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1 Introduction and Overview

The capability of a software system to describe its own structure and its own
abilities is a necessity for the implementation of general-purpose intelligence
in that system. However, on a more practical level it is also an important
resource that makes it possible to implement a number of useful services
for the user of the system, including configuration for specific user needs,
version management, the installation of updates, and debugging aid.

We believe that a systematic and well thought-out design for self-description
can serve both of these purposes: it can help to increase the quality of the
system’s services, and it can also constitute a platform for the eventual
implementation of intelligent autonomy in the system.

The present report describes the results of an explorative effort towards a
system that is self-describing on the practical level but in a comprehensive
and systematic way, with a clean design that is as expressive as possible. We
shall describe the self-description and configuration facilities in the Leonardo
system [!] which is an executive environment that contains a number of
software services, and where additional such services can easily be added.
The purpose of the Leonardo system is:

e To provide a unified and convenient framework for data that is shared
between services, or that provide configuration information for them.

e To provide a high-level scripting mechanism that makes it possible to
automate the routine use of participating services.

e To make it possible to include Artificial Intelligence techniques for
knowledge representation and for the dynamic execution of scripts,
for example through automatic and case-based planning.

e To provide an ”intelligent agent” framework where several Leonardo
environments can communicate by message-passing in order to coop-
erate for the execution of given tasks.

The Leonardo system is also an experiment with a novel approach to the
architecture of software systems. This aspect is described in some detail in
another report (reference) and will not be addressed here.

Each operational instance of the Leonardo system is called an individual. It
has two manifestations:

o A persistent manifestation as a directory structure (a directory and
its subdirectories on all levels) containing files that represent data
and ”programs” that are used by the individual.

e A dynamic manifestation which is also called a session, i.e., a com-
putational process that uses the information in the persistent mani-
festation and that is also able to modify it.

Normally there should not be more than one session of the same individ-
ual, that is, at most one session that is started from and uses a particular
persistent manifestation at any one time. (Exceptions are made in low-level
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debugging situations). An individual that does not have a session at a par-
ticular time is said to be asleep then. When we speak about message-passing
between individuals in this report, we mean message-passing between ses-
sions of those individuals. Message-passing to a sleeping individual may be
implemented using a mailbox facility, but will not be addressed here.

One of the services that are included in a Leonardo individual is an http
server. Consegently, a Leonardo individual can be accessed in the following
ways:

e Using a command-line interface.
e Using a web browser.

e By message-sending between individuals. Such message-passing has
been implemented using the http protocol.

For example, it is possible to run several Leonardo individuals on the same
computer, in which case they should use different ports for their http servers.
Each of the individuals can be controlled directly using its command-line
window. For situations where a graphical interface is preferred, it is rec-
ommended to implement it using the built-in web server and to access it
using a browser running in localhost mode. Message-sending between in-
dividuals on the same computer is straightforward and can be interleaved
arbitrarily with command-line and web browser interactions. Remotely lo-
cated agents can also be accessed in all three modes: graphical mode and
message-passing mode using their web servers, and command-line mode us-
ing an ssh connection.

Regardless of the mode of access, the user can make use of the same set of
commands and scripts (commands defined in terms of other, more elemen-
tary commands). There is a scripting language called the Generic Scripting
Language (GSL) that is used for this purpose. GSL commands can be
typed into the command-line interface; the dynamic response to web-server
requests from a browser can be defined using GSL, and request messages
that are sent from one individual to another are also GSL commands.

Furthermore, the Generic Scripting Language is used as a basis on top of
which a number of function-specific scripting languages are defined. For
example, the Document Scripting Language (DSL) is based on GSL and is
used for defining the textual contents of static and dynamic web pages, and
also as a source language for research articles and reports such as this one.
DSL is used for generating HTML, LaTeX, or other existing languages as
required by the application.

As another example, the Operational Scripting Language (OSL) is intended
to capture [?] a good part of the functionality of the shell script language of
an operating system. The use of a single framework for scripting languages
for several domains has advantages in terms of economy of implementation,
ease of invoking scripts in one language from another one, and access to a
common data and knowledge base. In a longer perspective it also suggests
the possibility of using high-level techniques such as automatic composition
of scripts to achieve given tasks (often called action planning) across the
reportoire of different, function-specific extensions of the Generic Scripting
Language.

2The design and implementation of this language is work in progress.



The scripting languages are not intended to replace the use of a conventional
programming language, however, and they are not designed to have all the
functionalities of a programming language. Instead, verbs in the scripting
languages (where a command consists of a verb and its arguments and
parameters) can be defined in several different ways:

e As a piece of program in the host programming language in which the
Leonardo system has been implemented

e As a script in the scripting language at hand, in which case it is
defined in terms of other verbs in that scripting language or another
one

e Using a dynamic scripting facility that composes a script for the task
at hand and proceeds to execute it immediately.

Each scripting language can therefore be restricted to those facilities that
are best handled in the context of the other verbs and the data-structure
facilities of that scripting language.

Several services have been implemented based on the Leonardo platform,
including the following:

e The MADMAN system for preparation and management of articles,
reports, and static webpages using the command-line interface and
for use by a single user

e The KEPS system that provides a subset of those services but for a
research group or other similar group of users, and using a webpage
interface

e The (unnamed) system for managing the Common Knowledge Li-
brary (CKL), a web-based library of knowledgebase modules

e The CAPPA demonstration environment for the workflow between
research author, institutional repository operator, journal publisher,
and others

e The Parallell Publication Advisor, a website that provides advise
about how the detailed requirements of a journal publisher concern-
ing self-archiving by the authors are to be realized in practice, down
to the level of generating a frontpage for the article that conforms to
the publisher’s requirements

2 Representation Framework

The representation framework contains the framework for representing in-
formation in a spectrum from simple data to information with more complex
structure, as well as the framework for representing scripts (program-like
structures typically consisting of a sequence of commands) that pertain to
different system functions or application domains. In this section we shall
briefly explain those aspects of the representation framework that are used
for expressing self-describing information and self-modification operations.
A more detailed description of the representation framework can be found



in the lecture notes and reports that are available on the website for the
Knowledge Representation Framework, KRF [3].

