
CASL

Erik Sandewall

Lisp-Level Programming in Leonardo

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-013, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/013/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2010-05-21

Chapter 1

Simple Lisp Programming

We shall first address the situation where the Leonardo-level data structures
are not used at all, except that each Lisp function definition is also defined
as a Leonardo entity. The present chapter will describe things that one
needs to know in order to write simple Lisp programs in this way. Chapter
2 will add a number of other things that may also be useful to know in such
a context. Subsequent chapters will address the situation where one wishes
to operate on Leonardo-level data structures such as sets and sequences.

1.1 Lisp Execution and Debugging Sessions

A session with a Leonardo system can be in Lisp command-loop mode or in
Leonardo command-loop mode. In Lisp mode it receives one S-expression
at a time, evaluates it and returns the value. It can also receive and operate
on a number of session commands, in particular the command :zoom which
is used when an error has occurred, and which prints out a summary of the
current stack. Entry of the expression (cle) switches to Leonardo mode.

In Leonardo mode, entry of the expression lisp returns to Lisp mode. The
major types of input in this mode are:

• Enter an SCL command. The outermost surrounding square brackets
are optional and can be omitted.

• Enter a stop character (.) followed by an CEL expression. The ex-
pression is evaluated and its value is printed. This is actually a special
case of the previous item, with the stop character as the verb.

• Enter an S-expression which is a list (not a single symbol). It is
evaluated by the Lisp eval function and the value is printed, i.e. it
behaves like the Lisp-level command loop.

• The particular command lisp returns to the Lisp level

The session can be exited by typing (exit) to the Lisp level and by using
the command exit to the Leonardo level.

Notice that if you happen to type (cle) to the Leonardo level then the
Leonardo command loop will call itself recursively, which means that when

1

2

you then type lisp you get back to the next-lower level of Leonardo com-
mand loops, and you have to do lisp repeatedly if you wish to get back to
the Lisp level.

1.2 Lisp Function Definitions in Entityfiles

When Lisp code is written in the Leonardo environment, it is natural to
organize it in entityfiles, with one entity for each function definition. The
following is a simple example of an entity description for a Lisp function.

--
-- square

[: type lispdef]

(defun square (x)(* x x))

--

It is natural to let the entity have the same name as the function, but this
is not obligatory, and exceptions are necessary if the function will have a
name that has already been taken as an entityname in the Leonardo system.

The type lispdef or its subsumees should be used for definitions such as this
one. Older code in Leonardo often uses entity as a type for all purposes,
but this practice is being phased out.

When an entityfile containing this entity description is read, then a string
consisting of the line(s) for the function definition is assigned as the leo-definition
property of the entity square, so the above is equivalent to writing

--
-- square

[: type lispdef]

@leo-definition
(defun square (x)(* x x))

--

The general rule is that when the entityfile parser is reading the maplet sec-
tion of an entity description and encounters a line containing a left parenthe-
sis in its first column, then it considers the maplet section to be finished and
the present line as being the first line of a property for leo-definition.
An implicit leo-definition property must precede any other property.

A simple define-and-test cycle is organized by having a Leonardo session
and a text editor open concurrently on the computer screen, by editing
entityfiles containing lispdef entities in the text editor, and by reloading
them into the session after each edit. Other and more advanced setups may
also be considered, of course.

3

1.3 Debugging and Loading

The Leonardo system does not provide any additional support for debug-
ging, besides what is provided by the host system. The best way to debug
cases that actually run into errors from the point of view of the Lisp inter-
preter is therefore to work on the Lisp level. The cle executive traps many
errors but does not provide good information about them, so for nontrivial
debugging it is recommended to leave the command-line executive and work
directly on the Lisp level.

On the other hand, for those debugging situations where your definitions
obtain a value without an error from the point of view of the system, but
the value obtained is not the one you wanted, in those cases one may as
well work on the Leonardo command-loop level.

In any case, each time you need to change a function definition, you will
do it by text-editing the definition in its entityfile and then reload that file.
This is done using the Leonardo-level command loadfil with argument,
or loadf without argument, as defined in the List Processing compendium.
If you are working on the Lisp level, then this requires using (cle) to get
to the Leonardo level, doing loadf, and then going back to the Lisp level.
More conveniently, however, one can use the Lisp function load-ef which
corresponds to the loadfil command, and write e.g.

(load-ef ’myfile)

to the Lisp-level executive.

1.4 Attached Functions and Multiple Defini-
tions

A characteristic aspect of Lisp programming is the use of attached functions,
that is, Lisp functions that are assigned as properties of Lisp symbols. This
is a standard way of implementing plug-ins. Such definitions can be written
as in the following example.

--
-- square

[: type lispdef]

(leodef (square checkfn) (x) (numberp x))

--

This assigns the function (lambda (x)(numberp x)) as the checkfn prop-
erty of the symbol square. To make several definitions for the same entity
one can use the deflist operation like in the following example.

