
CASL

Erik Sandewall

How to Begin Using the Leonardo System

For Remus Version ap-0030

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-007, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/007/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2009-05-27



1

1 Introduction

This report describes the central parts of the Leonardo system from an
operative point of view. A suite of simple examples illustrate what one can
do in this system, and how it is done. The report has been written for
students and colleagues in our department who have read some of the other
articles and reports about the Leonardo system [1] and that want to give it
a try, but also for those that simply want to get a feel for what the system
does without necessarily wanting to run it themselves.

It is possible to try out the Leonardo system since reasonably stable versions
of a small Leonardo system, called Leordo, now exist for use on Windows
and Linux systems.

One of the first things that you will notice when running a Leonardo system
is that programs and data are integrated. In a conventional programming
language you write a program, and then you apply that program to your
data. In Leonardo you have instead one single structure that is called an
individual that contains both programs and data. In fact, it also contains
various other kinds of information that are intermediate between programs
and data. Everything you do during a Leonardo session (once the system
is up and running) uses and modifies the contents of that individual.

section 1 of this report describes how you can get your own Leordo individual
to work with, and section 2 describes some practical handling issues for such
an individual. The reader who only wishes to read about the system may
wish to proceed directly to section 3, therefore.

1.1 Choice between Server and Personal System

Your first choice is whether you wish to run Leonardo on a server or on your
own personal computer.

There is one resource for the server option at present, namely a computer
called elektrika which you access as IP 130.236.69.194 (no symbolic ad-
dress yet). It is a linux machine which one has to access using an ssh
connection.

In the personal computer case, you must arrange to have a computer where
Allegro CommonLisp (ACL) is installed. If this is a department-owned
computer then you can install the ’professional’ ACL system under IDA’s
site license. Please contact me for details. If it is your own computer,
or someone else’s besides IDA, then the best solution is to install the free
version of Allegro’s system, called Allegro Express. Instructions for this
follow below. Both the commercial version and the express version exist for
both Windows, Linux, and Mac.

Leonardo individuals do not contain any machine-executable code, which
means that they need an implementation of a programming language, called
the host language in order to be operational. They are organized so that
it shall be possible to run one and the same individual with several host
languages, but at present this has only been implemented for one lan-

1http://www.ida.liu.se/ext/leonardo/



2

guage, namely CommonLisp, and in particular Allegro CommonLisp. [2]
The best languages for implementing Leonardo are the incremental ones, so
e.g. Python would also be a good choice for implementation language.

1.2 Choice between ANSI Base and Modern Base Lisp

When choosing and installing a Lisp system and a corresponding Leonardo
individual, you should be aware of the distinction between ANSI Base and
Modern Base Lisp systems. The former are designed in such a way that some
aspects of their input are automatically converted to upper-case characters:
you type lower case and you prepare your input files in lower case, but
they are converted to upper case when read and appear in upper case when
results come out again. Modern Base systems do not do this; they preserve
both upper and lower case.

Case-insensitive operation was the historical practice in Lisp and it became
entrenched through the ANSI Standard. ACL offers both possibilities, but
most other implementations of Lisp offer only ANSI Base.

Leonardo has been implemented in a context of Modern Base, but in such
a way that it is possible to convert a Modern Base Leonardo individual to
one that uses ANSI Base. The conversion in the opposite direction is more
tricky and has not been implemented. However, the ANSI Base variant of
Leonardo is not fully tested yet, and it is strongly recommended to only
use the Modern Base option unless you want to experiment with running
on other Lisp systems besides ACL.

1.3 Obtaining an Allegro Express System for Leonardo

If you are a student and want to run Leonardo on your own PC or desktop
then probably you want to get the free version of ACL. (There is also a
“student version” at a lower price than the professional one, but I do not
know anything about it). To obtain the Express system visit Franz (the
company producing the Allegro system) at

http://www.franz.com/

click “Downloads”, then click “Allegro CL Free Express Edition”, then
“Download now ...” where you get to identify yourself, and then down-
load according to your choice of operating system. The download is an
executable file that you execute to install (Windows) or unzip as usual
(Linux et al).

However you must make one more step, which is because the variant of the
system that you get by the Express option has two features that one should
get rid of: it is an ANSI Base system, and it comes with an attached editor
that does not really fit into the Leonardo way of doing things. Fortunately,
it is able to convert itself to a Modern Base system. Do as follows, once the
system has installed itself.

2We are working on providing e.g. LispWorks as an alternative, but this is not
entirely trivial since the present implementation uses a few auxiliary packages in
Allegro.



3

On a Windows system: Position yourself where the system is located,
for example under

C:\Program Files\acl81-express\

Click the file allegro-express.exe in this directory so as to start the run.
This will open a group of two windows. Delete the editing window (the one
to the right). In the window called the debugging window, type in or paste
in the following expressions and hit the Return key after each of them:

(build-lisp-image "mlisp.dxl" :case-mode :case-sensitive-lower
:include-ide nil :restart-app-function nil
:restart-init-function nil)

and

(sys:copy-file "sys:allegro-express.exe" "sys:mlisp.exe"))

Keep an eye on the contents of the acl81-express directory as you do
this. The effect of the first operation should be the addition of a file called
mlisp.dxl in that directory; the effect of the second operation should be
the addition of a file mlisp.exe.

