of this section).

*cursession* The value shall be a composite entity of type leosession
that denotes the current session; it shall look like e.g.

(session: leoregistrar-43 119)

specifying that it is the 119-th time that a session is started by the agent
whose proper name is leoregistrar-43, which presumably is the present
agent. (However, it is perfectly possible for one agent to load and analyze
session information from other agents in the same leosociety, or from its
own earlier sessions).

The session entity is used as a carrier for miscellaneous status information
within the session, so it is a session entity in the sense of Section 1. It has
the following attributes, among others.

• inhost - the identity of the current host, specified as an entity such
as host.aldebaran which is defined in ef hosts-catal.

• configuration - the entity representing the current session configu-
ration as described in Subsection 3.1 above. The value shall therefore
be an entity of type startup-file.

• init-leos-files - a Leonardo sequence of the first entityfiles that
were loaded during startup, and that were loaded in their .leos
format.

• runstart-ms - the time when the session started, expressed in global
seconds i.e. seconds since the beginning of year 1900.

• runstart-datetime - the time when the session started, expressed
as a Leonardo sequence e.g. <2009 8 10 23 0 3 0 t -1>

4The session is started in the directory Process/main/ relative to
the top-level directory of the agent, so the startleo file is located at
Process/main/Boot/cl/startleo.leos.



8

• cur-time - initialized as the value 0 (zero), this attribute is used by
some parts of the system as a discrete ”clock” that makes one tick
for every main ”action” being performed.

• session-nr - an integer specifying the number of the present session
of the present agent.

• already-started - a flag that is used for system purposes, so that
the banner shown when a session starts is different from the banner
that is shown after recovery from an execution error.

• uses-language - one of the entities English, Swedish, or any other
member of the set that is provided as the value of the global variable
*phrasecode-languages* (see Subsection 6.2). This controls the
selection of language-variable phrases.

• globvar-bindings - contains the binding of global variables that are
made using the ssv command.

The session number that is used as the second argument of session: is
maintained in the file State/session-nr.txt relative to the starting direc-
tory. The value is picked up and incremented by the session starting rou-
tines.

The value of the attribute inhost is obtained in either of two ways. In a
Windows environment it is obtained by asking the underlying Lisp system to
fetch the value of the operating-system environment variable that contains
this information. In the case of Linux and Mac-OS environments this option
is not available in Allegro CommonLisp [5] so the hostname is obtained
instead by reading the single line in the file Process/temp/ compnam.sii
This file must therefore be edited by the user if an agent is moved to a Linux
or Mac-OS environment.

Note: Couldn’t we set up the linuleo.lex file as a script that assigns contents
to this file?

current-host The value of (get ’current-host ’value) shall be the en-
tity representing the current host, i.e. it is the same as the value of (get
*cursession* ’inhost). (The use of current-host shall be phased out).

3.3 Episode Entities

The episode construct in Leonardo is used for representing a segment of
the command-line interactions within a session, and more generally for
representing a sequence of actions that are performed during the session.
Episodes can be used, for example, for representing a sequence of interac-
tions that is to be extracted and used for demonstration and publication
purposes. It is also intended that they shall be used for managing sequences
of actions in case-based planning systems.

episode-0000 This entity of type episode is the top node in a tree of sub-
episodes. Further nodes in this tree can be generated by applications as a
way of organizing past events during a session. The entity episode-0000
is initialized with the following attributes, among others.

5It is supposed to be available, but it apparently does not work.



9

• in-session - the value of *cursession* is also the value of this
attribute.

• has-sub-episodes - a sequence of other entities of type episode
which are the immediate daughter epsiodes.

• max-episode - initialized as 0 (zero), this is the number of the latest
created episode, and it is used as a counter for setting the number of
each additional sub-episode.

• has-chronicle - the chronicle record corresponding to the episode
episode-0000

• cur-time - the present time setting in the current episode, usually
represented as an integer that is incremented from zero and up.