2.1 Knowledge Representation Expressions

A system with the characteristics of Leonardo needs a textual representation
of structured data (also called a serialization of its data structures), besides
the scripting language(s). In Leonardo the data representation is considered
as the primary one, and the scripting languages are expressed using the
syntactic constructs of the data language, with very minor extensions. In
this way it is possible to use the same parser for programs and data, and
scripts obtain immediately an internal representation as data structures that
can easily be interpreted and manipulated.

Leonardo differs in one important respect from other languages that have
already used this approach, such as Lisp, Scheme, and Prolog. Those lan-
guages use one single kind of bracket symbols, such as the round parentheses
in Lisp. Leonardo uses several kinds of brackets with specific meanings. This
gives us a much more readable notation for both data and scripts. From an
abstract point of view this difference is trivial, since one can always encode
all kinds of constructs using just one kind of brackets, but from the point
of view of engineering a good notation, it makes a considerable difference.

Expressions in the data language for Leonardo are called Knowledge Rep-
resentation Expressions (KRE) which is essentially an extended set theory
notation. Expressions in KRE are constructed from symbols, strings and
numbers which are composed recursively as in the following examples

<a b c>

{a b c d}

(op: a b ¢)

(fn a b c)

[op a b :tagl vl :tag2 v2]
[: av]

These constructs are referred to as a sequence, a set, a composite entity, a
form, a record, and a maplet, respectively. A mapping is represented as a set
of maplets. The difference between composite entities and forms is that a
form is evaluated in the usual, recursive manner by evaluating its arguments
and then applying a function that is associated with the function symbol
leading the form. A composite entity, on the other hand, is in itself an
entity in the information structure at hand, and as such it can be assigned
attributes consisting of a tag and a value. Composite entities are therefore
used like terms in Prolog, for example; their operators can be thought of as
Herbrand functions.

2.2 Information States, Entity Descriptions and
Entityfiles

The operational datastructure in a Leonardo session consists of a set of en-
tities and, for each entity, an assignment of values for each of a number of
attributes and a number of properties. This entire structure at a given point
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in time is called an information state. Attribute values are Knowledge Rep-
resentation Expressions; property values are strings that typically consist
of several lines. A property may be used e.g. for representing a program
module in the host programming language, or for the documentation of that
module.

An aggregate consisting of an entity, its attributes and properties and their
corresponding values is called an entity description. An information state
is therefore a set of entity descriptions. Within the session the information
state is considered as one single structure without any particular partition-
ing, although there are some attributes that serve the role of catalogues and
whose value shall be a KRE set of entities that have been grouped together.
On the other hand, the persistent representation as text files does use a
partitioning of the entity descriptions into entity files each consisting of a
limited number of entity descriptions. The following is a simple example of
an entity description in its textual representation:

[: type color]
[: examples {sun sunflower butter (juice-of: orange) gold}]
[: translations {[: german gelb] [: french jaune]}]

@Comment
Pure gold is colorless but when gold is used in practice it
is usually in a alloy which gives it a warm yellow color.

This is an entity-description for the entity yellow which is assigned values
for the two attributes examples and translations, besides the type at-
tribute which must always be present. The same entity is also assigned a
value for the property Comment which is a string consisting of two lines as
shown in the example.

An entityfile can be understood abstractly as a sequence of entity descrip-
tions, but its persistent manifestation in the computer is a textfile consisting
of a number of entity descriptions of the kind just shown, separated by a
line of dashes. Notice that this line of dashes is syntactically significant as
a separator between entity descriptions; it is not just a kind of comment.

It is true that one could have used a more systematic notation where the
entire entityfile is expressed as a KRE mapping from entities to mappings
expressing their value assignments for attributes and properties, along the
lines of the following example:

{ ...
[: yellow
{[: type colorl]
[: examples {sun sunflower butter (juice-of orange) gold}]
[: translations {[: german gelb] [: french jaune]}]
[: Comment
"Pure gold is colorless but when gold is used in practice it
is usually in a alloy which gives it a warm yellow color."]

3]



.}

However, this notation would be much less readable. The use of the line of
dashes facilitates greatly for the user to orient himself or herself in the text
of an entityfile, and it is a minor compromise with the desire for a simple
and uniform notation.

The information state in a Leonardo session does not in general contain all
the entity descriptions in all the entityfiles of that individual. Usually one
only loads those entityfiles into the session that are needed for the tasks at
hand.

2.3 The Structure of the Scripting Languages

For the purpose of execution or translation, the elements of GSL scripts can
be entities, numbers, or strings. By a particular rule, symbols consisting of
a single letter or a single letter followed by one or more digits are considered
as variables for the purpose of quantified expressions, and can not be used
as entities.

The KRE constructs of sequences, sets and maplets are only used for rep-
resenting sequences, sets and mappings in the application at hand; they
are not used for encoding language constructs. Composite entities are also
of course used for representational purposes. Therefore, composite objects
in the scripting language are only expressed using forms and records. The
following major kinds of constructs are used in GSL.

e Terms which are KRE forms,

e (Queries which are KRE forms,

e Propositions which are KRE records,

e Logic formulas which are KRE forms,
e Action records which are KRE records,

e Scripts which are also KRE records.

Atomic or composite entities, variables, numbers and strings may occur as
terms, and queries subsumes terms. The following are three examples of
logic formulas in GSL in order to illustrate these conventions.

(implies (and [on x yl[on y z]) [on x z])
(forall x physical-object (not [on x x]))
(forall x animal [part-of (head-of x) x])

Thus, propositions are formed as KRE records with the predicate as the
record composer (i.e., operator) and with terms as arguments. A logic
formula is either a proposition or a term that is formed from logic formulas
by recursive use of the standard propositional connectives and quantifiers
with the notation shown in the examples.

Terms are formed from entities, variables, numbers or strings and are com-
posed recursively using term formants. All terms are queries, but queries
can be constructed in additional ways by having e.g. a proposition as an
argument, as in



(those x [larger (population-of x) 5.000.000]
(members-of european-union))

If a composite entity, sequence, set or maplet contains a variable then this
variable is supposed to be replaced by its value in some types of computa-
tion, for example in the evaluation of the selection condition in this exam-
ple. Here, (members-of european-union) is supposed to evaluate to a set
whose members are (entities representing) the member countries of the EU,
and the those expression obtains a subset of that set using the proposition
argument in the obvious way.