If the second operation fails and mlisp.exe does not show up, then it is
also possible to simply drag-and-drop allegro-express.exe to a copy that
you rename mlisp.exe.

After this, click the newly created file mlisp.exe. If everything has worked
out right, this should open one single window that just shows a simple
greeting. Check that it is correct by typing a single (lower-case) t into it.
If it is correct then it shall answer you with t but if you have accidentally
obtained an ANSI Base system then it will answer you with T instead. In
this case, try the above procedure again.

On a Linux system: The same steps as for Windows should apply, but
I have not yet checked them out. Please try to do it by analogy with the
above, and report if you have any problems.

1.4 Downloading Leonardo for Use on PC

In personal computer mode, once the ACL system is in place, you can
proceed to installing a copy of the Leonardo system. Do the following:
identify the place for download on the Leordo website [3] It offers two files to
download, called leordo-remus.bat (a small file) and leordo-remus.txt
(around 1100 KB). Both of these are text files so they are easy to work
with. Download them and place them in the same directory, for example
E:/Leordo/. Edit the bat file and make sure that the path to the ACL
system on its first line is correct. (Do not remove the semicolon at the
beginning of the first line.) Then, invoke the bat file by clicking it.

This will start an installation run that uses the ACL system and that splits
up the contents of the accompanying txt file into smaller files that are
organized in subdirectories called remus and Residmap under the chosen di-
rectory. The former one is your Leonardo individual, the other one contains
a few auxiliary files that are intended to be shared between individuals if
you have additional ones besides remus in the same directory.

3http://www.ida.liu.se/ext/leordo/



4

When the installation run is complete, then descend into the remus individ-
ual to the subdirectory .../remus/Process/main/. It contains a file called
minileo.bat. This is the one to invoke in order to start a session with your
copy of the remus individual.

1.5 Using Leonardo on the Elektrika Server

We switch now to the case where you want to run Leonardo on the Elektrika
server where it has already been installed. In this case you do not have to
worry about downloading and installing ACL since it has already been done.

The server is accessed using ssh, so in order to use this option you must
have a program such as SSH Secure Shell (available within IDA) or Putty
(freeware).

You must also have an account on Elektrika. Contact me in order to get it.

Finally, you must have your own Leonardo individual. This is because there
are several users on the server, and because when you work with Leonardo
you change the contents of the Leonardo individual you are working with.
Therefore you need your own.

This works as follows. When I set up your account, I also create a new
Leonardo individual for you. Probably it will be called something like rom-7
with some number (e.g. 7) to distinguish it from its siblings. The original
files for this individual will be located at

/home/erisa/leonardo/rom-7/

However, in order to use it you must first copy it to your own directory. If
your login is mylog then copy the entire rom-7 directory so that you have
e.g.

/home/mylog/leordo/rom-7/

Like in the case of Windows, the surrounding directory which is leordo in
the example can be named and placed arbitrarily, but the individual (e.g.
rom-7 ) and its contents should not be renamed or rearranged.

The /home/erisa/leonardo/ directory contains other individuals as well,
but you do not need to copy them. However, you must make a symbolic link
(a kind of virtual copy) of the individual called romulus, typically using the
following shell command

ln -s /home/erisa/leonardo/romulus ~/leordo/romulus

In this way when you inspect your leordo directory it looks like there are
two individuals in it, namely, romulus and rom-7. The reason for this
arrangement is that while rom-7 is your own individual that you will be
working with, it has very little contents at least at the outset, and when you
run a session with it it will load entityfiles (i.e. files containing programs and
data) from the romulus individual which is its virtual neighbor. However,
it is only able to read from it and can not write to it, according to the file
protections under Linux. More about this below.

After these preparations you should be able to start a session with your
Leonardo individual rom-7, or whatever its name is. To this end, position
yourself at



5

/home/mylog/leordo/rom-7/Process/main/

and invoke

./linuleo.lex

This should start the session.

2 Introductory Use

This section describes how to use the command-line interpreter together
with a text editor, and how to privatize your Leonardo individual so that
you can then start adding information to it.

2.1 Entering the Command Line Interpreter

When you start a session using either of the two approaches that were
described above, you will be in the top loop (also called the read-eval-print
loop) of the ACL CommonLisp system. This means that the system expects
you to type in a variable or a parenthesized expression (an S-expression) that
it can evaluate and execute, and it will show you the value. For example, if
you type in

(+ 4 5 6)

it will show the value 15. However, Leonardo has its own command loop
which is started by typing (lux) to the CommonLisp.

The format of commands to the lux command loop is described in the next
section. If an error occurs then you are taken back to the ACL top loop,
and it is recommended to do

:reset
(lux)

in order to get back into operation. Your work has not been lost, normally.
If you are in the lux command loop and want to get back to Lisp in an
orderly fashion, type lisp.