The chronicle record is a large record containing much of the history infor-
mation. Immedidately after its creation it looks like in the following example:

[chronicle :clock (session: leoregistrar-43 119)
:occurs-in episode-0000]

Successive events (e.g. input commands) will then be added as arguments
in that record. There is a one-to-one correspondence between episode enti-
ties and chronicle records, which is represented using the has-chronicle
attribute and the occurs-in parameter.

The clock parameter makes it possible to use the cur-time attribute of
either the current session or the current episode as the time counter. In
addition there is in fact a global variable that can be used for the same
purpose, namely:

*tick* This global variable is set to 0 when ef lite-exec is loaded. It shall
be phased out.

The following global variables are used for identifying the most important
points in the episode hierarchy.

*top-epi* The entity for the top-level episode, normally selected as the
entity episode-0000.

*cur-epi* The entity for the current episode. It is initially selected as the
value of *top-epi* but it changes when the agent creates and switches to
a sub-episode. This may be done in order to create a record of a particular
sequence of events, for example in case-based reasoning.

*server-episode* Intended for separate episodes as used by server pro-
cesses. Not actively used at present; it is initially set to episode-0000 and
there is nothing in the system that changes it.

*top-chronicle* The value of this global variable is the chronicle associ-
ated with *top-epi* as the value of its has-chronicle attribute.

*cur-chronicle* The value of this global variable is the chronicle associ-
ated with *cur-epi* as the value of its has-chronicle attribute.

3.4 Session History Entities

The following global variables accumulate certain information about what
has been done during the current session.



10

*loaded-blocks* Initially set to the empty Leonardo set, the value of this
global variable shall be a list of the knowledgeblocks that have been loaded
into the session using the operator loadk, not including those that are listed
in the value of the init-leos-files attribute.

*loaded-bundles* Similar to *loaded-blocks* but little used. The idea
is/was that a bundle should represent a subset of the entityfiles in a know-
ledgeblock, and there should be a load-bundle operation similar to loadk.

These variables shall be reorganized as additional attributes of the current
session entity.

4 Legacy Entities for Sessions and Episodes

The following constructs are used by some of the existing code in Leonardo
and are described here for reference, but they should not be used when new
code is written.

*curactor* The value of this global variable is initially set to the symbol
IA. It is more or less a legacy facility since it is little used, but some facilities
that need to represent the “current X” for some X assign them as attributes
of the current value of *curactor*. They should be replaced by attributes
for the current value of current session and episode entities.

(pickup-host) Evaluation of this form obtains the entity representing the
host where the session is presently running. (get *cursession* ’inhost)
should be used instead.

*top-episode* Has the same value as *top-chronicle* - the variable
*top-episode* was the original one but it was inappropriate since the
value is a chronicle record and not an episode entity, and it was therefore
renamed. There may still be remaining occurrences of the old variable name
in some places in the code.

*cur-episode* Has the same value as *cur-chronicle* and is analogous
to the previous item.

*runstart-ms* Replaced by (get *cursession* ’runstart-ms).

*runstart-datetime* Similarly replaced by the runstart-datetime attri-
bute of the value of *cursession*

*errset* Set to t in ef bootfuns and is/was used for controlling how to
handle trapped errors.

5 Computational Environment

5.1 Location of External Software

Facilities in Leonardo sometimes need to invoke other software systems, for
example a text editor, a pdf renderer, or the LaTeX text formater. It must
therefore have information about the location of such softwares in the host
at hand. Although it is sometimes convenient to store this information
inside each Leonardo individual, there are also situations where this is quite



11

inconvenient, either because an individual is regularly being moved between
different hosts, or because there are a number of individuals on the same
host and one does not wish to duplicate the information.

