
CASL

Erik Sandewall

Leonardo Document Preparation Facility

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-010, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/010/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2010-05-26

Introduction

The Leonardo Document Preparation Facility is a part of the Leonardo
system that supports the authoring of articles and reports, and of static
and dynamic webpages. It is closely integrated with the system and most
aspects of it are included in the system kernel such as the remus agent. The
present document describes this facility (henceforth called just the Facility)
with the goal that the reader shall be able to use it effectively for her or his
own needs.

The goal is for this facility to be as systematic as possible and to avoid
redundance e.g. through the emergence of multiple subsystems with similar
functionality. At the same time, it has been developed in a demand-driven
fashion by extending it with new capabilities when there was a need for it
in our own usage of the system. This means that the design is not always
as clean as one would desire, and in particular the reportoire of formatting
operators is not entirely systematic. We expect to rectify this in due course,
but for the present report the priority is to describe the system as it is, and
not as we intend it to become.

This said, there are also some minor details where the need for local im-
provements were noticed when the report was written, and where we have
taken the liberty to violate the just said rule by describing an option that
is not yet implemented. There should be a separate list of such exceptions,
and it should be very short. Reader, be warned.

The following report should be read before the present one in order to have
the required background concerning notations and systems:

Erik Sandewall. Knowledge Representation Framework: Overview of Lan-
guages and Mechanisms.

The following two reports by the same author are also useful for background:

Leonardo Installation, Startup and Self-Description

Compendium of Programming Techniques for Knowledge-Based Autonomous
Systems. Part I: List Processing

1

Chapter 1

Organization of
Documents and Webpages

The Leonardo Document Preparation Facility is a part of the Leonardo
system that supports the authoring of articles and reports, and of static and
dynamic webpages. The basic idea is to use languages in the Knowledge
Representation Framework as a markup language that can be translated to
LaTeX and to HMTL, where the LaTeX representation can in turn be used
for generating the final document in PDF form.

The present document describes the Leonardo Document Preparation Facil-
ity and will refer to it briefly as the Facility. We shall describe the markup
language, the directory structures that are used for keeping documents and
webpages, and the various command verbs that can be used when authoring.

The primary way of using the Facility is through the Leonardo command-
line executive (CLU) together with a text editor. There is however also a
GUI interface that can replace a large part of the use of the command-line
executive. This will be described in a separate chapter, but it has not yet
been tested and used extensively.

The present chapter will describe the directory structures being used and
the linkage to auxiliary software outside Leonardo.

1.1 Directory Structure for Documents

By ‘document’ we here mean articles, reports, textbooks, etc. which are to
be produced in PDF format. The emphasis is on documents with predomi-
nantly scientific and technical contents.

The Facility presumes that each document obtains its own directory under
the operating system. This directory will then contain source files for the
text, separate files for diagrams in a variety of formats, for example .eps ,
intermediate files, bibliography files, and so on, leading up to final files in
PDF or other formats.

Each document and the directory that contains its files is characterized by
a Leonardo entity, and it is recommended to use composite entities for this.

2

3

The entity formant doc: is defined for this purpose, but the user may add
other similar operators and define them according to his or her preferences
for how to organize the collection of documents. Each document entity
specifies the location of the document’s directory. For example, the entity

(doc: caisor 2010 14)

specifies a directory that is located at

Series/caisor/2010/pm-014/

where the Series directory is on the same level as the individual where the
Facility is being performed. The access to the document directory is done
by relative addressing, so as seen from the current directory of the Leonardo
session the access path is therefore

../../../../Series/caisor/2010/pm-014/

The function doc: is defined in the entityfile doc-onto which is located
in the agent’s Ontology directory. Alternative functions for designating
document directories can be introduced by analogy with it.

Each document directory must at least contain a file whose name is def.leo
and that is an entityfile containing basic information about the document.
For simple documents it will only contain one entity, namely itself, and its
contents may include for example

--
-- (doc: caisor 2010 14)

[: type docco]
[: contents <(doc: caisor 2010 14)>]
[: title "Leonardo Document Preparation Facility"]
[: docname "doc-prep-facil"]
[: nrversions 1]
[: year 2010]
[: date-completed "2010-05-24"]
[: date-posted "2010-05-31"]
--

There may be additional entities in this entityfile in some cases, for example
if the document contains diagrams that can be described, or even fully
defined through Leonardo entities.

A result file in a document directory is a file containing the finished doc-
ument, typically in PDF format. Usually there is only one result file in a
document directory, and its name is specified by the docname attribute, for
example doc-prep-facil.pdf in the case above. If that attribute does not
have a value then the default is paper.pdf .

In a document with a simple structure there will also be a file called body.tsl
containing source text, and three .tex files namely:

• body.tex for a translation of the contents of body.tsl

• paper.tex (or whatever is the name of the result file) for the top-level
latex file

• descrip.tex for a file containing the title of the article, the name(s)
of the author(s), and other information for the front page.

4

The latter two files are normally short and have stereotypical contents.
The latex processor is invoked with paper.tex or its counterpart as the
argument. This file does include operations (i.e. the Latex input command)
on the other two. Examples of these files are shown in the appendix.

This structure makes it possible to separate the main contents of the doc-
ument from the cover and other “front matter.” It leaves a lot of flexibility
for the user to configure the structure as he or she wishes. For example,
if one produces a number of articles with similar layout on the front page,
such as for departmental reports, then one can use identical paper.tex files
for all those documents and let them refer to a common Latex style file that
is located in a place that is available by relative addressing, such as at

../../../../Series/caisor/styles/latex/

in the example above.

1.2 Auxiliary Software

In order to use the Facility one needs to define four auxiliary softwares to
it, namely a Latex processor such as Miktex, a pdf viewer, a text editor and
a web browser. Their locations must be specified using entity descriptions
like the following ones:

--
-- notepad

[: type os-command]
[: commandphrase "C:\WINDOWS\system32\notepad.exe "]

--
-- acrobat

[: type os-command]
[: commandphrase "C:\Progra~1\Adobe\Reader 9.0\Reader\AcroRd32.exe "]

--
-- iexplorer

[: type os-command]
[: commandphrase "C:\Progra~1\Internet Explorer\IEXPLORE.EXE "]

--
-- bibtex

[: type os-command]
[: commandphrase "C:\Progra~1\MiKTeX 2.7\miktex\bin\bibtex.exe "]

--
-- dvipdf

[: type os-command]
[: commandphrase "C:\Progra~1\MiKTeX 2.7\miktex\bin\dvipdfm.exe "]

5

--
-- latex

[: type os-command]
[: commandphrase "C:\Progra~1\MiKTeX 2.7\miktex\bin\latex.exe "]

--

It is recommended to locate these entity definitions in an entityfile in the
Leohost directory since they are specific to the host where the session is
run, especially if one wishes to use the same agent alternatingly on different
hosts. The final space in each of these strings is necessary since the system
concatenates these strings with a string containing the file that is to be
processed.

1.3 Finding a Document

It is a matter of taste whether one wishes to name documents by number,
like in the examples above, or by a mnemonic code. In any case it is in-
convenient to let the full title of the document be the directory name, since
one will then have to type it in again each time one is going to work with
the document. The doc: function is defined in such a way that if its last
argument is a number then it is converted to an entity of the form pm-nnn
otherwise it is retained as it is.

If one has many documents to work with then it may be a challenge to recall
what was the number of a particular document one wants to access. This
may be resolved using the aforementioned GUI, or using a command that
lists all the documents by name/number and full title.

Chapter 2

Directory Structure for
Static Webpages

The directory structure for the authoring of webpages is analogous to the
one for documents. We are concerned here about the structure that is used
during authoring; transfer of the checked-out pages to a public server is a
separate question.