In order to terminate the entire session, type exit to lux or (exit) to the
ACL top loop.

If you already know Lisp then there are many other things you can do on
the Lisp level or when an error occurs, but the above is what you need in
order to use Leonardo without bothering about Lisp.

2.2 Session and Editor

The persistent manifestation of your Leonardo individual is a collection of
files in the individual’s directory, in the sense that this is how the individual
is preserved between sessions. During a session, there is both the persistent
manifestation in those files, and the dynamic manifestation as data struc-
tures in the run, and there are frequent exchanges of information between
those two manifestations. In order to follow what happens it is therefore



6

recommended that you watch the contents of your individual’s directories
at the same time as you type commands to the session.

If you are using the server installation on Elektrika it is recommended to
use two windows by running the ssh program twice with the same login,
and to use one window for seeing and operating on the directory and for
editing Leonardo files while the session goes in the other window.

The first level of subdirectories inside an individual contains subdirecto-
ries of two kinds: knowledgeblocks and special purpose subdirectories. The
following are the special purpose subdirectories:

Ontology
Process
Savestate
Starter

All others subdirectories in the distributed system are used for knowledge-
blocks and consist of entityfiles. An entityfile is a collection of entity de-
scriptions that are expressed in Leonardo notation.

If you are using the server approach you will notice that your individual
has very little information in its knowledgeblocks, but the romulus indi-
vidual that you linked to contains much more. Those knowledgeblocks can
therefore be read, but not written, by your individual. The special purpose
subdirectories are always local to each individual and contain information
that is special to it.

You will regularly want to look at the contents of entityfiles and to edit
them. Therefore you should make a choice of text editor that you want
to use for this purpose, for example emacs in the case of Linux. Any text
editor will do and at present there is no special link between Leonardo and
a text editor.

2.3 Available Knowledgeblocks

The following knowledgeblocks are included in the Leordo systems romulus
and remus

core-kb
els-kb
exec-kb
exformat-kb
indiv-kb
modstruc-kb
sysman-kb
text-kb

They are located in subdirectories called Core, Els, and so forth. The
knowledgeblock core-kb is always loaded at the start of a session; the others
can be loaded using the loadk verb, for example as

loadk sysman-kb

Each knowledgeblock contains information about which other knowledge-
block it requires, and the operation of loading a knowledgeblock always



7

first loads the other blocks that it requires and that have not already been
loaded. This proceeds recursively. In particular, the operation

loadk indiv-kb

also loads all the other blocks mentioned above except sysman-kb. (At
present indiv-kb is not available in the romulus individual on the Elektrika
server).

2.4 Privatizing Catalogs

In the case of the server version of Leordo, each new individual must pri-
vatize catalogs in order to make it possible to define additional knowledge-
blocks and entityfiles that are specific to the individual in question. Before
privatization, the individual merely loads entityfiles from neighboring indi-
viduals, and they are read-only.

In the case of the PC version this is not an immediate issue since the dis-
tributed individual has already its private copies of all the above mentioned
knowledgeblocks. However, the following information about how the cata-
logs work may be of use even for users of the PC version.

A catalog file is an entityfile that contains information about where other
entityfiles are located. It is somewhat analogous to the collection of paths
in an operating system: given the name of an entityfile it specifies the path
to where that file is located in the directory structure.

Leonardo catalog files operate in several steps. The root of the catalog
structure is an entityfile called self-kb that is local to each individual
and that is rarely changed. It specifies the location of a few files including
kb-catal which in turn specifies the location of the catalog files of the
knowledgeblocks. Each knowledgeblock, for example core-kb is represented
by a catalog file containing the paths to all the entityfiles in that block except
itself, and kb-catal contains the paths to files such as core-kb.

When a new Leonardo individual is created, it has its own self-kb entityfile
which specifies that kb-catal is located in the parent individual. In the
Linux case above, since rom-7 was created from romulus, the self-kb of
rom-7 will initially specify the path for kb-catal as

/home/erisa/leonardo/romulus/Process/main/Defblock/kb-catal

This kb-catal file maps the names of knowledgeblock files to other paths
in the structure of romulus or its parents in ascending order. This means
in turn that it is not possible for rom-7 to modify its entityfiles at all, since
they are all located outside its own structure and nothing can be changed.

Therefore, in order to add contents to rom-7, the first step must be for it to
obtain its own copy of kb-catal. This is done using the following command

imp-kbc

which has the effect of changing self-kb so that it will specify the following
path for kb-catal

/home/mylog/leordo/rom-7/Process/main/Defblock/kb-catal

Technical note: this has shown the expanded paths; actually the system
uses relative paths so that the paths being stored are



8

../../../romulus/Process/main/Defblock/kb-catal

and

../../../rom-7/Process/main/Defblock/kb-catal

respectively. All relative paths are defined on the basis of the directory

... /Process/main/

which is where sessions are invoked.

After this, it is possible to add more knowledgeblocks, since the path infor-
mation for the new block is located in kb-catal which is now local to rom-7.
In order to add more entityfiles to an existing knowledgeblock, for example
sysman-kb one must first import it in the same manner as for kb-catal.
The following command

impkf sysman-kb

obtains a copy of the entire knowledgeblock given as the argument for use by
the individual itself, and updates the access path in kb-catal accordingly.