--
-- square

[: type lispdef]

4

(deflist
(defun square (x) (* x x))
(leodef (square checkfn) (x) (and (numberp x)(not (equal x 0))))
(leodef (square effectp) (a)(> a 0)))

--

In this somewhat artificial example, the checkfn checks that the proposed
arguments for invoking the function are correct, and the effectp specifies
a property that shall hold for the returned value.

Chapter 2

Additional Aspects of Lisp
Programming

2.1 Leonardo Macros

Definitions that are made using defun, leodef, and under deflist are
subjected to the Leonardo macro expander before the assignment of func-
tion definition is made. Understanding the macro expander is not required
knowledge in order to do Lisp programming for Leonardo, but it is used for
some facilities that are of immediate use for the programmer, in particular,
the access operations to Leonardo datastructures and the facility for System
Output Phrases both of which are described below.

2.2 Defining Forms for Load-time Execution

Sometimes there is a need to specify a form for execution when an entityfile
is loaded, for example for loading a package in the host CommonLisp system,
or for setting some global information. The following is a simple example.

--
-- setnotrace

[: type loadtime-operation]

(setq *trace* nil)

--

The effect of this will be that the assignment to *trace* is made each time
the entityfile is loaded and reloaded. This is sometimes fine, but if it is
desired that the form shall only be executed the first time that the entityfile
is loaded then there are two possibilities. The first possibility is the obvious
one, namely, by writing the program so that it sets a flag the first time the
file is loaded, and so that it refrains from the assignment if the flag has been
set.

5

6

The other possibility is as shown by the following modification of the ex-
ample.

--
-- setnotrace

[: type loadtime-operation]

@Exec-leos
(setq *trace* nil)

--

When the entityfile is loaded in the regular way then the form will not be ex-
ecuted; it will merely be stored as the Exec-leos property of setnotrace.
However, for this particular property name, the .leos version of the entity-
file contains the form as such, and not as a property assignment. The .leos
version of an entityfile contains the same information as the .leo version,
but expressed in terms of Lisp S-expressions so that it can be loaded into a
Lisp system before the entityfile parser and other facilities have been loaded.
Therefore, the first files that are loaded during system startup are loaded
by their .leos version, like the parser itself for example.

In this way, a form in an Exec-leos property in a system startup file will be
executed when the file is loaded the first time, but if the user later edits and
re-loads it then those items in the file that have been written as Exec-leos
properties are protected from execution.

Chapter 3

Lisp-Level Extensions to
Leonardo

3.1 Internal Lisp Representation of KRE Data

Knowledge Representation Expressions are of course encoded as list struc-
tures within the Leonardo system, and the conversion between the textual
or “serial” representation in entityfiles and the internal representation is
done by the parser and the printer in the core-kb knowledgeblock. When
Lisp code needs to access these datastructures, it can do so either by ma-
nipulating the list structures directly using standard Lisp function, or by
using dedicated primitive operations that are available in Leonardo. The
latter method is to be preferred in principle, since it makes the code less
vulnerable to possible future changes in the internal representation, but it
must be admitted that a large part of the existing Leonardo code has been
written using the first method.

However, regardless of which method is used, it is necessary to know how
the internal representation is done, for the simple reason that you need to
be able to read and understand the list structures that arise and that are
being operated on by your own program. It is inconvenient to always have
to view them in their Leonardo (KRE) form, and if a program bug has
resulted in a list structure that is not a correct representation of KRE this
is not even possible.

The rules for the internal representation are simple.

• Leonardo untyped symbols are represented as Lisp symbols.

• Leonardo numbers are represented as Lisp numbers.

• Leonardo strings are represented as Lisp strings.

• A Leonardo sequence < e1 e2 ...> is represented as a Lisp list of
the form (seq& (e1 e2 ...)).

• A Leonardo set { e1 e2 ... } is represented as a Lisp list of the
form (set& (e1 e2 ...)).

• A Leonardo form (fn a b ...) is represented as a Lisp list of the
form (form& (fn a b ...)).

7

8

• A Leonardo composite entity (fn a b ...) is represented as a Lisp
symbol with a symbexpr property that is the list (fn a b ...).

• A Leonardo variable .vbl is represented as a Lisp list of the form
(form& (param vbl)), and is therefore equivalent to writing (param
vbl) on the KRE level.

• The following shows a Leonardo record and the Lisp list that repre-
sents it:

[op a1 a2 ... :t1 v1 :t2 v2 ...]
(rec& op (a1 a2 ...) ((:t1 v1)(:t2 v2) ...))

A composer fn for composite entities shall have the type Ecomposer and
shall have a Lisp property called symbfun which is a function that takes
the arguments of the composer and returns a Lisp symbol that is a unique
representation for the composite entity. The following is an example entity
definition for such a composer.

--
-- small

[: type lispdef]

(leodef (small symbfun) (x)
(let* ((xpr (list ’small x))

(id (intern (princ-to-string xpr))))
(setf (get id ’symbexpr) xpr)
id))

--

In this way an expression (small elephant) will be represented internally
as the Lisp symbol |(small elephant)| whose symbexpr property is the
Lisp list (small elephant). This is the usual way of choosing the sym-
bol name, but it is not an obligatory one. The user may choose to make
additional assignments in the symbfun, for example assigning the type of
the generated symbol. Notice in particular that this function is called every
time the Leonardo parser encounters an expression using the composer in
question, so if the function is going to assign initial values for attributes
that will be changed later on during the session, then it must be careful to
check whether the attribute has already been assigned.