2.4 Action Records and Scripts

Action records are used to specify actions that are to be performed when a
script or its translation is executed, or an action that has been performed.
Thus a command is simply an action record that is used by a user (or
by another Leonardo individual) for giving an instruction to a Leonardo
individual. A log of what commands have been executed consists of action
records that are not (any longer) commands.

The qualifiers of the action may be represented as arguments or as para-
meters according to the preference of the language designer. (In the record

[op a b :tagl vl :tag2 v2]

we say that a and b are arguments, and vl and v2 are parameters). As
a rule of thumb, arguments should be used for elementary actions and for
those objects that are directly affected by the operation, and parameters
should be used for objects that characterize how a non-elementary action is
performed. The composer of an action record is called an action verb.

Scripts are a particular kind of action records where some of the arguments
are action records or subordinate scripts, even recursively. Parameters are
used for expressing how the script is performed. The following is an example
of a script for use by a household robot:

[soact [insert key-4 lock-12]
[turn-clockwise key-4]
[remove key-4]]

In this example, insert, turn-clockwise and remove are assumed to be
elementary action verbs, and soact is a script composer that simply speci-
fies the sequential execution of the actions (or scripts) given as arguments.
Action verbs such as these are of course specific to an application, but the
script composer soact is independent of application. The Generic Scripting
Language specifies a few such script composers, including soact, that can
be used in all scripting languages in the GSL family.

Parameters may be used for specifying how an action or script is to be per-
formed, but in the case of scripts they may also be used for other information
pertaining to the script, as in the following example.

[to-achieve [insert key-4 lock-12]
[turn-clockwise key-4]
[remove key-4]
:goal (not [locked lock-12]) 1]



where the parameter tagged as goal is used to specify the purpose of the
script. In a planning situation this script may initially be specified using
only the goal parameter and without arguments, and then the arguments
are added by the planning process.

3 Self-Description Facilities

The self-description facilities are those that are present in a Leonardo in-
dividual during sessions (and most of them are present in the persistent
manifestation as well), and that serve to characterize the individual and its
environment, and to provide access to various aspects of the environment.
All self-description facilities are expressed using the Leonardo representation
framework and as entities, values of attributes, verbs and scripts.

3.1 Self-description of the Individual and the Startup

Each Leonardo individual has a unique identifier. The assignment and
maintenance of these identifiers is based on the assumption that there is
only one way of creating a new individual, namely by the operation of
reproduction whereby one individual creates an offspring. Each individual
has only one parent, not e.g. two. The successive offspring of an individual
are numbered from 1 and up, and the identifier for an individual is obtained
by appending its offspring number at the end of the identifier of its parent.
For example, the second offspring of 1ar-001-023 will have the identifier
1ar-001-023-002. The acronym lar stands for ” Leonardo Ancestry Root”.

Besides its identifier, each individual also has a name which can be assigned
more freely. There is no formal requirement that all individuals shall have
different names, but it is inconvenient to have several individuals with the
same name in a given, local environment [*]. The name of an individual
is assigned when it is created, and changing it later on requires a fairly
complicated modification of its contents.

The following is an example of an entity-description for the identifier of an
individual:

-- lar-001-023-002

type leo-individual]

leoname leordo-2]

self-location "../../../leordo-2/"]
leoprovider "../../../leordo-2/"]
leoguru "../../../leordo/"]
uses-hostfiles <software madman-roots>]
latest-offspring-nr 0]

parent lar-001-023]

parent-archivenr 6]

L T s Y s Y s N e IO s Y s B e B |

4Except for the use of doppelginger which will be described in the section on
self-modification.



The use of the type, leoname, parent and latest-offspring-nr attributes
is evident. Each individual keeps track of the number of the latest offspring
it has produced. The use of the other attributes will be described further
on in this report.

Each individual has several startup entities which represent different ways
of starting a session. There are different startup entities for running the
individual in a Windows context or a Linux context, and for running in
different languages and language variants (for example, different implemen-
tations of Lisp). Each startup entity also specifies which entityfiles are to be
loaded during startup of a session. The following is an example of a startup
entity:

-- minileo

type startup-file]

contents <minileo>]

inprocess main]

batname "minileo"]

for-os-family windows]

lispvariant allegro]

kb-included <core-kb>]

: bootfile "../../Core/cl/bootfuns.leos"]
: execdef lite-exec]

L T s T s Y s N s T s Y s B s B |

The purpose of the attributes for-os-family and lispvariant is evident.
The batname attribute specifies, in the example, that the system shall gen-
erate a file called minileo.bat that can be invoked in order to start a
session with the startup specified here. All the startup files (e.g., .bat files)
of an individual are collected in the same directory within the individual.
The bootfile attribute specifies the path to an entityfile that contains not
merely data, but also expressions that are to be executed, and that is used
to start the session. The kb-included attribute specifies what knowledge-
blocks (i.e., sets of entityfiles) are to be loaded during startup. The execdef
attribute specifies what is to be the (initial) command-line executive during
the session. Finally, the contents and inprocess attributes serve simple
administrative purposes.

There is also a facility for self-description of each session, which requires
an entity that serves as a unique identifier for the session at hand. This
entity is a composite entity that is formed using the operator session:, for
example (session: 1lar-001-023-002 93). Each individual maintains a
counter for how many sessions have been started in it. The following is an
example of a session entity:

-- (session: lar-001-023-002 93)

type leosession]

inhost acer3020]

configuration minileo]

: init-leos-files <bootfuns selfdescr self-kb kb-catal software
madman-roots minileo>]

: runstart-ms 100740059468]

[: runstart-datetime <2009 3 10 19 11 50 1 t -1>]

[ B e B s B |

—
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[: curtime 14]

The purpose of the inhost and configuration attributes is evident. The
runstart-ms and runstart-datetime attributes specify the starting time
in milliseconds and in terms of calendar and clock. (The words "run” and
"session” are treated as synonyms). The init-leos-files attribute spec-
ifies the initial systems-related entityfiles that were loaded at the very be-
ginning of the startup process. The curtime attribute, finally, contains a
counter that is incremented by one each time an action is recorded in the
session log, so it provides a simple timestamp mechanism for use within the
session.

Within each session there are global quantities whose values are the identifier
of the individual at hand, the startup entity that was used for the session
at hand, and the session identifier. In the CommonLisp implementation of
Leonardo these are represented as the values of the global variables *my-ids,
smyconfig* and *cursession*, respectively [°]. In this way it is possible
for processes within the individual to find out about in what context they
are executing.