These various needs are met by having a knowledgeblock called leohost-kb
whose directory Leohost may either be an immediate subdirectory of the
individual’s directory, or be located in a fixed position in a given host,
for example C:/Leohost/ on a Windows system. In the former case it
will be addressed as ../../../Leohost/ from the point of view of the
Leonardo session. The Leonardo entity for the host in question specifies
the appropriate path to be used for Leonardo agents on that host. This is
persistent information.

5.2 Location of the Allegro CommonLisp System

The http-related packages in the Allegro system require a separate loading
command, and in order to do this Leonardo needs to know the path to the
Allegro system that is being used. The following are the entities that are
involved in this.

has-allegro-path - This is an attribute for host entities such as e.g.
host.aldebaran where the value shall be a string showing the path to
the Allegro system being used.

(get allegrodir commandphrase) - This is the entry for the Allegro sys-
tem in the Leohost directory of external software.

*acldir* - This session variable is set to the directory that is obtained in
either of the following ways:

• For the current agent, look up what individual it is in, then look up
the host that the individual is supposed to be in, and finally look up
the has-allegro-path attribute of the individual.

• In the currently used Leohost structure, look up the location of the
presently used Allegro system, and use it

*aserve-ok* The session startup process attempts to load the http related
packages, using the path information that is obtained from the above. If it
succeeds in this then it sets *aserve-ok* to true, otherwise to nil.

5.3 Initial Description of Environment

At each point in time an agent is located in a particular individual, and in a
particular (computer) host, but both of these may change over time. Each
individual and each host contains a small amount of information describing
itself which the agent picks up during session startup. If that information is
missing, for example because the agent has arrived to a host that neither it
nor any other Leonardo agent has ever visited before, then it asks the user
for the information and stores it in the host.

Besides the catalogs of external software, the Leohost directory also con-
tains a few files that are used temporarily when a new agent is being set up
locally and before it and its associated entities (its owner, the host it is on,
etc) have been registered properly.



12

/Leohost/host-descr.leo The ef host-descr in Leohost contains an en-
tity host-self with the following attributes:

• host-own-name whose value is e.g. host.aldebaran i.e. an entity
based on the host’s name for itself in its operating system

• host-owner-string whose value is a string e.g. ‘‘Lars Svensson’’

• has-host-type whose value is one of the entities stationary-host
or detachable-host. The latter value is normally used for laptops
and in order to indicate that they may be attached to different local
area networks at different times.

This information is collected when the user is queried, and later it is trans-
ferred to its final location in entityfiles in the Indivmap directory.

/Indivmap/indiv-descr.leo Besides the catalog files, the Indivmap direc-
tory also contains an ef called indiv-descr whose only purpose is to spec-
ify what the agent at hand is called in the network. It contains the entity
current-individual whose type is globvar and which also has an attri-
bute value whose value is the network name for the individual at hand.

These entityfiles have fixed names and they can always be read by an agent
during its session startup phase (or later) in order to find out the Leonardo
name of the host and the individual where it is currently located. Notice
however that these ef provide only the names, but very little other informa-
tion about the host and the individual. Other entityfiles in indivmap-kb are
used for that purpose. In our examples, the ef hosts-catal in the Indiv
directory would contain the entity host.aldebaran with its attributes, and
the ef individuals-catal would contain the individual’s network name.
In this way it is possible for an agent to maintain and to use information
both about itself and about other agents and individuals.

6 Command-Line Functionalities

6.1 Attitudes

The command-line executive (CLE) allows for a species of command-line
attitudes. The standard one is called att.ses which is shown, among
other things, as the prefix of the command-line prompt which may be
e.g. ses.007) meaning interaction number 7 in a dialog with this attitude.
Different attitudes are distinguished in particular with how they react to
various kinds of errors. For example, if the precondition for a command is
violated then one attitude may return an error message, and another atti-
tude may invoke a planner in order to find a sequence of auxiliary actions
that achieve the precondition of the given command.

*cur-attitude* The value of this variable shall be the current attitude.

*attitude-list* The value is the list of currently available attitudes.