The parser distinguishes between forms and composite entities by the ex-
istence of a symbfun property for the operator. A composite entity is gen-
erated if there is such a property, except if some of the arguments is a
Leonardo variable or a form. In those cases a form is created, in spite of the
existence of a symbfun. This is significant for all programs that operate on
conditions, propositions, or other constructs that use variables, since these
must be able to relate the distinct representations for expressions containing
variables and variable-free expressions. It also means that attributes can be
assigned values for variable-free terms using symbolic functions, but not for
those containing variables.

Some notational variants are accomodated by the Leonardo parser and re-
sults in the same internal representation as the base notation. As described
in the KRF Overview report, some operators can be declared for infix use,

9

so that one can write e.g. (a + b + c) equivalently with (+ a b c). Sim-
ilarly, it possible to write records so that some or all of the parameters
precede the arguments, for example

[op :t1 v1 ^ a1 a2 ... :t2 v2 ...]

In all such cases a single representation is used internally and the choice of
notational variant is lost. This means for example that when the object in
question is produced in output it will always be the standard variant with
prefix operators and parameters last that will appear.

3.2 Function and Macros for KRF Data

Rather than referring directly to the Lisp-level representation of KRE data
using car and cdr functions, one may wish to use a set of access functions
that isolates one’s program from that representation, partly for readability
of the code, and partly in order to prepare for a possible future change of
representation. For performance reasons this is best done using macros,
rather than ordinary Lisp functions. The entityfile leoper in core-kb con-
tains a collection of such macros. The following is a concise account of
them.

It must be admitted however that most of the existing Leonardo code has
been written without the use of these macros.

3.2.1 Sequences

(seq-test x) is true if x is a sequence.

(seq-body x) takes a KRE sequence as argument, and returns the corre-
sponding Lisp list. It is defined as (cadr x).

(make-seq x) is the inverse of seq-body: it takes a Lisp list as argument
and returns the Leonardo representation of the corresponding sequence. It
is therefore defined as (list ’seq& x).

(add-seq x y) takes an element x and a sequence y and returns an ex-
tended sequence where x is the first element, analogous to cons.

(radd-seq x y) is similar to add-seq but it does the operation destruc-
tively, i.e. any other reference to y is affected by way of side-effect.

3.2.2 Sets

The functions set-test, set-body, make-set, add-set and radd-set
are analogous to the corresponding functions for sequences.

(set-member x s) returns a true value iff x is a member of the set s. It
is actually defined as (member x (cadr s)).

10

3.2.3 Records

The function rec-test is analogous to the corresponding functions for se-
quences.

(rec-type r) returns the record former of the record r. Defined as (cadr
r).

(rect-ut-body r) returns the Lisp list of the arguments of the record r.
The mnemonic ut is for “untagged.”

(rec-t-body r) returns the parameters of the record r, represented as a
Lisp list of pairs, i.e. ((tag1 val1)(tag2 val) ...) where each of the
tagi shall be a tag, for example :color.

(rec-nth i r) obtains the i -th argument of the record r, counting from
1 and up.

(rec-t f r) obtains the value of the f field of the record r. The first
argument should be a tag, for example :color .

(make-recsep rf a p) returns a record where the symbol rf is the record
former, the Lisp list a is the list of arguments, and the binding list p is the
set of parameters. Therefore

(make-recsep (rec-type r) (rec-ut-body r) (rec-t-body r))

returns a record that is equal to r.

3.3 Defining Leonardo Commands

The following is a modification of the previous example (in Chapter 1) where
the function can also be used as a Leonardo command.

--
-- square

[: type lispdef]

(leodef square sq (x)(* x x))

--

This entity description defines square as a Lisp function, like before, and
it also defines sq as a command verb with the same effect as the function.
When used as a command verb, the returned value is taken over by the
command-line executive being used, such as the cle executive. This exec-
utive may choose to just show the returned value on the screen, or it may
take additional action for presentation purposes. Different executives treat
this differently.

If only a command definition and not a function definition is desired then
one shall give nil for the function-name argument.

The internal representation of command-verb definitions is as follows. The
cle command assumes that the definition of a command verb is stored in
the elem-perform property of the same verb. The ble command executive

11

(primitive, rarely used) assumes that is stored as a function in the apdef
property of the verb. Definitions using leodef assign both these properties,
so the user will not notice any difference.

If a symbol is defined as both a function and a command verb, then the
full definition is assigned using the defun operator, and the apdef and
elem-perform properties will just contain a lambda expression that imme-
diately calls the function as defined by defun. In the example above, the
elem-perform property of sq will be (lambda (x)(square x)). If the
function name is given as nil then the full definition will occur directly in
the apdef and elem-perform properties.