Since the word “webpage” is used in a fairly broad way we use the term
webnote for a single, static page. Each webnote obtains its own directory,
like for documents.

The entity former wen: is used like in the following example:

(wen: krf framework intro)

and represents a webnote that is located at

Sites/krf/framework/intro/

where the Sites directory is a sideways neighbor to Series and to the
invoking Leonardo individual. Like for the function doc: the user should
define his own, similar function if other directory structures are desired.

A typical webnote directory will contain a source file called body.tsl and
its translation called body.html, a defining entityfile called def.leo, and
usually also a number of additional files pertaining to the webnote. The
choice and form of those pages depends strongly on how the user wishes
to organize the use of styles in the webpage sense. One possibility is to
make use of the standard (CSS) stylesheet facility; another possibility is to
obtain the same effect using methods that are built into Leonardo. A third
possibility is of course to do neither.

2.1 No Use of a Style Mechanism

Add text here.

6

7

2.2 Using CSS

Add text here.

2.3 Leonardo Webnote Pattern

The Leonardo webnote pattern is a way of organizing a collection of web-
notes under a common left-side menu, and with some uniformly used facili-
ties, such as the use of timestamps and the preservation of webnote history.
The reader should first check a website that is organized in this way, e.g. at

http://www.ida.liu.se/ext/caisor/

Please check in particular the Version history link at the bottom of the
page.

Webnotes that adopt this pattern use the following organization. The
main current page is always called page.html, for example, as seen from a
browser,

http://www.ida.liu.se/ext/krf/framework/intro/page.html

In addition, each recorded generation of the webnote has a name containing
its timestamp, for example

http://www.ida.liu.se/ext/krf/framework/intro/page-100523.html

for the page posted on 2010-05-23. The page called page.html may con-
tain a copy of the latest timestamped page, or a forwarding link to it. Finally
there is a page called versions.html containing the versions list that one
sees when clicking the Version history link.

Each successive page-date.html file is generated from the current body.html
file by wrapping it with title lines and a bottom line. The information for
these are obtained from the webnote’s def.leo file.

According to this pattern, the choice of style may occur both in the trans-
lation step from body.tsl to body.html, and in the wrapping step from
body.html to the timestamped page file. The method for defining the style
will be described in the chapter on webscripts. It follows that only the
current version of a webnote can be restyled, whereas older versions will
retain their original style. This may be considered as an advantage or as a
disadvantage, or both.

Chapter 3

Facility Command Verbs

As already described, the main contents of a document or a webnote is
usually in a file called body.tsl. The main development step is then to
text-edit body.tsl and to invoke an appropriate command whereby the re-
vised file is processed, obtaining and displaying the corresponding PDF file,
for a document, or an HTML file, for a webnote. A few special operations
are needed when the document or webnote is created initially. The present
chapter describes these initial and cyclic operations.

In this chapter we shall specify session commands without the surrounding
square brackets.

3.1 Creating a Document or Webnote

In order to create a document one must first perform the following opera-
tions manually, i.e. without the help of command verbs in the Facility:

• Create a directory for the document, and a subdirectory for it called
cl

• Create its paper.tex and descrip.tex files

• Create an initial body.tsl file (possibly empty)

Similarly, in order to create a webnote one must first perform the following
operations manually:

• Create a directory for the document, and a subdirectory for it called
cl

• Create an initial body.tsl file (possibly empty)

After this, in each of the cases, one issues a Rev command with the appro-
priate doc: or wen: expression as its argument, followed by a few additonal
commands as in the following examples. The Rev command defines its ar-
gument as the ‘current’ document or webnote, so that other commands in
the family are given without argument; they apply to the current docu-
ment. The initial command sequence for a document is therefore like in the
following example.

8

9

Rev (doc: caisor 2010 14)
doci

The doci command does document initialization. Similarly, in the case of
a webnote:

Rev (wen: krf framework intro)
weni
wco

3.2 Editing a Document

The following commands are useful in the editing cycle.

cocl body Convert body.tsl to body.tex
lam Execute latex on top-level latex file
bim Execute bibtex on top-level latex file
dpdf Convert result of lam command to pdf
acro Display current result (pdf) file
clad The previous four commands in succession
rco Load def.leo file for current document
wco Write def.leo file for current document

The argument for cocl can of course be chosen freely, so that a document
can use several source files which are composed using inclusion commands
in the paper.tex file, or so that TSL source files include each other.

3.3 Editing a Webnote

The following commands are useful in the editing cycle.

coch body Convert body.tsl to body.html
rco Load def.leo file for current document
wco Write def.leo file for current document
dispwen Display page using current web browser

Notice that it is not obligatory to use the TSL in the body.tsl file; one
may also edit the body.html file directly and refrain from using the coch
command.

The following additional commands apply for the Leonardo webnote pat-
tern.

ghd Generate page-date file by wrapping body.html
ghp Generate page.html with a forwarding link
ghv Generate versions.html
ghal Execute [rco] followed by the previous three
cogh Execute [coch body] followed by [ghal]

10

3.4 Additional Operations

Errors during the translation process should be trapped by the system, but
alas sometimes they are not. In such cases one should execute (closo)
(‘close source and output’) in order to close input and output files to the
operation in question.

The following operations invoke the selected text editor, such as Notepad
in the example above.

ecd Text-edit and reload current def.leo file
ebt Text-edit current body.tsl file
ebh Text-edit current body.html file

Note: The commands that invoke the text editor, the browser, and the pdf
viewer are presently defined so that they directly use the software names
shown above (notepad, iexplorer, acrobat). This should of course be changed
so that user preferences are made explicit.

3.5 Document Index Pages

The Sites directory contains the material for one or more static websites,
and additional operations are needed for exporting content to operating
servers. It is also natural to post documents on such servers when they are
ready for being made public, and as a first step they should be copied from
the Series directory (according to the example directory naming that was
used here) to their appropriate place in the Sites directory.

Each document will then obtain its own subdirectory in the Server struc-
ture, just like each webnote. Such a directory will be called an index di-
rectory, or document index directory if there should be an ambiguity. Each
index directory shall at least contain two pages: a page called index.html
that is the natural entry page from a browser, and a PDF file for the current
version of the document. The index page shall contain general information
about the document plus a link to the full text.

Additional material in the index directory may include earlier versions of
the article, errata pages, attached information that for some reason one does
not wish to include in the PDF file, for example very large illustrations, and
so forth. In all cases the index page shall be the natural starting point for
viewing those other materials.

The following are the two major command verbs with respect to index pages:

glix Creates index directory and index file
xpdf Produces pdf file in index directory

These two commands depend on specific conventions for the location and
structure of the index directories and, in the case of the glix command,
scripts for the contents and appearance of the index pages. The present
definitions of these two commands are therefore too specific and have to be
hand-edited to fit the setup of each user.

To be precise, the present system relies on a few specific site names, such
as caisor-site, piex-site, labmop-site, and so forth. Each site is
associated with location information and with a webscript for index pages in

11

that site. To introduce an additional site name, one must define a webscript
for it and introduce entries for it in a few case statements in the entityfile
formops, in particular the function ccdir which defines the access path for
index pages in the site in question, and in the operation glix.

Chapter 4

The Scripting Languages
TSL and DSL

Besides for formatting documents and webnotes, the Facility also contains
the means for defining dynamic webpages whose contents are computed for
each request. Such requests are considered as commands in the Document
Scripting Language, DSL, so that a webserver request like

http://myserver/plantselect?type=bush&flowercolor=yellow

will be processed within the system as a DSL command

[plantselect :type bush :flowercolor yellow]

This representation for DSL commands is the same as for commands in the
Session Command Language, SCL, although the set of command verbs is of
course different.

