
CASL

Erik Sandewall

Facilities in Leonardo

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-011, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/011/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2010-05-21



Chapter 1

Administration of Current
Agent Contents

The basic and general-purpose command verbs in the Session Command
Language are those that operate on the textual and persistent manifestation
of the knowledgebase, that is, on entityfiles and knowledgeblocks, and on
the individual entities that are contained there. The following is the list of
such commands.

This list is incomplete and will be extended from time to time. Recall that
although the full representation of a command is a record expression, i.e. it
is surrounded by square brackets, but these square brackets may be omitted
when the command is entered to the command loop.

1.1 Knowledgeblock Level Commands

Each knowledgeblock is represented as an entity whose name must end
with -kb. By default, those entityfiles that make a knowledgeblock called
myblock-kb shall be located in a directory called Myblock that is an imme-
diate subdirectory of the agent directory. The entity whose name ends with
-kb represents both an entityfile with the same name i.e. myblock-kb and
the entire knowledgeblock. The kb entityfile contains entities that provide
the access path to each of the entityfiles in the knowledgeblock.

The following are the most important operations on knowledgeblocks.

[crek kb]

Create a knowledgebase called kb with initial, minimal contents. For exam-
ple, crek runners-kb will create a directory called Runners containing one
single entityfile, called runners-kb, and it will register the new knowledge-
base in kb-catal which is the register of all knowledgebases in the agent at
hand. Ω

[defk kb]

Similar to crek, but that operation initializes the new knowledgeblock to
having empty contents, which the present operation does not. It only intro-
duces kb in kb-catal without affecting its contents. This is for use if a full

1



2

directory for kb has been or will be copied in from outside as a directory
level operation. Ω

[setk kb]

Assign kb as the current knowledgeblock. This setting is used by the crefil
command for determining the choice of knowledgeblock where a new enti-
tyfile is to be located. Ω

[loadk kb]

Loads the knowledgeblock kb using the following procedure.

• Load the entityfile with the name kb using its .leos version.

• Load recursively the knowledgeblocks listed under the requires at-
tribute of kb.

• Load the entityfiles listed under the mustload attribute of kb.

• Execute the function in the end-startup-proc property of kb. This
function is usually a no-op but in some cases it has a nontrivial defi-
nition.

Ω

Each knowledgeblock file contains, as its second item, the definitions for
three Lisp functions that are attached to the knowledgeblock entity, and
which provide handles for operations to be performed at the beginning of
the loading of the knowledgebase, at the end of its loading, and (not yet
implemented) at the closing of a session where this knowledgeblock has been
loaded.

The preferred-directory attribute of a knowledgeblock provides a handle
for redefining the location of additional entityfiles in the block. The default
value for myblock-kb is "Myblock/" i.e. it specifies the location relative to
the top-level directory of the agent in question. Redefining it will affect the
location of additional files that are created using the crefil command, but
it will not affect the location of existing member files.

1.2 Entityfile Level Commands

The structure of entityfiles has been described in the memo KRF Overview,
Chapter 5. The following are the major commands for entityfiles.

[crefil ef]

Creates a new entityfile called ef and locates it in the current knowledge-
block as set by the setk command. Ω

[curfil ef]

Sets ef as the current entityfile, as used by the commands loadf, writef,
sortf and others. Ω

[loadfil ef]

Loads the entityfile ef from its .leo manifestation and into the current
session. Ω



3

[loadf ]

Loads the current entityfile as set by the curfil command, and in the same
way as for the loadfil command. Ω

[writefil ef]

Write the physical file for the entityfile ef using the information in the
current session. Ω

[writef ]

Write the physical file for the current entityfile using the writefil opera-
tion. Ω

[updfil ef]

Updates the entityfile ef i.e. loads it and then writes it again. It is always
loaded from the .leo version, even if it is a datafile. Care must be
exercised since the loading operation catches errors but if an error occurs
then the writing operation proceeds anyway, which may destroy the contents
of the entityfile. Ω

[updf ]

Updates the current entityfile using the updfil operation. Ω

[sortf ]

Sorts the list of contents of the current entityfile in alphabetical order. If
the file is partitioned into sections then each section is sorted separately
and the order of the sections is preserved. The command does not load or
write the entityfile. It is not entirely robust, so it is recommended to take
a backup of the argument file before doing the sorting. Ω

1.3 Entity Editing Commands

[creobj obj typ]

Initiates an entity called obj of type typ and makes it the current entity.
If typ has a value for the property create-proc then this value shall be a
function that is applied to obj as its single argument. Ω

[curobj obj]

Sets obj as the current entity for the purpose of the edo operation. Ω

[edobj obj]

Allows the user to edit the contents of the entity obj by the following steps:
it writes the attributes and properties of obj to a temporary file, invokes
the user’s preferred text editor on this file, allows the user to edit it, and
then reads the file back into the session. Ω

[edo ]

Allows the user to edit the contents of the current entity using the edobj
operation. Ω



Chapter 2

Administration of
Leonardo Individuals

2.1 Reproduction

Available commands:

[breed name]

Creates a new agent with the given name in the same individual as the
current agent, that is, located sideways from it. The current session is
damaged and should be terminated after the breed operation has been per-
formed. The new agent is made as an offspring of the present one, i.e. its
identifier is obtained from the identifier of the present agent by append-
ing -nnn where nnn is a threeplace number reflecting the number of this
offspring relative to other, previous offspring from the present agent. Ω

2.2 Cloning

Available commands:

[makclone ]

This operation will convert the present agent to a boilerplate for cloning. It
should be a remus agent. After this operation, it will start by establishing
itself by prompting the user and by looking around in the host where it
is executing. Please recall that the following additional measures must be
taken to prepare a clone:

• Change the name of startleo.bat to startleo.batt (in order to avoid
irritating virus filters)

• Combine it with a minimal Indivmap directory

• (Optional) zip it
If you wish to proceed with clone conversion, type yes and Return Ω

4