3.2 Self-description of Sessions and Episodes

Leonardo individuals routinely build a record of what actions have been
executed during a session, from the top level and down to some limited
level of detail but not necessarily down to the level of elementary actions.
This facility can be used for a number of purposes, including for tracing
when new programs and scripts are tested, for “redo” commands during
the command loop, and in order to be able to extract and archive a full
account of what has happened during an important system demonstration.
We therefore consider it as a basic facility that should be an integral part
of the core system.

Not all logs of actions during sessions are worthy of being preserved for
posterity, however. The logging is therefore done in two steps. The first
step is always in place and it creates and maintains a structure consisting of
records and subrecords that represent the log. The second step is optional
and consists of saving this structure or selected parts of it as persistent
entityfiles. Some modifications are also done to the structure when it is
archived.

A plain linear log of actions would be impractical, and there are two devices
for assigning a structure to it. First, there is a structure of episodes and
sub-episodes. When a session is started, the entity episode-0000 is set to
be its current episode. It is also by definition the top episode throughout the
session. Whenever it is considered appropriate it is possible to create a new
episode, e.g. episode-0001 that is a subepisode of the one at hand, and to
make it the current episode. Each episode has an attribute for its sequence
of sub-episodes and for its super-episode (except of course episode-0000
does not have any super-episode). In this way it is possible to give separate
identity to the log of some part of a session.

50Only the last one of these global variables is actually needed since the entity
description for the session contains the information for the two others. They are
retained anyway for reasons of convenience and legacy.
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Each episode has an attribute has-chronicle whose value is a chronicle, i.e.
a record containing a sequence of action records or subordinate chronicles.
The following is an example:

[chronicle :clock (session: lar-001-023-002 93)
:occurs-in episode-0002 ~
[crefil sessiontest :at-time 152]
[setk cur-kb :at-time 151 :result cur-kb]
[dpdf :at-time 150 :result "../../../../Series/caisor/2009/pm-012/"]
[lam :at-time 149 :result "../../../../Series/caisor/2009/pm-012/"]
[cocl body :at-time 148 :result nil]
[loadfil compos-verbs :at-time 147 :result compos-verbs]
[writef :at-time 146 :result nil]
[loadf :at-time 145 :result elem-verbs]]

A chronicle record has two parameters, :clock and :occurs-in . The
latter specifies the episode within which the chronicle occurs. The :clock
attribute is used in general for specifying an entity that has a curtime
attribute and that can be used to provide timestamps for the actions in the
episode. The session identifier is the natural choice for this purpose, but
one can choose to use another clock for a chronicle if one wishes. The same
clock must be used throughout the chronicle, but a sub-chronicle may use
another clock.

The arguments of a chronicle record are action records that have been per-
formed within the scope of that chronicle, in reverse order. Every such
record is obtained as the record that was used in order to invoke the action,
but with the addition of two parameters, namely :at-time which speci-
fies the time of the action according to the chronicle’s clock, and :result
containing the action’s result record. Result records will be described sep-
arately, but essentially whenever an action is performed, the interpreter
produces a result record which specifies whether the action succeeded or
failed, and sometimes with an indication of a result from the action.

The identifier episode-0000 is sufficient for identifying the top-level episode
and the entire episode hierarchy within a session, but if one needs to work
with episodes and chronicles from different sessions then the use of this
identifier would lead to name conflicts. Therefore, the separate facility for
archiving of episodes and chronicles replaces an episode identifier such as
episode-0002 with the composite entity

(episode: (session: lar-001-023-002 93) 2)

in the example above. The reason for not using such entities already from
the beginning is merely for ease of reading.

3.3 Catalogs and Self-description for Entityfiles

As already mentioned above, an entityfile can be understood both as a
sequence of entities, and as a text file containing entity descriptions for the
entities in that sequence. When we use the word entityfile we shall mean
the textual representation unless the contrary is stated.

The duality between the persistent and the dynamic representation of enti-
ties requires that if an entityfile has been loaded into a session then it shall
always be possible to re-generate the entityfile from the information in the
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form of entities, attributes and values that are present in the session’s data
structures. This is implemented as follows. For each entityfile there is a spe-
cific entity that is the name of the entityfile. Its type is, or is subsumed by
the type entityfile. The following is an example of the entity description
for the name of an entityfile.

type entityfilel

latest-written "2009-03-10/19:11"]

: contents <misc misc-oper-definers c-ans defleopa defop>]
: purpose "Miscellaneous small function definitions"]

[ B e B s B |

Notice that the name of the entityfile has a contents attribute whose value is
a sequence of all the entities in the entityfile. The name shall itself always be
the first element of that sequence. The operation of re-writing the entityfile
from the current information in the session will therefore take the name
of the entityfile as its argument, and it makes a loop over the elements of
the contents attribute and writes the entity-description for each of those
entities on the newly generated text file. More about this in the section
about the type structure that will follow below, and in the separate report
on type structures and ontology in Leonardo.

There is an issue about where entityfiles are to be located in the computer
where the individual resides. In principle they shall be somewhere in the
directory structure that is the persistent manifestation of the individual,
but having them all in one single directory would not be practical, and we
prefer to partition them into several directories for easier overview. More-
over, there are some special cases where entityfiles are located elsewhere,
for example, a few entityfiles that describe aspects of the host where the
system is running. These entityfiles should only be present in one single
version that is shared by all the individuals on that host.

Therefore we need to have a facility that specifies, for a given name of an
entityfile, where the (textual) entityfile is located. This information can
obviously not be kept in the entityfile itself, since it is needed already to
find the entityfile.

The solution to this is to use location entities which are composite entities
whose major purpose is to carry the information about where an entityfile
is located. The following is an example of a location entity:

-- (location: els-designators)

[: type location]
[: filename "../../../leordo-2/Els/els-designators"]

This works as follows. Suppose the top-level directory of the Leonardo
individual whose name is leordo-2 is

G:/Aims4/leordo-2/
Then there is one specific subdirectory where sessions are started, namely

G:/Aims4/leordo-2/Process/main/
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This means for example that in a Windows environment, the .bat files men-
tioned above are located in this directory. The entityfile els-designators
in the example is located at

G:/Aims4/leordo-2/Els/els-designators.leo

The value of the filename attribute is therefore the relative path from the
starting directory to the entityfile at hand.