In the case of server mode use, newly bred (created) individuals on Elektrika
have not had any of this done to them, so before doing anything else with
your individual you should execute the following commands in order

loadk sysman-kb
imp-kbc

The loadk command loads the knowledgeblock given as argument into the
current session, and it must be performed first since sysman-kb contains
the definition of the imp-kbc command.

In the case of Windows mode, these knowledgeblocks have already been
imported in the distribution individual remus so you do not have to worry
about it. However, it is useful to know about this structure when you create
new knowledgeblocks and entityfiles.

3 First Exercises

This section describes the most elementary operations in Leonardo. These
operations are basic for almost everything that follows. In order not to
get stuck because some definition is missing it is best to load several of
the knowledgeblocks at once when the session starts, using the following
sequence on PC systems:

loadk indiv-kb

or the following sequence on the Elektrika server:

loadk els-kb
loadfil els-demo
loadk exformat-kb
loadk exec-kb

Among the others, text-kb and modstruc-kb are loaded automatically
since they are listed as prerequisites of the above, core-kb is loaded al-



9

ready in the startup sequence, and sysman-kb is not needed for any of the
examples.

3.1 Creating a Simple Knowledgeblock

As an example, let us create a simple knowledgeblock with some minimal
contents. We give the following commands in sequence to the lux command
loop.

crek groceries-kb
setk groceries-kb
crefil fruits

The first command has the effect of creating a new knowledgeblock, called
groceries-kb. It is manifested as a directory called Groceries containing
a file called groceries-kb.leo, e.g.

E:\Leordo\remus\Groceries\groceries-kb.leo

or

/home/mylog/leordo/Groceries/groceries-kb.leo

The entityfile groceries-kb is used for keeping information about addi-
tional entityfiles that will be added to the same knowledgeblock.

The setk command above makes groceries-kb the current knowledge-
block, for use by the command crefil.

The crefil command creates an entityfile called fruits in the current
knowledgeblock, e.g.

E:\Leordo\remus\Groceries\fruits.leo

All of this is done through commands within the Leonardo session.

Next, you want to add information to the entityfile for fruits. This can be
done either through commands to the Leonardo session, or by text-editing
the file called fruits.leo. Consider first the text-editing option. Apply
the text editor to the file fruits.leo. Its initial contents is a few lines
specifying the attribute for the entity fruits, followed by a line of the form
oooooooo but longer.

Now add the following information immediately before that final line.

-------------------------
-- fruit

[: type Type]
[: attributes <has-colors plant-type>]

-------------------------------
-- mandarin

[: type fruit]
[: has-colors {orange}]
[: plant-type tree]

----------------------



10

-- grape

[: type fruit]
[: has-colors {green blue yellow}]
[: plant-type bush]

This of course defines two entities, called mandarin and grape both of which
have the type fruit, preceded by a specification of that type. The exact
number of dashes in the dashed lines separating the entities is not important.

After having saved the text-edited file, go back to the Leonardo session and
do

loadfil fruits

This loads the contents of the entityfile into the session, where you can
perform operations that use this information, or update it. After updates,
the operation

writefil fruits

re-writes the file using the current attribute values of the entities in the file.

The load and write cycle is a bit sensitive and it is strongly recommended to
have backup copies of files. For example, if you should have spelled the type
alternatingly as fruit and as fruits in the example, so that the specified
type of some entity is undefined in the session, then information will be lost
in the writefil operation since there are no known attributes for what has
been specified as the type of an entity. Therefore, take backup copies of files
when you text-edit, and double-check that the files generated by writefil
have the full and intended contents.

3.2 Operations on Entities

This section describes a few of the operations that can be done on entities
and entityfiles during a session. We begin with an example. Suppose the
entityfile fruits has been initialized in the way shown above, and the fol-
lowing operations are performed in the session. Each operation is on one
line, and followed by the response from the Leonardo session.

039) .(get mandarin has-colors)
{orange}

040) put mandarin plant-type small-tree

041) addmember (get mandarin has-colors) yellow

042) .(get mandarin has-colors)
{orange yellow}

043) writefil fruits
nil

044) .(get fruits contents)
<fruits fruit mandarin grape>



11

Each command line consists of a verb followed by an appropriate sequence of
arguments and/or parameters. The examples above only involve arguments
and no parameters; parameters are different in that they consist of a tag
and a corresponding value. The full stop (.) can be used as a verb whose
only effect is to show the value of its single argument.

In general, arguments may be symbols, strings, numbers, sets, or sequences,
as shown in these examples, and in all cases they just represent themselves.
In addition, arguments can be given as forms, for example (get mandarin
has-colors); the value of (get e a) is obtained as the a attribute of the
entity e. Forms can occur inside forms.

The verb put takes three arguments and assigns the value of its third argu-
ment to the entity-attribute combination of its first two arguments.

The verb addmember assumes that the value of its first argument is a set or
a sequence, and adds the value of its second argument in the obvious way.