These two session variables are initialized in the sessionmode file which is
described in Subsection 7.1.



13

6.2 Phrasecodes

There are many points in the Leonardo software where a one-line response
has to be produced to the user in the command-line dialog. In order to pre-
pare the system for the use of multiple dialog languages, there is a facility
whereby such phrases are not written in-line in the code, but instead the
code contains a phrasecode whose corresponding phrase is defined in a sepa-
rate property. Moreover, each phrasecode can be associated with separate
phrases for each one of a number of languages, beginning of course with
English which is also the default.

The persistent global variable phrasecode-languages contains the list of
available languages. It is defined in ef responsedefs. Notice however that
there is no guarantee that all phrasecodes are defined for all languages, so
this list is more like a wish-list.

6.3 Auxiliary Graphical Entities

The following persistent entities contain simple graphical objects that are
used by the command-line dialog and by the procedure for writing entityfiles.

*starline* Defined in ef bootfuns, the value is a string consisting entirely
of asterisks. It is used in the greeting sequence to the user when a session
is started.

*quoteline* Defined in ef actexec, the value is a string having the same
length as the value of *starline* and consisting entirely of single-quote
characters. It is used when the command-line dialog switches from CEL
input to Lisp input.

*separator* A line consisting entirely of dashes, used as the separator
between entities in an entityfile.

*section-separator* A line consisting entirely of equality signs and hav-
ing the same length as the value of *separator*, used as the separator
between sections of entities in an entityfile.

*final-separator* A line consisting entirely of the small letter o and hav-
ing the same length as the value of *separator*, used as the terminating
line in an entityfile.

7 Session Modes and Startup

7.1 Mode Parameters

Each agent has an optional file called sessionmode.cl (mentioned already
in Section 1) which is loaded at a very early stage in the session startup
process. This file is used for setting some parameters that determine low-
level aspects of the dialog behavior, for example, printing of information
messages when entityfiles are loaded and written, and the behavior of the
system after a Lisp-level error in execution. It is written as an ordinary
CommonLisp file using S-expressions and is intended to be edited in this



14

way. However there is also a separate facility for converting it to standard
Leonardo form for Leonardo-level processing if this should be required.

The meaning of the parameters that are set in this file is described in the
documentation file at Process/main/State/sessionmode.dok as well as
in comments in the file itself. The following are additional descriptions of
some of the parameters in this file.

*load-by-leo* - If the value of this variable is true then the entityfiles in
indivmap-kb i.e. in the Indivmap directory will be loaded from their .leo
representation during session startup; if it is nil then they will be loaded
from their .leos representation. The latter alternative is faster, but it has
the disadvantage that if some of these files have been edited before starting
the session then one must either edit the .leos representation as well, or
start a session, load and write the edited files, and close the session before
the changes will take effect. This is inconvenient in particular when working
with new individuals or with hosts that have not previoously been declared
in the indivmap-kb that one is using. The default value for this variable is
therefore true.

(get *cursession* ’uses-language) - the value of this attribute is set
in sessionmode.cl and the standard version of the file sets it to the value
English.

7.2 Allegro CommonLisp Parameters

The following persistent global variables are used to control the behavior of
the Allegro CommonLisp system.

*print-startup-message* Leonardo’s assignment to this global variable
suppresses some information that ACL would otherwise present to the user,
such as the information the he is running a variant of CommonLisp that
accepts both upper-case and lower-case characters. The user may not need
to know this every time.

*restart-init-function* Leonardo’s assignment to this variable arranges
that the session starts in Leonardo’s command-line executive (CLE) and not
in Lisp’s command-line loop.

7.3 Session Startup Entities

The following are some global variables that are assigned during the session
startup phrase in order to communicate between different procedures that
are involved in that process. They will only be of interest if you are going
to modify that startup process.

*stars-before-acl-banner* An auxiliary parameter that is used for obtain-
ing the right presentation of the introductory ’banner’ lines under a species
of conditions.