One may wonder why this relative path has to go up above the level of
leordo-2 and then down again. Would it not be more convenient to sim-
ply let it have the value "../../Els/els-designators"? The reason is
because we may have several individuals, similar to leordo-2, which are
located side by side in one single master directory, which is G:/Aims4/ in
the example. The chosen representation makes it possible for an individual
to use the location entities of neighboring individuals without the need for
converting the values of their filename attributes.

This arrangement makes it possible for a session to load an entityfile if it has
already loaded its location entity. Location entities must therefore be loaded
to begin with. To this end the individual contains a number of catalog files,
which are simply entityfiles where most or all of the contents are location
entities. The starting point is one specific entityfile that is called kb-catal
in every individual, and that contains the location entities for a number
of further catalog files which in turn contain location entities for ordinary,
non-catalog files. Additional layers of catalogs are used in some specific
situations.

The startup process therefore always loads kb-catal, and then it uses the
information in that file to load the other catalog files that are specified in
the kb-included entity of the startup entity.

3.4 Knowledgeblocks

The number of entityfiles in a Leonardo system is so large that it would be
inconvenient to treat all of them as an unstructured collection. They are
therefore partitioned into knowledgeblocks. Each knowledgeblock is repre-
sented as an entity, one of whose attributes is a list of the entityfiles that are
members of the knowledgeblock. Moreover, the entity for a knowledgeblock
is a kind of entityfile entity, so each knowledgeblock contains one entityfile
with information that pertains to the knowledgeblock as whole.

The knowledgeblock structure is important for two purposes: for loading
information into a session, and for version management. When a session
starts, the Leonardo system first loads a small number of very basic en-
tityfiles and then it loads the core knowledgeblock. After that, additional
knowledgeblocks are loaded according to the kb-included attribute of the
startup entity. Loading a knowledgeblock consists of the following steps:

e Loading the entityfile describing the knowledgeblock as a whole

e Loading (recursively) other knowledgeblocks that are prerequisites of
the one at hand

e FExecuting the pre-startup procedure of the knowledgeblock
e Loading a subset of the entityfiles that belong to the knowledgeblock
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e FExecuting the post-startup procedure of the knowledgeblock

The information that is needed for steps 2 to 5 is provided in the entityfile
that is loaded in step 1. In particular, the entityfile for a knowledgeblock
usually contains the location entities for all the entityfiles in the block ex-
cept itself. The location entities for knowledgeblock entityfiles are in the
designated entityfile kb-catal, in standard cases, but they may also be lo-
cated elsewhere and loaded by application-specific means. In applications
where there is a large number of entityfiles with a similar structure one may
arrange to generate location entities when needed.

The pre-startup and post-startup procedures are often empty but they are
occasionally very useful.

Entityfiles that belong to the knowledgeblock but that are not loaded in
step 4 above can anyway be loaded later on, by explicit command by the
user or in other ways. Likewise it is possible to load entire knowledgeblocks
at later times during the session.

The use of knowledgeblocks for version management is described in a later
section.

3.5 Description of the Host Computer

In order to run sessions of a Leonardo individual on a particular computer, it
must have two things: the persistent manifestation of the individual, and an
implementation of one of the programming languages that this individual
can run on. At present this only means Allegro CommonLisp, but the
system design is such that other languages can be used on equal terms with
the first one. The possibility of having multiple startup entities which was
described above, is essential for making this possible.

In addition each session needs to have some information about the host
computer on which it is running. For example, if a session wishes to invoke
some standard software, such as a text editor or a pdf reader, it must know
where this program is located on the the current host. The network name
of the host is also sometimes needed.

For this purpose there is one designated, but OS-dependent location where
host-specific entityfiles are kept. In the Windows environment this is the
directory C:/Leohost/. This directory must always contain an entityfile
called software that contains the access paths for certain standard software.
Additional files may be added in this location for use by particular services.
The following is an example of an entity description in one such file:

-- bibtex

[: type os-command]
[: commandphrase "C:\Progra®1\MiKTeX 2.6\miktex\bin\bibtex.exe

The value of commandphrase can be either a string or (to account for more
complex cases) a KRE expression. If it is a string [®] and the program

5Strings in Leonardo do not use any escape character, so the backslashes in
this example denote themselves. If one wishes to use a string containing a double

"]
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in question is one that needs a file as an argument, then the value of
commandphrase shall be written in such a way that one can concatenate
its value with the name of, or path of the file and obtain a correct OS
command for invoking the program.

The example of an identifier for an individual which was shown earlier,
contained an attribute called uses-hostfiles where the value is a sequence
of symbols. This value shall be a list of those host-specific entityfiles that
may be used by the individual in question.

3.6 Description of Available Network and Servers

As has already been described, each Leonardo individual can be activated
as a session but normally only one session at a time for each individual, and
each session can run an http server whereby the individual can communicate
with users (as a complement with command-line dialog) and with other
individuals. Since several individuals can run in the same host computer,
each individual is associated with a port number for use by its http server.
Furthermore, each individual needs to have information about the location
and other contact information for other individuals, including both those
that are in the same host, and in different hosts in the same local area
network, and elsewhere in the Internet.

The system-describing information structure that makes this possible has
two main parts: the grouping of several individuals into a residence, and the
use of network information. Some of the network information is represented
separately for each individual, but some of it is handled jointly for each
residence, so we shall describe residences first.

A Leonardo residence is a directory containing the persistent manifestations
of one or more Leonardo individuals as immediate subdirectories. It is
therefore a way of grouping several individuals together in such a way that
they can refer to each other in the simplest possible way, using relative paths
for files. The hard disk or other persistent memory of a host computer may
contain one or more residences, but often one wishes to keep individuals on
a USB stick or other easily mobile memory. In such cases one must define
a separate residence on the USB stick.

Besides the member individuals, a residence also contains an additional
subdirectory called Residmap containing entityfiles with descriptions of the
individuals in that residence, as well as some network information that is
used jointly by the individuals in that residence.