DSL command verbs are defined using scripts that specify the generation
of HTML code. The Text Scripting Language, TSL, is used for webnotes
(static webpages) and for documents, as described in the previous chapters,
so it can also be translated to HTML. The difference between DSL and TSL
can be illustrated by the following example of a simple DSL expression:

[fragment "Both an" [e "italic"] "and a" [b "boldface"]
"word."]

and the corresponding TSL expression:

[fragment Both an [e italic] and a [b boldface] word.]

Both expressions produce the text

Both an italic and a boldface word.

The difference between DSL and TSL is merely one of surface notation:
they use the same set of command-words, and their internal representation
in the system is the same. DSL uses the standard KRE parser, TSL uses
a small (one page) separate parser that invokes the KRE parser for some
purposes.

Dynamic webpages are usually defined in DSL since they tend to make
heavy use of knowledgebase access. The source texts for documents and

12

13

webnotes are more conveniently written in TSL, in most cases, since this
avoids the need for a lot of string quotes as illustrated by the examples.

4.1 TSL-oriented Verbs

The TSL parser reads a string in TSL format and converts it to an internal
representation in terms of KR expressions. If it is used to parse the contents
of a file then it reads and parses one paragraph at a time, where blank lines
separate paragraphs.

While processing a string, the TSL parser primarily identifies occurrences of
a left square bracket, and also occurrences of a few interpunction characters
if they appear immediately after a whitespace character, namely the colon,
the exclamation mark, and the hash sign. Everything else is considered as
plain text.

As long as there is no recognized occurrence of the three special characters,
left square brackets are expected to be matched by corresponding right
square brackets; the first symbol after the left square bracket is considered
as an operator, and the remaining contents is considered as strings and
subexpressions as shown in the example above. The following operators are
frequently used in TSL-coded texts, but notice that they can equally well
be used in DSL expressions.

4.1.1 Document Structure

[chapter ...], [section ...], [subsection ...], [subsubsection ...]

Produce ‘headings’ on the levels suggested by these names. Defined for
Latex; only the subsection command is also defined for HTML where it is
mapped to heading level 2.

[heading ... :level n :fontsize sz]

Produces a heading of the level indicated by the positive integer n where
1 is the highest, like in HTML. Defined for both HTML and Latex; in the
latter level 1 is mapped to section, 2 to subsection, etc. The value of
the optional :fontsize parameter shall be e.g. "10pt" and the default is
"11pt"

[itemize [item ...][item ...] ... [item ...]]

Produces an itemized list; defined for both Latex and HTML. Usually each
item begins a new line in the source text, but this is not obligatory. Line
separation is free, but notice that there must not be a blank line inside an
expression such as this one.

[itemlist [item ...][item ...] ... [item ...]]

Synonymous with the itemize command; HTML only.

[numblist [item ...][item ...] ... [item ...]]

Similar to itemlist but with numbered items. Defined for HTML only.

[footnote ...]

14

Produces a footnote in Latex; also defined in HTML but just produces the
contents of the arguments there, awaiting a better implementation.

[brfoot ...]

Produces a footnote in Latex [1] and wraps the footnote index in square
brackets.

4.1.2 Inclusion

[includefile file]

The argument shall evaluate to a string containing a relative access path
from the session directory to a file. Its contents are included as is into the
file being produced. HTML only, but notice that [input file] has the
same effect in the case of Latex.

[include e p :source-xtn sx]

The arguments shall be an entities and are not evaluated; the value of (get
e p) is included in the file being produced. If sx is tsl then assume that
this string is written in TSL format, and process it accordingly, otherwise
use it as is. The second argument may be omitted and the default value for
it is Body.html. This command is useful when a short text for inclusion is
conveniently stored as the property of an entity. Only defined for HTML
(definition for Latex exists but looks strange).

4.1.3 Local Text-Style Control

[font ... :size sz :color co :fontsize fs]

Produces the contents of the arguments, wrapped in the HTML font com-
mand defined by the optional :size and :color parameters. If the :fontsize
parameter is present then it is mapped to a corresponding font-size inside
style command. HTML only.

[e ...], [b ...], [t ...]

The expression(s) given as argument(s) are produced in emphasized, bold-
face, and ‘typewriter’ style, respectively. Both Latex and HTML.

[style ... :bf t :em t]

Combines b and e commands, and allows the use of evaluated parameters
for determining whether to use the style in question or not. It is intended
to add more parameters to this command. HTML only.

[dq ...]

The expression(s) given as argument(s) are produced but wrapped between
double quotes. Latex only.

[parze ...]

The expression(s) given as argument(s) are produced but wrapped between
round parentheses. Both Latex and HTML.

1This is an example of how it appears.

15

[sqbr ...]

The expression(s) given as argument(s) are produced but wrapped between
square brackets. Both Latex and HTML.

[$...]

The expression(s) given as argument(s) are produced but wrapped between
dollar signs (indicating a formula). Latex only.

[kre ...]

The argument shall be given as a KR expression and is not evaluated. It is
presented with its correct appearance in the result document. Latex only.

[tcolon s]

The argument shall be a symbol; it is presented in the output in t font and
preceded by a colon character. One can see many examples of the use of
this command in Leonardo documentation, for example in the description
of the font command above. Latex only.

There is an important rule for those commands having parameters, such
as style and heading: the parameter may be given as an arbitrary CEL
expression. This means that when the TSL parser encounters a tag, i.e.
a symbol beginning with a colon, then it calls the DSL parser recursively
for parsing the CEL expression immediately following the tag, gives the
parsed expression to evaluation, and uses its value for the execution of the
command. Arguments are not in general evaluated, on the other hand; it
is up to the specific command whether it will evaluate and/or execute its
arguments.

4.1.4 Verbatim presentation

[verbatim s1 s2 ... sn]

The arguments shall be strings; these are presented verbatim on successive
lines. HTML only; can be used in both DSL and TSL.

[txt
(several lines)

:end txt]

The expressions [txt and :end txt] must be alone on their respective lines
and must be written exactly as shown here. Exactly one space between
:end and txt], no space before [txt on its line, and so forth. The lines
in-between are presented verbatim in the result document. This construct
is defined in both Latex and HTML, but can only be used in TSL. (In DSL
the same effect is best achieved using an include command).

The choice of notation for this construct may merit some explanation. Re-
call that XML-style markup languages regularly use tagging constructs of
the form

<operator> </operator>

We consider this to be unnecessarily clumsy in most situations, and for KR
expressions we prefer more compact expressions of the form

16

[operator]

and similarly for other brackets and parentheses. However, there may be
occasional situations where legibility is improved by having a balancing
occurrence of the operator at the end of an expression. We therefore make
the informal convention, for the case of KRE records, that one can write

[operator :end operator]

The :end tag is reserved for this purpose, and the convention is that it has
no semantic contents or use, although of course one may consider using it
for a check that expressions are correctly bracketed. In the general case this
convention, and any operations on it are used within the general scheme for
representing KR expressions as datastructures. This does not apply in the
case of the txt operator since it has to be treated as a special case by the
TSL parser, but it is useful for uniformity to use the same notation using
the :end tag anyway.

4.1.5 Control Operations

[if cond fr1 fr2]

The first argument is a CEL expression; the second argument and the op-
tional third argument are DSL or TSL expressions according to the context
where the command occurs. The condition is evaluated using the same
evaluator as for SCL and the second or third argument is then chosen ac-
cordingly. Both Latex and HTML.

[repeat a s ...]

The first argument shall be given as a symbol (not preceded by a point
or a colon); the second argument shall be a set or sequence. The variable
obtained from the first argument by prefixing it with a point is bound
successively to each member of the second argument, and for each such
binding all the following arguments are processed and the result sent to the
result file. An example that uses this textual operator is shown at the end of
this chapter. Defined in HTML. The translator for Latex has a definition for
repeat that suffers from some restrictions, but also a definition for a verb
nrepeat which is believed to be entirely compatible with HTML repeat.