Interaction number 44 shows how system information can be accessed in
the same way. The name of the entityfile containing this information is
fruits, and this entity has a contents attribute with the sequence of the
entities belonging to the entityfile, beginning with itself. This list is used
for deciding what contents are to be included in an entityfile when it is
generated. For example, if one does the following sequence of commands

put blueberry type fruit
put blueberry has-colors {blue}
put blueberry plant-type bush
addmember (get fruits contents) blueberry
writefil fruits

then looking at the file fruits.leo you will notice that towards the end it
will contain

---------------------------------------------------------
-- blueberry

[: type fruit]
[: has-colors {blue}]
[: plant-type bush]

This is an example of how the contents of entityfiles can be changed not
only by direct text-editing, but also by commands that are given in the
Leonardo session.

3.3 Defining Scripts

Always using the elementary verbs in Leonardo would not be very efficient.
The present section describes how to define higher-level verbs from the given,
elementary ones.

Suppose we want to define a command that will perform all the assignments
for a kind of fruit, so that instead of the first four commands in the blueberry
example we would just write

newfruit :name blueberry :color blue :plant bush



12

This definition must then be written as a separate entity in an entityfile,
for example as follows:

-------------------------
-- newfruit

[: type leoverb]

@Performdef
[soact [put .name type fruit]

[put .name has-colors {.color}]
[put .name plant-type .plant]
[addmember (get fruits contents) .name]]

The example shows how the successive commands are grouped together
using the operator soact which stands for “sequence of actions.” It also
shows how the parameters of the invoking action are referred to by preceding
their tag with a stop character instead of the colon.

In fact, some versions of Leonardo require you to write a subexpression such
as (param name) instead of .name. The former notation is always accepted,
and the latter one has the status of a convenient abbreviation.

Scripts can invoke other scripts in the obvious ways and using “call by
value,” so that the parameters in an action record are first evaluated and
bound to their respective tags, and then the script for the verb in the action
record is executed in the context of those bindings.

In order to make a script such as this one available to a Leonardo session,
it has to be written into an entityfile like in the example above and then
the entityfile must be loaded into the session using e.g. the loadfil com-
mand. One additional thing is needed, however: the leading entity for an
entityfile containing command definitions (the entity fruits, for example)
must contain the following attribute assignment:

[: in-categories {verbfile}]

This attribute is used by a handle on the file loading operation which has
the effect that the Performdef property which is represented as a multiline
string, is converted to a property called performdef (with lowercase name)
whose value is the corresponding datastructure representation of the defi-
nition. Failure to use this assignment has the effect that the command is
considered as undefined.

4 The Outcomes of Actions

One of the nice things about Leonardo is that the same action concept can be
used in several ways: in the command-line dialog as has been shown above,
but also in the definition of dynamic web pages and in the definition of
message-passing between individuals. For example, the newfruit command
in the example can also be invoked from a browser using the following URL:

http://localhost/newfruit?name=blueberry&color=blue&plant=bush

where the use of localhost is of course just an example. Moreover it is
possible for one Leonardo individual to send a command for execution in



13

another individual using an action such as

[send-to-agent fruitserver [newfruit :name blueberry
:color blue :plant bush]]

The present section and the next one specify what is needed in order to get
these options to work as intended.

4.1 The Outcome Record

In order to make this multiple use of commands possible, it is necessary to
separate the definition of how an action is performed from the definition
of how its result is presented. The execution of the performance defini-
tion, such as the Performdef shown above, always produces an outcome
record which in turn is handed to the appropriate forwarding or presenta-
tion method for the situation at hand. There are in principle three presen-
tation methods: one if the command is used in command-line mode, one if
the command is issued from a web browser, and one if the command has
been sent as a message from individual to another and a return message is
required.

The following are some major types of outcome records:

[ok:]
[fail: error-id "Explanation"]
[result: :type rt ... ]

The ok: record simply signifies that the action was executed successfully.
It is obtained as the outcome of an action that has been defined using a
Performdef property unless an error occurs during execution or the out-
come is reset to a result record. If a subaction on any level fails, i.e. its
outcome is a fail: record, then the superior action returns the same fail:
record unless the error is caught and the outcome is reset. The following
is an example of a Performdef definition where the outcome is specified
explicitly:

@Performdef
[soact

[put .p has-color .c]
[set-outcome (if [equal .c black]

[fail: setcolor "Cannot assign black color"]
[result: :value <.p .c>] )]]

This definition takes two arguments, .p and .c, and assigns the latter as the
has-color attribute of the former. It returns a fail: outcome if the color
is black and a result: outcome otherwise, using the verb set-outcome.

4.2 Presentation of the Outcome Record

The command-line executive receives an action record, executes it and ob-
tains the resulting outcome record, and presents the results in a standardized
way. In particular, if an ok: record is obtained then nothing is shown; the
executive proceeds directly to the prompt for the next command.



14

If a command is sent from one individual to another, then the return message
contains the outcome record in standard Leonardo notation. The presenta-
tion of, or further acting on the result is then up to the client. By exception,
special rules apply when the result contains large, non-Leonardo data, for
example a full text file.