Entityfiles in a residence map use the following entity types, most of which
are self-explanatory:

local-area—network

e computer-host, which may be either a desktop or a laptop computer
e data-carrier, e.g. a particular USB stick
e leo-residence

e agent-descr and indiv-loc-descr: entities that are introduced for
providing additional information about a Leonardo individual.

quote inside it, one constructs it using a KRE expression.
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The following is an example of an entity description for a local area network
(LAN) entity:

-- lan-home-erisa

[: type local-area-network]

[: has-ip-nr 81.231.167.19]

[: assigns-ip-nrs {[: guardian 192.168.0.5]
[: mediacomputer 192.168.0.6]}]

[: assigns-ip-wifi {[: acer-3020 192.168.0.3]}]

[: forwards-ports {[: 80 192.168.0.5] [: 99 192.168.0.5]
[: 20 192.168.0.6]}]

[: has-messageport 99]

The user chooses a name for the LAN at his own discretion. The attributes
for the LAN entity reproduce some of the configuration information in a
network router, including the external IP number of the LAN and the as-
signments of local IP numbers to computers in the LAN. (The attribute
has-messageport will be explained below). These computers are identified
by their network names, which should be chosen as the network names in
the sense of the operating systems, and in lowercase mode only. These com-
puters must have unique names in the information context at hand. The
following is an example of an entity description for a host computer:

-- acer3020

[: type computer-host]
[: has-residences {aims4}]

Miscellaneous other information may also be attached using other attributes,
but the only obligatory information about a host computer is what are the
names of residences in it. Residences on different hosts may have the same
name since they are always referred to using composite entities like in the
following example:

-- (resid-of: acer3020 aims4)

[: type leo-residence]
[: homedir "C:/Aims4/"]
[: hosts-individuals {lar-001 lar-001-023}]

The entity (resid-of: acer3020 aims4) represents the residence that is
called aims4 and that is located on the computer called acer3020. The
hosts-individuals attribute specifies the identifiers of the individuals in
this residence. Finally, since residences can also be located on data carriers,
such as USB sticks, we need entities for data carriers like in this example:

-- usb-cruzer-4

[: type data-carrier]
[: has-residences {aims6}]

Data carrier entities can be used as the first argument of the operator
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resid-of:, just like host computer entities.

Finally, communication between individuals requires that there is shared
information about the location and modes of access to each individual. In
principle this should be represented as additional attributes for the entities
representing each individual, but these entities (such as 1ar-001-023 in the
example) have already been assigned a type and corresponding attributes in
the self-description for the individual that was described above. Therefore
we introduce a composite entity for each individual that provides a server,
as in the following example.

-- (indiv-loc: lar-001-023-002)

type agent-descr]

leoname leordo-2]

in-residence (resid-of: usb-cruzer-4 aims6)]
: uses-port 8091]

: uses-http-address "http://localhost"]

(o T e e B e B e |

Notice that the information that is already stated with the entity 1ar-001-023-002
is a part of the self-description of that individual, and that it is normally

only available within a session of that individual itself. The entity shown

here is part of the residence map, so it is used by all the individuals in the
residence, and in fact it may also be included in other residence maps so as

to make it possible for individuals in different residences to communicate

with each other.

For some purposes it is useful if a LAN acts as an agent in itself, and in
particular one may wish to send a message to a LAN, for example to request
an update in its structure, or in order to send a message to a particular
individual in that network whose communication port is only available inside
the LAN. The has-messageport attribute of the LAN entity specifies a port
that should be used for these purposes. If a LAN specifies a value for this
attribute then it should forward incoming traffic on that port to one of
its individuals, and that individual shall be prepared to play the role of
high-level LAN gatekeeper as it receives and honors inter-LAN messages.

3.7 Configuration Information

The entity descriptions that have been shown above do not specify which
data carrier is located in which computer host, and which computer host is
located in which local area network. This is by intent since the location of
data carriers and of computer hosts may change from one time to the next.
Therefore there is a entity type leo-configuration where each entity in
this type contains one specification of the locations of data carriers and host
computers. More about this in the section about self-modification below.

3.8 Additional Topics

It is intended to add a section on the type system for entities in a later
version of this report.
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4 Autonomous Action

The characteristic property of an intelligent autonomous agent is that it
has a capability for autonomous action. The self-description facilities that
have been described above are intended to be a comprehensive basis for
autonomous action in Leonardo individuals, besides their other uses. The
following are the most important aspects of the autonomous action capa-
bility.

e Scripts and other specifications for how to perform actions

e Restrictions on the applicability of actions and on the proper way of
carrying them out

e Agenda for forthcoming actions
e Agenda for actions that are scheduled to be performed repeatedly
e Goal-directed invocation of actions

e The history of actions that have been performed by the individual at
hand, as well as information about the context of each action.

These are topics for additional, forthcoming reports. Here we shall only
discuss one example of an architecture for autonomous action with the aim
of showing how it may may be related to the Leonardo architecture.

4.1 The Soar Architecture for Human Cognition

The Soar architecture was developed during the 1980’s by Alan Newell, John
Laird and Paul Rosenbloom as a candidate unified theory of cognition. It
has been extended, implemented as a widely distributed software system
[7], used for a number of applications, and it has an active user community.
It has also inspired research on intelligent autonomous agents, case-based
systems, and other branches of artificial intelligence. In this subsection
we shall briefly review the main ideas in Soar and show how they can be
implemented in the Leonardo framework.

Soar makes a distinction between two levels of memory: long-term memory
(LTM) and working memory (WM). Long-term memory is persistent and
accumulative: information is only added, never removed. Information is
pulled from LTM or from other sources to WM when the system encounters
a specific task.

Working memory is organized as a hierarchy of states each of which contains
a set of objects; each object has a set of attributes with corresponding values.
Equivalently, each state is a set of triples consisting of identifier, attribute,
and value. Such a triple is called an augmentation. The following is an ex-
ample of a simple state in Soar’s working memory and in the representation
that is used in the implementation of Soar:

(s1 "block bl “block b2 “table t1)

(b1 “color blue “name A “ontop b2 “type block)
(b2 “color yellow “name B ~“ontop tl “type block)
(tl “color gray “name Table “type table)

"http://sitemaker.umich.edu/soar/home
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This describes a state s1 containing three objects: a gray table and two
blocks, one block being blue and the other one being yellow. The symbols
preceded by a circumflex character represent attributes. The symbol t1
is the unique identifier for the table object that is used internally in the
system, and the name attribute specifies a name for it that may be used
externally.