[repeat a s ... :numbering n]

This is executed like the previous case, except that the variable .n is bound
successively to 1, 2, etc in the successive cycles for the loop variable. HTML
only.

4.2 Source Texts for Translation to Latex

In many situations it is useful to have source texts that can be translated
correctly to both HTML and Latex, but there are also situations where one
knows beforehand that only Latex will be used. In these cases it is natural
to use the following additional possibilities.

17

4.2.1 Document Top-Level Commands

The following commands are used for the preamble of a document, for ex-
ample, for generating the file paper.tex as described in Chapter 1.

[documentclass ... :flags {f1 f2 f3}]

This generates a Latex expression of the form

\documentclass[f1,f2,f3]{...}

where the number and choice of flags is of course open.

[document ...]

This generates a Latex expression of the form

\begin{document}
...

\end{document}

Recall that blank lines may not occur within this source expression, so this
is only intended for short files, like the normal use of paper.tex, which
contain input or include commands referring to larger files.

4.2.2 Latex-Specific Conventions

In translation to Latex there is a convention that undefined operators result
in producing a Latex command with the same name, and with the given
arguments in the standard form for arguments in Latex. This means that
many Latex commands can be used directly in Latex-oriented TSL text, for
example the input command. This option does not apply in translation to
HTML.

Since the TSL parser is not sensitive to curly brackets, backslash characters
or the dollar sign, it is possible to insert Latex code using these characters
and it will go straight through to the Latex file being produced. However
this will not work if the same source file is later on used for translation to
HTML, of course.

4.2.3 Spacing, Interpunction and Newline Control

The issues of correct spacing, interpunction and newline control turn out
to be tricky due to the approach of parsing DSL and TSL source to the
same internal representation. There is an issue to which degree spaces are
to be preserved between successive subexpressions, and the TSL and DSL
variants are not entirely consistent in this respect. In particular, when TSL
defined source is translated to Latex then space characters in the source are
preserved to the greatest possible extent, and a source-side expressions like

[b half][e way]

will appear without any space between the two halves of the word, whereas
if the souorce is DSL and/or if it is produced to HTML then a space does ap-
pear there. The processor for Latex output juggles various flags in attempts
to get this right as often as possible, but without complete success. It is

18

probably best to clean this up a bit more before attempting to document
it.

The following verbs, defined only for Latex, may be useful for the time being
when dealing with this.

[spc]

Enforces a space character.

[br]

Enforces a newline.

[newline]
:end txt

Enforces a newline.

[txt
[wrap ...]

Produces its arguments, wrapped inside curly brackets as needed by Latex.
It will therefore be correct to write e.g.

\input[wrap .filename]

in order to generate a Latex input command where the argument is given
as the value of a variable. The wrap command is clearly a makeshift device
in the hacking category.

4.3 TSL Special Characters

The use of the colon special character in tags has already been described.
Likewise, when the TSL parser recognizes an exclamation mark that occurs
immediately after a whitespace, it expects that this exclamation mark is
immediately followed by a KR expression and invokes the DSL parser for it.
The expression obtained is evaluated and its value is expected to be on the
internal form used by TSL and DSL, and it is used for producing output to
the destination stream in the standard way.

Suppose for example that the following entity description has been loaded
into the session where the formatting is performed:

--
-- nono

[: type entity]
[: english [fragment "This is" [e "absolutely"] "forbidden"]]

--

and a TSL source text contains

[fragment Then the guard said [dq !(get nono english)]]

then it will be formatted to

Then the guard said “This is absolutely forbidden”

19

An occurrence of a hash sign immediately after a whitespace will likewise
lead the TSL parser to expect that that character is followed by a KR
expression. This case is used when one wishes to include the textual form
of that KR expression in the produced document. For example, the TSL
source text

The set #{red white blue} has three members

will produce Latex code that permits the curly brackets to appear correctly
in the resulting PDF file. The hash character is only supported for Latex
production.

4.4 Other TSL-Oriented Notation

It was already mentioned that the TSL parser reads one paragraph at a time
from a source file, processes it, and then turns to the next paragraph. This
is for reasons of both performance and debuggability: the processing time
grows more than linearly with the size of the fragment being processed (in
the present implementation), and with the chosen approach it is easy to see
where the processing was interrupted if a difficult bug appears. However, the
obvious disadvantage is that this gives problems in those situations where
one will like a command to extend over several paragraphs.

There are two ways of solving this problem. One way is to prepare a source
file where one ‘paragraph’ in the source contains one or more paragraph
separators inside it, so that it produces several paragraphs in the resulting
Latex or HTML file. The following command is such a separator.

[/]

Another possibility is to use the special begin and end commands in TSL,
as in

[begin e]
This may be a long text consisting of
several paragraphs.
[end e]

The result of this is that the e command is extended from the begin com-
mand to the end command. However at present this is only defined for
commands not having any arguments, as is the case for the e command.

4.5 DSL-Oriented Verbs

Most verbs in this section are mostly used in DSL scripts. Such scripts
arise for two main purposes: for defining dynamic webpages, and for defin-
ing the “wrappers” around the bodies of webnotes. Webnote content is
defined (usually) in a file called body.tsl which is translated to a file called
body.html which in turn is given as an argument to a DSL script that
provides styling, header and footer contents, and so forth for the finished
webpage.

The commands in this section apply for HTML only unless the contrary is
specified explicitly.

20

4.5.1 HTML Document Structure

[webpage ...]

Produces the commands given as arguments. Is intended to be used on the
top level of a dynamic webpage or a webnote wrapper script.

[doctype ... :dtd d]

Intended for use as the first argument of the webpage command; produces

<!DOCTYPE ... "d">

where d is the value of the :dtd parameter.

[pass-on :path p]

Intended for specifying a webpage that forwards to another page. Produces

<META http-equiv="refresh" content="0; url=p">
<META http-equiv="expires" content="now">

[html ...]

Produces an expression enclosed by (html) ... (/html) . – In this defi-
nition and the following ones, please read less-than and greater-than char-
acters instead of the round parentheses. (Problem getting Latex to produce
those angle brackets but will solve it eventually).

[head ...]

Produces an expression enclosed by (head) ... (/head) .

[title ...]

Produces an expression enclosed by (title) ... (/title) .

[body ... :fonts <font1 font2 ...> :bgcolor color]

Produces an expression enclosed by (body) ... (/body) containing the
clause for bgcolor if present. The following other parameters may also be
included: style, text, link, vlink. If the fonts parameter is included
then a separate HTML fonts command is also generated. If the :fontsize
parameter is included then a font-size inside style command is generated.

4.5.2 Text Structure and Styles

[fragment ar1 ar2 ... :fonts <font1 ... fontk> :nospace t]

This verb is defined for both Latex and HTML. It produces the processed
argument sequence, wrapped by the fonts information if present. If the
:nospace parameter is present with a non-null value then no whitespace
will be generated between the elements. The verb wseq is defined similarly
but with :nospace as the only parameter.

[pfragment ar1 ar2 ... :fonts <font1 ... fontk>]

Similar to the previous one, except that the parameters in the pfragment
expression are imposed on each of the commands given as arguments. The
verb pseq is defined similarly.

21

[divstyle ... :tag1 v1 :tag2 v2 ...>

Produces a corresponding HTML expression of the form

<div style="tag1:v1;tag2:v2 ..."> ... </div>

where the given arguments generate the ... and the given parameters
generate the style expression.

4.5.3 Special Document Components

[pval :val x]

The parameter value is produced to the output file without any formatting,
simply using the Lisp function princ.

[image :source s :width w :height h]

Produces the corresponding HTML img expression for presenting an image
given as s.

Additional verbs to be added in this category.