Answer records headed by ok: and fail: have a fixed structure. For answer
records headed by result: it is recommended but not always necessary to
include a :type parameter, for example as in

[result: :type symval :value Italy]

The value of the :type parameter is used for specifying what other para-
meters may occur and what datatype they have - string, symbol, and so
forth. This is presently only used if the outcome record is eventually given
to the command-line executive for presentation, since then only those para-
meters that have been declared in the type will be displayed. Other uses of
this type declaration, for example for type checking, are obviously possible
but have not been implemented.

When a Leonardo server individual receives a request from a web browser
then a response can only be obtained if the verb leading the request has both
a performance definition and a presentation definition. The performance
definition can be either a Performdef script like the ones shown above, or
a definition in the host programming language. The presentation definition
specifies what HTML contents are to be sent back for a given outcome
record from the performance definition.

4.3 Definition of Parameter Types

One more thing is needed in order to get a verb definition to work in server
mode, namely, a definition of parameter types. The following is how it may
be written for the newfruit example:

-------------------------
-- newfruit

[: type leoverb]
[: typemap {[: name Symbol][: color Symbol][: plant Symbol]}]

followed by the Performdef definition like above. The reason why this is
necessary is because the Leonardo system distinguishes between symbols,
strings and numbers, but the distinction between these is lost when the
parameters are transmitted in a dynamic URL.

4.4 Catching Outcome Records

In some situations one wishes that an action shall catch the outcome record
of a subordinate action and proceed conditionally using its information.
This requires two additional constructs, called after and on. The following
is a simple example of the definition of a client-side script that sends a
message to another individual, bacchus, and displays the result.

@Performdef
[after [send-to-agent bacchus [wine-advice :type suggestions



15

:dish roast-beef :approx-price EUR-9]]
[on result: [set-outcome [result: :type symval :value .answer]]]
[on fail: [send-to-agent lucullus ... ]] ]

Here, suggestions is the message type specifying the datatype for the two
parameters called :dish and :approx-price . It is assumed that if the
remote operation is successful it will return an outcome record such as

[result: :answer "Rioja"]

containing a parameter that is then used for producing the outcome of the
entire Performdef as

[result: :type symval :value "Rioja"]

If the bacchus server reported a failure, or if the communication with it
failed, then a fail: outcome record is obtained, in which case a message is
sent to the lucullus server instead, in the example.

In general, an expression headed by the operator after shall have a first
“argument” that is an action, and one or more additional arguments that
specify what to do for the alternative outcomes, usually through records of
the form

[on record-former action]

that are used in the obvious way. Notice that the parameters of the response
message are available in the action part of the on -expression.

5 Defining a Server Individual

This section defines how to activate a Leonardo session so that it becomes
a server individual, and how to define its responses to queries. It was con-
venient to implement the server facility since all the basic functionality is
already present in the underlying ACL system.

The server facility is not available for users in the romulus individual since
it would be hard to administrate the access to ports. Exercises with this
facility can therefore only be done in remus individuals on PC systems at
present.

In order to start it in a remus individual one simply executes the following
actions

loadk indiv-kb
awir

The command awir stands for ”activate webservice in remus individual”;
it starts the web server on port 80. More general commands are defined in
the full system documentation. See also the separate section on the local
service webpage later on in this report.

5.1 Presentation Definition

Now we wish to be able to open the web browser on the computer where
the Leonardo session is running and to enter the following URL:



16

http://localhost/newfruit?name=blueberry&color=blue&plant=bush

This expression is quite analogous to the command-line in the above exam-
ple. The desired effect is achieved by the Performdef definition and the
parameter declarations that were shown above, except that in order for this
to work correctly there also has to be a definition of the expression that
is to be sent back to the web browser in response to the input just shown.
This is done using an additional definition, and the full definition for the
entity newfruit may therefore look as follows:

-------------------------
-- newfruit

[: type leoverb]
[: typemap {[: name Symbol][: color Symbol][: plant Symbol]}]

@Performdef
[soact [put .name type fruit]

[put .name has-colors {.color}]
[put .name plant-typ .plant]
[addmember (get fruits contents) .name]
[writefil fruits]
[set-outcome [result: :type symval :value .name]] ]

@Displaydef
[body [heading "Thank you" :level 3]

"Your contribution of valuable information about" .name
"is greatly appreciated by our website." ]

The Displaydef definition is written in the Document Scripting Language
(DSL) which is a variant of the Generic Scripting Language (GSL) that is
used for the Performdef definitions.

Notice that the Performdef definition has been amended with two more sub-
expressions. First, [writefil fruits] whereby the newly entered fruit
information is actually saved in the textual manifestation of the entityfile.
In this context, notice how convenient it is to be able to use the same
command library on the command line and in the definitions of scripts, as
well as for the various modes of server access.

Secondly, the set-outcome expression defines an outcome from the perfor-
mance definition that is not merely an ok record but a record containing
the name parameter that can then be picked up and used in the Displaydef
presentation script.