*load-verbose*

*load-ef-verbose* (used in ef actexec )

*startup-phase*



15

These three are intended for controlling babble and other peculiarities of
behavior during session startup, but they are also used for some other opera-
tions that apply later on in a session.

*load-fail* - Set to true if there is a failure during the loading of a know-
ledgeblock. The definitions for this are in ef session-init and they should
be reviewed and maybe revised.

*suppress-nullvalued* - Set to true to indicate that nullvalued attributes
are not to be shown when an entityfile is printed.

*no-leoprint-babble* -

*base-server-port* - Specifies the port used for the dynamic resource
called dres.base with the default being 8080.

this-session - This entity has the attributes runstart-datetime and
runstart-ms with the same contents as for the value of the same attributes
in the value of *cursession*.

8 Session Entities for Message-Passing

Please refer to the separate memo ”Agent LAN Ontology in Leonardo” for a
description of how the agent network structure is represented. The following
merely specifies some session entities that are used for this purpose.

current-lan

Entities representing computer hosts may have the type of stationary-host
or detachable-host. For the former type there is an attribute in-lan that
specifies what local area network the host is attached to, but for detachable
hosts this does not apply. By definition they may be attached to different
local area networks at different times.

The information about LAN attachment is significant for message-passing,
since messages to another host on the same LAN can be sent using the
port numbers that apply within the LAN whereas inter-LAN messages are
restricted by the port assignments and mappings that are set by the server-
side or target-side router.

Therefore, for use by individuals that are located on a detachable host or on
a detachable memory device, there is an entity current-lan whose sole pur-
pose is to have a value for the attribute value. Then (get ’current-lan
’value) shall be an entity of type local-area-network that is defined in ef
lan-catal in indivmap-kb. This value is assigned during session startup
and is obtained by asking the user whether the agent is on the same LAN
as during its preceding session; the user can confirm that this is the case,
or state another LAN.

The information about the preceding LAN location is obtained from the first
line of the text file ../../../Indivmap/current-lan.txt. The setting of
current-lan is done in ef indivmap-oper. This implementation has been
chosen since at present we have not identified any way of obtaining this
information from the router that is in place during the session.

In addition there are commands for changing this value during the session;
please refer to the ef lan-config-def.



16

current-xlan

If a session runs on the stationary memory of a stationary host then the
value of (get ’current-xlan ’value) is the same as for current-lan.
On the other hand if the session runs on a detachable host then the value
of the expression (get ’current-xlan ’value) is a composite entity like
e.g.

(lan-with-laptop: lan-ida-caslab dell-laptop-1)

where the first argument is the current LAN and the second argument is
the current host. (The case of a detachable memory unit on stationary
host remains to be documented.) Several attributes of the composite entity
are derived from attributes of its two arguments. This value is set in ef
els-kb.

For the attributes of these entities, please refer to the report on the agent
LAN ontology.

These two entities should be reorganized as additional attributes of the
current session entity i.e. the value of *cursession*.

9 Miscellaneous

9.1 Global Variables Used by the KRE Parser

The following global variables are used by the KRE parser. This design is in
fact unfortunate and the parser shall be rewritten, but we document them
here since they are actually in use. The user should not touch them.

*S* - Contains the string that is presently being parsed. (Bad design and
bad variable name, admittedly. It was intended to be very temporary.)

*stk* - The current stack while parsing a recursively formed expression.

*form*

*fun*

*nfun*

The above three variables are used for temporary purposes during parsing.

*oldtags* - Obsolete.

*latest-read-entity* - As the parser reads an entityfile, it sets the vari-
able to the entity whose description it is beginning to read, for each entity
description in the file. This is used if there is an error condition when an
entity-description is parsed.

*R* - A string containing the Return character.

*N* - A string containing the Newline character.

*RN* - A string containing the Return character followed by the Newline
character.