4.5.4 Links

[link ar1 ar2 ... :path p :target targ]

In HTML, it produces the formatted arguments as a clickable phrase di-
rected at the position indicated by p and for display in the “target” field
targ. It also allows optional parameters :style and :OnMouseOver which
are mapped directly to the HTML counterpart. The value of the :path
parameter may be either of the following:

• A string

• An entity representing a webnote, formed e.g. using the formant wen:

• A record representing a dynamic webpage.

The command is also defined for Latex but there it merely produces a
footnote containing the value of the path parameter.

4.5.5 Tables

[table ...]

Produces a table consisting of lines and columns. The parameters for
:frame, :rules, and :border are defined like for HTML.

[row ...]

In the scope of a table action, produces one line of boxes. No parameters.

[box ... :width wi :align al]

22

In the scope of a table action, produces one box in the current row. The
width and align fields are defined like in HTML. Other accepted parame-
ters are :valign, :rowspan, :colspan, :height and :bgcolor. Also, if
present, the parameter fontsize maps to a style font-size item like for
some other commands.

4.5.6 Requests

[request ... :to to :method me :target ta]

Produces an HTML form expression with the contents specified as argu-
ments. The to parameter generates the HTML action field and should be
an entity representing a webpage verb. The method and target parameters
generate the corresponding fields in HTML. The method can be get, put,
or post with the obvious meanings, but also upload which produces

method=post, enctype="multipart/form-data"

[pass par val]

Inside a request expression, a pass record specifies that the binding of par
to val shall be transmitted to the destination action. This corresponds to
an input type=hidden expression in HTML. No colon or point before the
first argument.

[forward <par1 par2 ... park>]

Inside a request expression, it generates pass expressions for each one
of the parameters pari , whereby their respective values in the sending
environment are made available in the target environment.

[sendbutton xpr]

Inside a request expression, it generates a “submit” button that is labelled
by the argument which should be a string.

[input text :tag ta :show sh]
[input textarea :tag ta :show sh]

Inside a request expression these commands generate input or textarea
fields within which data can be entered and submitted to the request. The
:tag parameter specifies the tag assigned to this input field in the request
being transmitted. The :show parameter specifies the initial field contents
before they have been changed by the user. Additional parameters are
:charsize or (equivalently) :charwidth for the width of the field, and
:lines for the number of lines in a textarea.

[field ...]

In the scope of a table action, this means [box [input text ...]] .
It allows the parameters :tag and :charsize and not others.

[radiolist tag {[: v1 s1][: v2 s2] ... }]

This generates the HTML for a vertically aligned suite of radio buttons, i.e.
buttons where only one can be selected, where each button is labelled by one
of the strings si and selecting this button has the effect that the parameter
given as the first argument, tag above, is bound to the corresponding symbol
vi. For example, the following command

23

[radiolist theme {[: health "Health"][transports "Transports"]}]

produces the following HTML code

<input type="radio" name="theme" value="health">Health

<input type="radio" name="theme" value="transports">Transports

4.5.7 Frames

[frameset cols ...]
[frameset rows ...]

Generates a frameset expression in HTML. The first argument specifies
whether the component frames are to occur columnwise or rowwise. The
remaining arguments should be frame records or subordinate frameset
records. The border and frameborder tags are used like in HTML. The
size tag is used for the same purpose as in a frame action record which is
defined next.

[frame ... :size sz :name na :path pa :scrolling sc]

Specifies one frame within the scope of a frameset expression. The value
of the size parameter specifies the height or width of the frame at hand
in the surrounding frameset expression. The name , path and scrolling
parameters are used like in HTML.

Notice that a frameset command in HTML specifies the height or width
of all its subordinate frames or framesets in one single list, but in the corre-
sponding DSL command each component specifies its own height or width
using its size parameter.

4.5.8 Interpreter Calls

[invoke v]

Invoke the argument command; HTML only. The evaluated argument can
be either of the following:

• An entity representing a textual command: Executed without argu-
ments or parameters

• A term: evaluated and its value is produced to output as described
in Section 4.6

• A command (represented as a record as usual): Execute it.

[exec c]

The evaluated argument shall be a DSL command which is then executed.
The command verb must be defined using an Actiondef as defined in the
next chapter. HTML only. This definition should be generalized.

4.6 Odd Arguments in DSL and TSL

A DSL expression shall in principle be a record where the arguments are
again DSL expressions, strings or numbers. Strings and numbers are copied

24

directly to the result file. The following are the odd cases aside from this
main pattern.

4.6.1 Symbols

There are a few symbols that may occur as arguments in themselves in DSL
and that have special functions. The / symbol enforces a new line, like the
HTML command br. Similarly, the // symbol enforces a new paragraph,
and the -- symbol enforces a horizontal line. The first two are defined both
for Latex and HTML, the last one only for HTML.

The same symbols are available as operators in TSL where they are ex-
pressed as [/] [//] and [--] respectively. (At present a space is re-
quired before the right square bracket due to an unfixed bug). Only the
first one is defined for Latex, all three for HTML generation.

Additional uses of symbols are in preparation.

4.6.2 Forms

Terms that occur as arguments where a string or a formatting command
is expected are evaluated, and the value is printed as a KR expression in
the HTML case, and given again to the formatter in the Latex case. (This
discrepancy should be reviewed).

4.7 Tacit Commands

Tacit commands are those that do not produce any output to the result file,
but which are included in a source document or a script for other reasons.
The following commands are only defined for HTML generation.

[comment ...]

This command has no side-effects either.

[load :ef ef]

Loads the entityfile given as an entity in the parameter.

[tracemess :msg "..."]

Prints the value of the :msg parameter on the agent console, which at the
same time is the server console.

[trace x1 x2 ...]

Analogous to the fragment command, but the HTML being produced is
sent to the agent console and not to the result file.

[traceparams]

Prints the arguments and the parameters of the nearest enclosing command
on the agent console.

[pstack "..."]

25

Prints the optional argument string on the agent console and then prints
the contents of the stack of textual command parameters on that console.

Chapter 5

DSL/TSL Verb Definitions

The previous chapter defined the vocabulary of elementary verbs for DSL
and TSL. Additional verbs can be defined in terms of those, or directly using
additional Lisp code. This is used for two purposes: in order to use the new
verbs as ‘procedures’ or ‘macros’ in the source files for documents and web-
notes, and in order to define dynamic webpage commands like plantselect
that was mentioned as an example in the beginning of the previous chapter.
The present chapter defines how such definitions are expressed in Leonardo
entityfiles.

When studying these definitions, please recall that parameter values are
always evaluated before a verb is invoked, whereas the treatment of argu-
ments is specific to each command. Most command use the arguments for
DSL or TSL subexpressions that are to be formatted and produced to the
output file, but there are exceptions to this.

5.1 Simple Textual Verb Definitions

Verbs for use in DSL and TSL are called textual verbs. The following is a
simple example of the definition of such a verb.

--
-- plantpage

[: type webserver-verb]

@Textdef
[body :bgcolor "#eeffdd" ^

[heading .p :level 2]
"Latin name: "
[if [hasvalue (get .p latin-name)]

(get .p latin-name)
"(Not available)"] //

[link [b "Picture"] "
" :style "text-decoration:none;"
:path (get .p picture-link)]]

--

26

27

This defines a verb for a dynamic webpage that can be invoked using the
following DSL command

[plantpage :p Dandelion]

and using the following HTML request to localhost

http://localhost/plantpage?p=Dandelion

The use of the double-slash symbol is an example of a single symbol in DSL
which was defined in the last section of the previous chapter.

If there is repeated use of similar expressions, such as might easily be the
case with the conditional expression in this example, then one may encap-
sulate them as a ‘macro’, for example as follows.