5.2 Input Forms

The previous subsection showed how the input to a dynamic webpage was
given directly as a URL containing parameters. In practice one wishes
of course to provide such parameters using a form. The following is an
extension of the example whereby the user may visit

http://localhost/newfruit-specify

and obtain a form that can be completed and sent to the dynamic webpage
that was shown above.



17

-------------------------
-- newfruit

[: type leoverb]
[: typemap {[: name Symbol][: color Symbol][: plant Symbol]}]

@Specifydef
[body [heading "Entry of Fruit Information" :level 3]

[request :to newfruit :method post ^
[table :frame box :rules all :border 1 ^

[row [box "Name:"]
[box :charsize 50 ^

[input text :tag name] ]]
[row [box "Color:"]

[box :charsize 50 ^
[input text :tag color] ]]

[row [box "Plant-type:"]
[box :charsize 50 ^

[input text :tag plant] ]] ]
[sendbutton "Enter"]

]]

@Performdef
[soact [put .name type fruit]

[put .name has-colors {.color}]
[put .name plant-typ .plant]
[addmember (get fruits contents) .name]
[writefil fruits]
[set-outcome [result: :type symval :value .name]] ]

@Displaydef
[body [heading "Thank you" :level 3]

"Your contribution of valuable information about" .name
"is greatly appreciated by our website." ]

The Specifydef definition uses the Document Scripting Language (DSL)
like the Displaydef definition. Notice that it is vaguely similar to HTML,
although some of the non-mnemonic tags in HTML have been replaced by
more readable ones, such as row and box for the substructures of a table.
The DSL notation is however much more powerful due to the possibility of
introducing control structures such as loops and conditionals, and through
the use of DSL scripts which serve as macros, and finally through the use
of composite expressions such as sequences and sets.

The example just shown is an instance of a frequently arising situation where
there is one webpage containing a form for the user to complete, a set of
operations that are to be done for the given input, and a new webpage that
is to be produced as a result of the input and the operations. All three steps
can be organized in one and the same entity, but the first one of the two
webpage descriptions is given a separate name. In the example, where the
entity in question is newfruit, the first webpage definition is attached to the
identifier newfruit-specify and the second one as well as the Performdef
is attached to the identifier newfruit. This is why the page containing the
form is accessed as http://localhost/newfruit-specify, and it is also
why the definition of the form specifies newfruit for the to parameter of



18

its request subexpression.

The system is however by no means restricted to such threetuples of defini-
tions. A request expression may refer to arbitrary other webpage entities
in its to parameter, which gives full flexibility.

5.3 State Transformations

Although the Performdef script of a dynamic webpage will often make
changes in the current information state of the server, for example using the
put command, there are also frequent situations where this script should
calculate a value that is then sent to the presentation script. The value may
be obtained from input data elements, or from the contents of the current
information state of the server, or from a combination of those.

Suppose for example that the current information state of the individual
already contains information about the major exporting countries of various
fruits, and that one wishes to present this information to the user. One way
of doing this would be as follows, where the earlier definition is amended
and the Specifydef script is omitted:

-------------------------
-- newfruit

[: type leoverb]
[: typemap {[: name Symbol][color Symbol][plant Symbol]}]

@Performdef
[soact [put .name type fruit]

[put .name has-colors {.color}]
[put .name plant-typ .plant]
[addmember (get fruits contents) .name]
[writefil fruits]
[set-outcome [result: :type fruit-report :value .name

:in-countries (get .name exported-from)] ]]

@Displaydef
[body [heading "Thank you" :level 3]

"Your contribution of valuable information about" .name
"is greatly appreciated by our website."
"The major exporting countries of this fruit are"
[enumerate-list :list .in-countries] ]

Here the outcome record from the performance definition is used not merely
for forwarding an input value to the presentation script, but also for adding
further information from the database. It would of course have been possible
to use the expression (get .name exported-from) directly in the presen-
tation script, but keeping all data access in the performance script may be
useful, particularly if the same verb is used in several access modes and not
merely from a browser.

In the particular case of message-passing between individuals the presen-
tation script is irrelevant since the outcome record is returned as is from
the server to the client. In such cases one may think of the action verb as
a state transformation, with the parameters of the primary message as the



19

incoming state and the parameters of the outcome record as the outgoing
state.

The examples assumes that the value of e.g. (get blueberry exported-from)
is a set of entities and that the verb enumerate-list takes a set for its
list parameter and produces that list with appropriate formatting and
interpunction.

The example also makes use of a specialized type for the outcome record,
namely, fruit-report. In general, every outcome record type must be
declared like in the following example

-------------------------
-- fruit-report

[: type tftype]
[: typemap {[: value Symbol][: in-countries Set]}]

The available type designators include String, Symbol, Integer, Set and
Sequence. This is an intermediary solution; it is intended later on to use
the type-specification machinery that already exists for other purposes in
the full Leonardo system but not so far in the simplified Leordo system.