Identifiers and attributes must be atomic symbols and can not be composite
expressions, and values must be identifiers, strings or numbers. Composite
structures such as sets, sequences and records can however be represented
by introducing additional, auxiliary objects.

There are three types of long-term memory: procedural memory containing
rules, semantic memory containing objects of the same kind as are used in
the states in working memory, and episodic. Episodic memory is a record
of past situations, actions and events; it may be loosely compared with the
use of archived sessions and episodes in Leonardo.

A rule is written on the following general form:

sp {rule*name
(condition)
(condition)

-—>
(action)
(action)

.3

Besides its states, working memory can also import rules and past episodes
from long-term memory and it can receive information from perception. This
information is used by a decision procedure which results in the selection and
the execution of actions. In fact, it is the decision procedure that retrieves
information from long-term memory and introduces it into working memory.

The decision procedure is the primary “engine” in the Soar architecture.
It works in five steps: input, elaboration, decision, application, and output.
Input consists of representing recently arrived perceptual information as
working-memory structures, in particular in the current state that is main-
tained in WM. Elaboration consists of finding rules whose conditions match
the current state and of executing their action parts, thereby extending the
contents of the current state with additional augmentations. (This may be
additional augmentations for existing identifiers, or it may introduce addi-
tional ones). Notice that the “actions” at this point merely modify working
memory, either by drawing conclusions or by importing additional informa-
tion from LTM. Removal of augmentations is possible but must be used
with caution, since then the result of the elaboration phase is dependent on
the order in which the rules were applied. The elaboration phase ends when
there is no more applicable rule.

One of the possible results of an action in the consequent part of a rule is a
suggestion for an operator to apply, that is, something that the system will
do in the application step of the decision procedure. When the elaboration
phase finishes, one possibility is that there is exactly one suggestion for an
operator, and that the various applicability conditions for this operator are
satisfied. In this case it may be applied at once.
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However, there may be a number of complications, for example:

e Maybe there is no suggestion for an operator
e Maybe there are several suggestions for operators

e Maybe there is just one such suggestion, but the operator in question
just can not be applied in the current situation

e Maybe it is not possible to determine whether the operator can be
applied, since the required information is missing

e Maybe there is just one suggested operator, but the information that
has been collected in the current state includes predictions about the
direct and indirect effects of applying the operator, and some of those
effects are very undesirable

Situations such as these are called impasses [] and they are important in
the Soar architecture. Whenever there is an impasse the decision procedure
will refrain from applying an operator, and instead it will create a new,
subordinate state and invoke the same sequence of five steps on the substate.
The substate is initiated with a description of the situation at hand. For
example, if there were several suggestions for an operator then the substate
will contain these and it will be given the task of picking one of them. Rules
that are relevant for the goal of choosing between candidate operators can
be used in the elaboration phase of the decision procedure for the substate.

It is natural, but not necessary to make use of goal-directed behavior in the
operation of a Soar system. If the system is given a task that is expressed
as a concrete goal, such as “find the e-mail address of Sven Svensson” [?] a
plausible Soar implementation will set up a state containing the goal “the
e-mail address of Sven Svensson is known” together with other relevant
pieces of information, for example, information whether a computer with
an Internet connection is available in the present situation. The elaboration
phase of the resulting decision procedure will suggest operators that may
achieve this goal, and the application phase will perform one of them.

More generally, it is easy to see how an impasse may be processed if the
impasse state contains a description of the goal that needs to be achieved;
it is less obvious what to do in an impasse otherwise.

Impasses are important for an additional reason, besides being the condition
that causes a recursive call of the decision procedure: they are also the point
where learning takes place in the Soar architecture. The processing of an
impasse begins with an initial state and ends with an outcome; this means
that if a similar initial state is encountered at a later time then a similar
outcome will be relevant. The operation of chunking analyzes the process
following an impasse after it has finished, identifies what information was
essential for the outcome of that process, and packages the result as a rule-
like structure that is stored in long-term memory and that can be retrieved
and invoked by the system at later times.

8Swedish: dodlige

9This is one example of the fuzzy borderline between actions and goals. Lit-
erally speaking, the request seems like a command to perform the action “find”
with a particular argument. However, unless the system has already a procedure
for finding the email address of a person, the appropriate interpretation will be
“arrange to get to a state where the e-mail address of Sven Svensson is known”,
thereby stating a goal rather than an action.
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Chunking was the only form of learning in the original Soar architecture.
Additional forms of learning have been added more recently, such as rein-
forcement learning.

4.2 Other Cognitive-System Architectures

It is evident that the Leonardo architecture can readily represent the basic
form of the Soar architecture that has been described here. However, basic
Soar does not solve all problems, and there are a number of other things
that one would also like to include in a facility for autonomous action. The
introductory paragraphs of the present section mentioned some of these,
including the use of an agenda for pending actions, the use of standing
goals, and the use of action planning. Although Soar systems contain some
of these, it is important to also look at other approaches where similar
problems have been addressed, for example from research on case-based
planning.

Notice also that the basic Soar architecture does not define a structure for
interleaved deliberation and action. Consider a real-world robotic system
that receives a task assignment, cogitates in order to make a plan for how
to perform the task, executes the first action in the plan (an “operator”
in Soar terminology), cogitates again because the outcome of that action
was not the expected one, and so forth. There is then a difference between
operators that extend the current state in the Soar decision procedure, and
operators that are performed in the real world. On a sufficiently abstract
level one may not need to make any distinction between them, but in an
actual system they must of course be treated very differently.

Finally, the basic Soar architecture assumes that information is accumulated
into, but never removed from long-term memory. For a system that oper-
ates for a certain period of time it will be important to be able to remove
information from memory when it has become irrelevant.

5 Systemwide Configuration Facilities

One important capability of a software system is that it should be able
to reconfigure itself so as to adapt to requirements by the user or by its
environment. Modern software, including operating systems contain many
examples of this capability; sometimes so many that users are overwhelmed
by the resulting complexity.