--
-- condattr

[: type leoverb]

@Textdef
[fragment

[if [hasvalue (get .p .a)]
(get .p .a)
"(Not available)"] //]

--

and rewrite the definition for plantpage more compactly as

--
-- plantpage

[: type webserver-verb]

@Textdef
[body :bgcolor "#eeffdd" ^

[heading .p :level 2]
"Latin name: " [condattr :p .p :a latin-name]
[link [b "Picture"] "
" :style "text-decoration:none;"

:path (get .p picture-link)]]

--

However, the following two considerations must not be forgotten. First, the
entityfile containing one or more definitions of textual verbs must have the
entity verbfile in its in-categories attribute, for example as follows.

--
-- plantsite

[: type entityfile]
[: in-categories {verbfile}]

--

The effect of this is that at the end of loading the entityfile, a scan is made
of all the entity definitions in it, and occurrences of the Textdef property

28

are converted from text form to datastructure form under the Lisp property
textdef. Secondly, any verb that is going to be used to define a dynamic
webpage, such as plantpage in the example, must also have a for-domain
attribute which specifies which of several virtual servers [1] in the session is
going to publish the verb. This attribute as well as other related attributes
will be described in the section on webserver definition.

If one wishes to define, as a textual verb, a symbol that is already defined
for another purpose in the Leonardo agent at hand, then one must choose
another name for the entity and specify the desired name using the attribute
published-as, for example

--
-- condattr-verb

[: type leoverb]
[: published-as condattr]

@Textdef
[fragment

[if [hasvalue (get .p .a)]
(get .p .a)
"(Not available)"] //]

--

5.2 The Passing of Parameters

Textual verbs are normally defined and used with parameters and not with
arguments, as shown in the above examples. The predefined elementary
verbs are obvious exceptions, and there are also ways of defining additional
verbs in this way (documentation later), but the use of parameters is pre-
ferred.

The second definition of plantpage showed how an incoming parameter p
to the definition was passed on to a subordinate verb. This is a common
situation and sometimes there is a list of several parameters that have to
be passed in the same way. The particular tag :forward can be used for
convenience in such cases, and the above example can be rewritten as

--
-- plantpage

[: type webserver-verb]

@Textdef
[body :bgcolor "#eeffdd" ^

[heading .p] //
"Latin name: " [condattr :a latin-name :forward {p}]
[link [b "Picture"] "
" :style "text-decoration:none;"

:path (get .p picture-link)]]

1Terminology: I actually think virtual servers is something else in the ACL
lingo. Must be checked.

29

--

The use of forward is of course pointless when it only forwards one param-
eter, but the forwarded set may contain any number of parameter symbols.
Notice that they are written without preceding colon or point character.

5.3 Executable Procedures for Webpage Verbs

The verb plantpage was defined so that it merely displays information
from the knowledgebase, but in many cases one wishes a dynamic verb to
perform some computation and to have some effects on the knowledgebase
in the session of the server. Such procedures can be defined using the
properties Actiondef or Performdef for the webpage verb in question. An
Actiondef property is written in Lisp; a Performdef property is written in
the Session Command Language, i.e. using the same verbs as can be used
in command-line input.

Almost all presently defined webpage verbs are written using Actiondef
properties, and the use of Performdef is in a development stage. The
following is an abbreviated example of an Actiondef definition for the verb
where the user changes her password:

@Actiondef
(lambda (args params ai)
(let* ((old-pw (cadr (assoc :old-pw params)))

(new-pw (cadr (assoc :new-pw params)))
(sesid (cadr (assoc :sesid params)))
(service-id (--- omitted ---))
(user (get (intern sesid) ’with-user)))

(cond ((not (member user (cdadr
(get (get service-id ’user-register)

’contents))))
(princ "Unknown user")(terpri)
‘(rec& fail\: nil ((:reason unknown-user))))

;; Here, check that the specified old password
;; is correct, if not, return a fail: record
;; like under the previous condition
(t (setf (get user ’has-password) new-pw)

(write-ef (get service-id ’user-register))
‘(rec& ok\: nil ((:sesid ,sesid))))

)))

This definition obtains the argument list args and the parameter list params
of the command in question, together with a representation of computa-
tional context as ai. It obtains the values for some of the incoming param-
eters from params and checks that the password change request is OK. If
so it returns a record headed by the record former ok: otherwise it returns
a record headed by the record former fail:. The record returned is given
to the Textdef property, so the parameters in the returned record may be
used as variables there, in order to determine the choice and the contents
of the resulting output to the browser.

Additional details about the use of Actiondef definitions are intended to

30

follow in the report on Lisp programming in Leonardo.

5.4 The request Operator

Many uses of dynamic webpages are organized in such a way that the user
is first presented with a specification page where she or he enters parameters
for a request, for example by completing input fields or by choosing radio
buttons, and where these parameters are then sent to an effect page for
computation and for presentation of the results. Such a tandem of two
webpages can be represented as a single entity in DSL. The specification
page is defined using a property called Specifydef, the computation is
defined using an Actiondef or Performdef property as just described, and
the result of the computation is defined using a Textdef property.

Suppose we would like to define plantpage in this way, so that there is a
separate page where the user types in her choice of plant to be presented.
The following definition could be used.

@Specifydef
[body :bgcolor "#eeffdd" ^

[heading "Enter choice of plant" :level 2]
[request :to plantpage ^

[input :show "" :tag p :charsize 50]
[sendbutton "Enter"]]]

This definition represents a displayed page containing a heading, a field of
size 50 for data input initially containing blank space, and a button labelled
Enter. This specification page can be invoked on localhost using

http://localhost/plantpage-specify

and a link to it may be included in the Textdef or Specifydef definition
of another entity using the DSL command

[link "Link to plantpage" :path [plantpage-specify]]

Specification pages may use parameters whose values are provided to them
in the obvious way using either of the two ways of invoking them, for example
as follows, if the text of the heading is to be specified in the invocation,

[link "Link to plantpage"
:path [plantpage-specify :heading "Enter choice of plant"]]

The request expression may forward parameter values (corresponding to
the hidden operator in HTML) using either of the following kinds of com-
mands

[pass p .pp]
[forward {p q r}]

The former command passes the value that it receives as .pp to the request
page but with the tag :p whereas the latter command passes the values of
all three parameters but using the same variables as they arrived with.

31

5.4.1 Using Composite Expressions as Parameters

The syntax described here makes it possible to pass arbitrare KR expressions
as parameters, for example, sequences, sets, and records. This is unprob-
lematic when textual verbs are used as ‘macros’ i.e. they are invoked in the
definitions of other verbs, but it is less easy if the invocation is made via an
HTTP request. In these cases it is necessary to encode the composite ex-
pression, or to make a request in post mode so that whitespace and special
characters such as brackets can be accomodated. (Documentation of this
should be forthcoming).

5.4.2 An Example

The following is a concluding example of DSL code written using some of
these commands.

[request
[pass e .e]
[pass continue-at [entry-of-address :e .e]]
[table [repeat a <firstname lastname email>

[row [box .a]
[box [input :show (get .e .a)

:tag .a
:charsize 50]]]]]

[sendbutton "Enter"]
:to entry-of-email]

This expression is used in an environment where the variable .e has a value;
this value is presumed to be an entity. It displays a table of three lines, one
for each of the three attributes firstname, lastname and email. On
each line there is one box containing the attribute and one box initially
containing the current value of the attribute in question for the entity .e,
and the user is allowed to change that value. The updated values, together
with the value of .e itself is sent to the command entry-of-email. Notice
that some of the more intransparent HTML commands have been replaced
by more natural ones, such as for row and box inside a table. The pass verb
provides a value to the destination, corresponding to the hidden construct
in HTML.