In more complicated cases one may wish to assign intermediate data values
to a local “variable” for use later on in the performance script. This can be
done using the operator set which effectively considers the set of incoming
parameter assignments in the performance definition as a local state that it
is able to modify. The set operator takes two arguments where the first one
is the state component, or parameter, that is to be assigned or reassigned,
and the second argument is its (new) value. It can therefore be used both
for changing the value of an already existing parameter, or state component,
and for introducing an additional one.

The first argument of set is specified without an introductory colon or
point. For example, the subaction

[set in-countries (get .name exported-from)]

in the above example would introduce an additional parameter :in-countries
and assign a value to it.

Notice, however, that all parameters and assignments are local to the per-
formance definition, and if some of them are to be made available to the
presentation definition then this has to be done using the outcome record.

6 Web-based Support for Remus Individuals

6.1 The Local Webpage for User Service

One of the uses of the webserver support in Leordo is for a simple webpage
that runs in localhost mode and provides the session user with miscella-
neous services. The development of this facility has barely begun, but we
mention it here as an illustration of what is possible. It is intended to pro-
vide both information about the current system, access to applications that
have been developed in the individual at hand, and also personal services
for the user.



20

The user-service webpage is activated by the awir command that was de-
fined above, and it operates on port 38081. In a session for a Remus system
(on your local PC) where this command has been issued, just open the web
browser and visit

http://localhost:38081/

This will open a page that is maintained by the session at hand, and that
can provide access to various services that are defined in it.

Notice however that the awir command activates both port 80 and port
38081. Port 80 is intended for services that the user wishes to develop and
use externally; port 38081 is for the local service webpage. If only the latter
is desired then the command alwir should be used instead.

If you should wish to deactivate the web server, issue the command

serstop

The command awir or alwir will reactivate the server.

6.2 Registration of Remus Clones

Each Leonardo individual has both a name and an identifier. The identifiers
are supposed to be unique for each individual; the names are chosen by
the user at the time when the individual is bred, and do not have to be
unique. For the details of this scheme, please refer to the general Leonardo
documentation.

The Romulus and Remus individuals have these respective names in the
Leonardo sense, and different identifiers as well. Distributed copies of the
Remus individual have the same name and also the same identifier, because
of the way they are produced. If and when one starts using such cloned
copies for message-passing or other interaction between individuals it is
desirable to change the identifier so that the clone in question obtains its
own, unique identifier. This is done using a web-based registration service.
Please refer to the general Leordo information page [4] for details.

6.3 Obtaining Additional Knowledgeblocks for Remus

The Leordo information page also contains additional knowledgeblocks for
download. Each new knowledgeblock is obtained as a separate directory
which is to be placed on the top level of the individual, beside the initially
included knowledgeblock directories. In addition, to incorporate the down-
loaded knowledgeblock my-new-kb in an individual, one has to execute the
command

defk my-new-kb

in a session with it. This command has the effect of amending the indi-
vidual’s register of available knowledgeblocks with the additional entity. It
differs from the crek command which was defined above since crek also
initializes the contents of the knowledgeblock.

4http://www.ida.liu.se/ext/leordo/



21

7 Message-Passing Details

This section explains how messagepassing is done, using the http protocol
and the webserver that was described in the previous section.

7.1 Message Formats

The message traffic is done in server/client mode, so there is always a pri-
mary message from individual A to individual B, and a subsequent response
message from B to A unless, of course, some problem prevents this from hap-
pening. One and the same individual can serve alternatingly as server and
as client. Primary messages are expressed as http queries in the same way
as was shown in an earlier section, but with an additional parameter called
i2i (for “individual to individual”) in order to indicate that an outcome
record is requested as a response. Outcome messages are expressed as short
text messages like in the following example:

<html><body><pre>
!-----------------------------------
[result:

:name pineapple
:in-countries {Thailand Philippines Indonesia}]

!-----------------------------------
</pre></body></html>

This is for a hypothetical scenario where the primary message requested in-
formation about what are the world’s largest exporters of pineapple. Both
the primary message and the response message is therefore essentially a
record (an action record and an outcome record, respectively), although
with different concrete representations. The use of an HTTP wrapping
around response messages has been chosen in order to facilitate debugging.
The implementation has of course been done in such a way that the repre-
sentation of the messages can easily be changed.

7.2 Use of the Host Programming Language

Besides defining performance and presentation operations through scripts,
there are also handles in the Leonardo system for defining these operations
using program stubs in the host programming language, which is Com-
monLisp at present. The separate system documentation describes how
Leonardo verbs can be defined on the Lisp level.

Actual applications to date have relied to a large extent on Lisp-level defi-
nitions for performance definitions. Our strategy in this respect has been to
first implement applications in the host language in order to gain experience
with what facilities may be needed, and then to migrate gradually to using
the higher-level script languages.

For presentation definitions, on the other hand, the Document Scripting
Language has been used consistently. Notice, by the way, that we also use
a variant of DSL as the source notation in the preparation of reports and
articles, such as the present one.



22

8 Conclusions

This report has described the first steps towards using Leordo which is a
small and simple Leonardo system. The Leordo website [5] contains links
to reports that describe additional uses of Leordo.

5http://www.ida.liu.se/ext/leordo/