Notice also that this definition can be converted to a generic operation for
entry of arbitrary attributes simply by changing the explicit list of three
attributes to a parameter, for example attrs. In this case it could be
invoked using a command such as

[input-attrs :e .e :attrs <firstname lastname email>]

whereby the request expression is instantiated using the current value of
the variable e and the specific choice of the list of attributes. This is an
example of the usefulness of having composite KR expressions as param-
eters. (However, realistically speaking the :to parameter should also be
provided.)

Notice furthermore the second pass expression that forwards an entire DSL
command to the receiving page. The assumption is that entry-of-email
shall update the database as requested, display a confirmation message, and

32

then continue (after either a time delay or a click by the user on an OK but-
ton) to the parameterized page specified by the value of its :continue-at
parameter. The pass verb evaluates its arguments but does not execute
them, even if they are commands; the execution takes place down the line
using an expression of the form [exec .continue-at] This is an example
of where the parameter value is a composite expression that may need to
be encoded in order to be passed as an HTML request.

Chapter 6

Generation of Document
Components from the
Knowledgebase

One advantage of the close integration of the various languages and rep-
resentational conventions in the Knowledge Representation Framework is
that it facilitates cross-connections between different facilities. For exam-
ple, there is a system documentation facility whereby entities representing
command verbs and other system constructs can have properties containing
the text for their documentation, and whereby documents can be defined
to include such definitions for a list of entities. This is merely one example
of such integration. The present chapter is dedicated to examples of such
integration.

6.1 Documentation Generation

The conventions for systems documentation generation are as follows. Each
entity concerned shall have an value for the property Doc and this value
shall be expressed in TSL notation.

A document in TSL notation that wishes to include such properties may
contain commands of the following forms

[docitems :list <v1 v2 ... vn>]

Generates the documentation for each of the verbs mentioned in the param-
eter. The documentation consists of a header line with the verb in question
and its parameters, followed by the text in the Doc property of the entity.
The list of parameters should be provided as the args attribute of each of
the verbs.

[sysfunhead :op get :args <c a>]

Generates only the headline, in the same style as used by the docitems
command. The text following the head is not added automatically and
must be given in the source document. This command is used for functions,
i.e. the head is enclosed by round parentheses.

33

34

[sysdochead :op loadf :args <ef>]

Similar but for verbs and predicates, i.e. the heading is enclosed by square
brackets.

In a session where a document using this is being formatted, one must first
perform the following operation for each source file tslf in TSL containing
such constructs.

[sydload tslf]

The rest is automatic.

This facility has been used for some of the current Leonardo documentation,
in particular for the KRF Overview document.

Chapter 7

Dynamic Resources and
Hyperpages

Textual verbs that are to be invoked using HTML requests must be declared
to be included in a particular dynamic resource, and they may optionally
also be included in a particular hyperpage. The dynamic resource is needed
because the Facility makes use of a feature in the Allegro CommonLisp web-
server, namely, that a session with the system may operate several virtual
servers each of which uses its own port. (There are also other uses of the dy-
namic resource construct, in particular for agent-to-agent message-passing).

By ‘hyperpage’ we mean an aggregation of some webnotes that are con-
nected together using a common menue, and usually also a common style
and appearance. The hyperpage construct is therefore used for defining web-
page style: if a hyperpage entity defines a particular style then this style
is adopted by all webnotes that are attached to that hyperpage. More-
over, hyperpage entities may be used for defining menu contents and other
overriding structures.

The present chapter contains descriptions of these facilities, although some
aspects of dynamic resources must instead be described in the separate
memo on agent networks.

7.1 Dynamic Resources

Each Leonardo agent may participate in one or more dynamic resources.
The available dynamic resources are defined in indivmap-kb in the entity-
file server-resources-catal. One of the resources, and one which will
often be present is dres.coordin which in principle is used for communi-
cating system information between agents, i.e. for coordination purposes.
However, it may also be used for trying out webpage commands, as long
as one makes sure that the port it is using is not open to the Internet or a
large local network. The following is the major part of its definition.

-- dres.coordin

[: type server-resource]

35

36

[: defined-in indivmap-kb]
[: has-default-port 38082]

For each agent, the set of dynamic resources that it participates in is spec-
ified in the entityfile agents-catal in indivmap-kb. This is because this
information is not only of interest for itself, but also for other agents. The
following is a typical definition there.

--
-- agent.remus

[: type leo-agent-name]
[: leo-id lar-001-023-015-002]
[: in-individual indiv.L-reg]
[: has-ip-offset -10]
[: is-server-in {dres.coordin}]
--

By these definitions, the agent remus will be able to use a virtual server
for dres.coordin on port 38072, obtained as the sum of the default port
and the ip offset of the two entities. This arrangement is used since several
agents may operate on the same host at the same time.

Most nontrivial sessions with a Leonardo agent require the command

[loadk indivmap-kb]

to be executed at the beginning of the session. This command will load most
of the entityfiles in indivmap-kb but also several knowledgeblocks that are
involved with webserver services. This startup will in particular observe
whether dres.coordin is included in the is-server-in attribute of the
current agent, and if so it will start a virtual server for that resource.

Other dynamic resources do not have their servers started automatically
in the same way; this has to be requested by the user using the following
command

[stare dres.anotherone]

but notice that this is only possible for dynamic resources that are included
in the is-server-in attribute. The command

[resta]

lists all the dynamic resources in that attribute, with information whether
a virtual server has been started for the resource or question, and if so what
is its port number.

In order to define a textual verb for a particular server, the following must be
observed. The verb must have the dynamic resource in question as the value
of its in-dyn-resource attribute. The entityfile containing the definition of
the verb must include the symbol verbfile in its in-categories attribute,
as already mentioned above. Finally, that entityfile must be loaded after
the virtual server has been started, using the stare command if applicable.
However in the particular case of dres.coordin this is not an issue since its
server is started as a part of the loading of indivmap-kb. Once the virtual
server has been started, it is possible to re-load the entityfiles containing
the textual verb definitions repeatedly, for example in order to update the
definition of the verb.

37

7.2 Hyperpage Entities and Style Definitions

The following is a simple definition of a hyperpage entity.

--
-- cappa

[: type caisorsite]
[: has-style caisorstyle]
--

The type name is a bit obsolete and should be changed asap. This definition
refers to a style definition which may be as follows.

--
-- caisorstyle

[: type webstyle]

@Styledefs
{[body :fonts <Verdana Arial Helvetica sans-serif> :fontsize 10pt]
[heading :fontsize 10pt]
[td :fontsize 10pt]
[h2 :fontsize 12pt]
[h3 :fontsize 10pt]
[link :style "text-decoration:none; font-size:10pt;"]
[box :fontsize 10pt]
[font :fontsize 10pt] }

--

This style definition is a set of records each of which specifies parameters
that are to be added to any occurrences of the DSL verb in question, in any
webnote or textual verb that is attached to the hyperpage in question. For
example, the entity plantpage that was used in the examples above could
have the attribute assignment

[: intopic cappa]

Hm, have to check again how this is done, don’t rely on it at present. Sim-
ilarly, a webnote may specify its attachment to a hyperpage using the at-
tribute intopic in its def.leo entityfile, for example

[: intopic cappa]

Hm, should change that attribute name as well?

7.3 The Leonardo Webnote Pattern and
Website Entities

The major use of hyperpage entities is as a basis for specifying the various
aspects of the Leonardo Webnote Pattern that was described in Section 2.3,
including the use of a menue and an overall page structure that accomodates
the menue. This requires a number of other attributes and properties.

38

Notice however that the use of these is not obligatory, and it is possible to
use hyperpage entities merely as a holder for style if one wishes so.

The following is an example of a hyperpage definition for using the webnote
pattern.

--
-- cappa

[: type caisorsite]
[: webtitle "CAPPA - Configuration of Publication Agents"]
[: pretitle "Configuration of Article Publication Agents"]
[: has-caption "Provided by the Experimental Electronic Press"]
[: has-style caisorstyle]
[: initpage "../cappa/cappa/intro/page.html"]
[: in-directory "../../../../Sites/cappa/"]
[: file-entities <gs-index gs-mainframe gs-head gs-meta

blank-bg head-bg white-bg>]
[: initmenue menue1]
[: fontlist <Verdana Arial Helvetica sans-serif>]
[: bgcolor "#cceeaa"]
[: textcolor "#002244"]
[: linkcolor "#006699"]
[: vlink-color "#006699"]
[: headcolor "#aacc99"]

@Menue1
[webpage

[sitedoctype]
[html [body :fonts (get .cursite fontlist)

:bgcolor (get .cursite bgcolor)
:text (get .cursite textcolor)
:link (get .cursite linkcolor)
:vlink (get .cursite vlink-color) ^

[table
[menuline :thick 3]
[menuitem :path "../cappa/cappa/intro/page.html"

:caption "Introduction and Welcome"
:then vspace]

[menuline :thick 1]
[menuitem :path "../cappa/cappa/access/page.html"

:caption "Access to CAPPA"
:then vspace]

[menuline :thick 3]
]]]]

--

The present implementation of hyperpages uses the frame construct in
HTML, but the definitions have been made in such a way that they shall
also support a more modern implementation using the div command. Any-
way, in terms of the present implementation, the in-directory attribute
of the hyperpage entity specifies the relative location of the main directory
for this hyperpage. This directory will contain HTML files called index,
mainframe, head, and so forth as defined by the file-entities attribute

39

and the published-as attributes of its members. For example, there is
a definition of the gs-index entity whose published-as attribute has the
value ’index’ Have to arrange to obtain a plain double quote here, damn La-
tex. The same directory will also contain an HTML file called menue1 whose
contents are defined by the Menue1 property. The value of the initmenue
attribute specifies that this is the first menue that is presented when the
hyperpage is visited. Choices of clicks may replace it by other menues whose
contents are defined by other, similar properties.

The last six attributes in the entity description are used for the generation
of menue1.html as well as for all the files listed in the file-entities
attribute, and with the obvious meanings. The earlier attributes are used
as follows.

webtitle - Appears in the HEAD property of the file index.html , i.e.
the main file for the structure of frames.

pretitle - Appears as a level-3 heading on each webnote in the hyper-
page. It is followed, in each webnote, by a level-2 heading that is specific to
that webnote.

has-caption - Appears in a separate, small frame field at the top of the
frame layout.

init-page - The webnote that appears in the main field of the frame
layout when the hyperpage is first entered.

In order to generate the required files one first selects the hyperpage in
question using the Rev command, for example

Rev cappa

and one makes sure that the hyperpage definition has been loaded into the
session. Then the following commands are used.

initsite

Creates the directory for the hyperpage and makes basic checks.

gsite

Generates the HTML files that are defined by the current hyperpage en-
tity, including both the menue and the files listed in the file-entities
attribute.

gsitot

Performs the [gsite] command, but in addition it also loops over the
members of the value of the has-pages command, which should be a set
or sequence of entities, and executes the [ghal] command for each of
them. This means that it re-generates all the webnotes that belong to the
hyperpage, provided that they are listed in the has-pages attribute. This
operation is useful after a style change.

gmen menue2

Used if a property Menue2 has been defined as a menue, and if so generates
the page menue2.html with the contents defined by it.

gme

40

Performs [gmen menue1] and is useful for regenerating the menue after its
definition has been modified.

The definitions of these commands is somewhat shaky at present, and there
has been problems with the menue generation command in particular.

Chapter 8

Considerations on Style

Some semi-philosophical considerations on webpage style and stylesheets
may be in place here.

8.1 The Power of Procedures

The importance of using procedures does not have to be explained to any
reader of this report. The examples above have shown that it is straightfor-
ward to organize a DSL package in terms of procedures which can be small,
precise and generic in ways that does not have a counterpart in HTML or
in XML.

Consider, for example, the very common situation where a website is or-
ganized as a number of pages each of which consists of menue columns to
the left and to the right, a heading field at the top of the page, and a body
of informatiion between these. Since the heading and the menues stay the
same, one wishes to organize the definitions so that each verb only speci-
fies the contents of the body in the middle. The natural way to do this in
a procedure-oriented system such as DSL is to introduce one verb for the
overall page structure and to let it have a parameter specifying the body
contents. The definition of such a verb may follow the following pattern.

-- pagetop

[: type leoverb]

@Textdef
[html [body

[divstyle [myhead] ...]
[divstyle [myleftmenue] ...]
[divstyle [myrightmenue] ...]
[divstyle [invoke .body] ...]]]

Recall that divstyle generates an HTML command of the form <div
style="..."> ... </div> where the parameters of divstyle specify the
contents between the double quotes. The divstyle commands in the defi-
nition of pagetop specify the location and the appearance of the respective

41

42

divisions.

Given a definition such as this, each link from one page to another in this
website can be written on the form

[link "otherverb" :path [pagetop :body [otherverb ...]]
:style ...]

This will produce a clickable word ”otherverb” with the style specified by the
style parameter, leading to a page with the selected top-level structure and
where the middle-part contents are specified by [otherverb ...] One
may be unwilling to repeat this link expression for every link, especially if
the style parameter consists of many parts, and in such a case it is natural
to introduce an additional verb for it, such as

-- mylink

[: type leoverb]

@Textdef
[link :path [pagetop :body .dest]

:text .text
:style ...]

Then each link can be written simply as

[mylink :text "otherverb" :dest [otherverb ...]]

In other words, the brief definitions for the two verbs pagetop and mylink
are sufficient for encapsulating the definition of the layout as well as the
style information for both divisions and links.

8.2 Procedures versus Style Sheets

The manner of working that has been described here is natural if one is
used to programming with procedures and modules. It differs from the use
of Cascading Style Sheets (CSS) which is currently the standard method for
defining layout and styling. The approach to the definitions of style when
CSS is used is to first define webpages using standard HTML commands
such as body , div and a , and then to impose additional parameters on the
occurrences of these commands using style definitions.

From a programming-language point of view, the CSS approach is therefore
an example of advising (ref. Teitelman 1969?) where a simple base program
is decorated with additional details using separately defined amendments.
Introducing an additional language level is always a nuisance, but one must
also ask whether the advising approach of CSS provides additional advan-
tages that are not obtained using the procedural approach.

One argument in the context of the present DSL implementation may be
that it results in a larger expression being transferred from server to browser,
since for example all style information has to be added to all places where
it is used (in every link expression, for example), whereas using CSS the
advising operation can be done in the client. This is however a temporary
obstacle since it ceases to apply if the web client can execute DSL definitions

43

such as the definition of mylink above, and since this can presumably be
emulated using Javascript code in a shorter perspective.

Another argument may be with respect to the ”cascading” aspect of CSS,
which means that advise to a given command may be obtained from sev-
eral different sources, including both sources in the server and in the client.
In principle this means that each of those sources, including the user of
the web browser can specify aspects of style by advising universally defined
commands, such as body or h2. Commands that are defined in the proce-
dural approach, such as mylink do not offer this possibility since the style
information is written into the verb definition. One can of course consider
adding advising to the procedural scheme, so that for example a style advise
to the link verb in DSL would have higher priority than the style rules that
are given in the definition of mylink, but then we are back to having a more
complex language structure. This is a significant aspect, and we are not yet
ready to make a proposal for whether and how to provide multi-source style
information in the Document Scripting Language.

This is not to say however that the use the Facility relies entirely on the pro-
cedural or ‘macro’ approach. The style concept for the Leonardo webnote
pattern was described in the previous chapter.