The basic design of Leonardo is very well suited for implementing configu-
ration facilities, since the overall structure of the system is defined in terms
of a data structure consisting of entities and their attributes. However,
when configuration facilities are introduced into the Leonardo system, our
interest does not lie in maximizing the number of such facilities and the
number of features in them. Instead, we are interested in identifying de-
sign solutions that have the required flexibility but which also have a clean
and simple structure that avoids complexity, and which in particular are
correctly located in the overall system architecture. In this report we shall
only describe one configuration facility since it is a good illustration of these
general considerations.
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5.1 Multi-Language Configurability

Many software systems provide the capability of using several languages [*°]
when presenting information to the user. This capability is a mixed blessing
in practice since it is not implemented throughout the entire software on a
given computer. Consider, for example, the situation where the operating
system of a PC operates in Swedish language and the user wishes to install
the software for an attached device, such as a printer, for which the instal-
lation instructions are only provided in English. If these installation in-
structions specify what operations need to be done on the operating-system
level, for example using the standard menues, then they will of course refer
to the English-language variant of the operating system. This leaves the
user with the task of figuring out which menu options in Swedish language
correspond to which options in English.

Other problematic situations arise if a guest who does not know Swedish
is invited to use that computer, or if the user of the computer wishes to
implement multi-language software herself. In principle she needs to have
a separate computer for each of the target languages in order to be able to
test that software in a complete manner.

These examples suggest two important design decisions. First, unlike what
is the case in contemporary operating systems, it should always be possible
to change communication language by a simple command. This principle
applies both to the operating system and to all other software that runs
under it. Secondly, there should be a uniform design for the definition and
use of multiple languages at all points in the code where messages to the
user are produced.

In the case of Leonardo, one of our long-term goals is to extend the design
in such a way that it can be used for the design of the future top-level
software in a computer (regardless of whether this software will be called an
operating system, or something else). We have therefore defined a facility
for multi-language configurability that is set up for system-wide use and
which is gradually being introduced in all parts of the current system.

The basic idea is as follows. Consider a piece of code that contains the out-
put of a message on the operator screen in a command-line dialog situation,
for example (attribute assignments omitted, actual code in CommonLisp):

-- example-func

(defun example-func (n)
(princ "The square of the argument is: ")
(princ (* n n))
(terpri) )

In order to prepare this function for multi-language use it is rewritten as
follows:

-- example-func

1071 this section we use the term “language” in the sense of natural language,
for example English or German.
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(defun example-func (n)
(princ (phrase :/-1))
(princ (* n n))
(terpri) )

@Phrases/English
:/-1 The square of the argument is:

The immediate effect of this is that the Phrases/English property of the
entity example-func obtains as value a string consisting of one line, con-
taining both the phrase number and the phrase in question. Two additional
things happen when an entityfile containing this definition is loaded into a
session. First, the construct : /-1 in the function definition is interpreted as
a macro and is replaced by the symbol */-1-example-func as an argument
to the function phrase. Secondly, at the end of the entityfile loading opera-
tion, the loader inspects all the entities in the newly-loaded file and checks if
they have a value for the Phrases/English property. If so, it processes the
property value line by line and assigns, in the example, the defining phrase
as the value of the in-english property for the entity */-1-example-func,
using the identifier for the entity where the property is located in order to
obtain an unambigous symbol. Definitions for other languages besides En-
glish are treated in the same way. There can of course be several phrases
numbered 1, 2, 3, etc. for any given entity and language. With this design
there is no conflict when different entities use the same phrase numbers.

The function phrase is defined so that it looks up the phrase definition of
its argument for the language that is presently set as the working language
in the communication at hand. With this design it is straightforward to
represent the multi-language aspect when writing program code and it is
easy to see what text will actually be output at a given point in the program.

Usually it is convenient to first write a program using just one communi-
cation language, which does not necessarily have to be English, and to add
other languages afterwards. It may also be useful to use an automatic trans-
lation program for these phrases and just make a manual correction when
needed. Therefore the system has been set up so that it is not necessary
to have all the language variants together with the entity using the phrase;
they can also be assigned elsewhere.

In this example the output for the phrase consists of a fixed string. However,
the function phrase is defined so that it first obtains the phrase definition for
the current communication language, and then applies the script interpreter
for the DSL (document scripting language) on this definition. Parameters
for this DSL script can be provided as additional arguments to phrase. This
makes it possible to have boilerplate phrases where elements are inserted
within the phrase, and to define phrases with conditional expressions and
repetition.

It is intended to introduce these conventions also in the definitions for DSL,
and in particular for the generation of web pages. We do not foresee any
difficulties in doing this, but it has not yet been done.
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6 Controlled Self-Modification

Many modern software systems contain facilities for receiving and installing
updates automatically. Many software development projects use version
management systems that administrate successive versions of software mod-
ules that have been developed and amended by different members of the
development team. These are two examples of how a software system is
able to modify itself albeit according to instructions that are ultimately due
to human intervention.

In addition, several branches of A.L. research are developing techniques for
automatic adaptation of previously used methods or scripts whereby they
become applicable to new situations that are somewhat different from where
the same script has been used before. The chunk learning facility in the Soar
architecture is one example of this.

6.1 Self-Modification and Autonomy

These considerations suggest that in a self-describing system architecture
like Leonardo, it should be important to have a systematic framework for
self-modification as a part of the basic design. We only use the term “self-
modification” for referring to long-term changes of the structures and pro-
grams in a software system, and in our case in a Leonardo individual.
Changes that are only for immediate use, such as the dynamic modifica-
tion of an action script in response to some problems during its execution,
will be considered as an aspect of autonomous action which was briefly
mentioned in section 4.

Self-modification in this sense can be directed (in the sense of “under the
direction of someone”) or autonomous. Installation of software modules and
of updates are examples of directed self-modification, along with the use of
version management systems and other software maintenance tools.

Autonomous self-modification may be of interest as one aspect of autonomous
behavior in general in a software system. For example, if an autonomous
real-world robot is organized so that it first pseudo-executes action plans
or scripts in a simulator before it attempts to execute them in the real
world, and if it happens repeatedly that the outcome that is predicted by
the simulator does not agree with the real-world outcome, then this may be
a reason for changing specific pieces of code in the simulator. Similarly, a
script for searching a variety of sources on the Internet in order to retrieve
a particular kind of information may be modified based on the repeated
experience with the script at hand.

One obvious aspect of autonomous self-modification is that it is explorative:
the proposed new program stub, script, “method”, “rule” or “chunk” may
or may not turn out to be an improvement over the existing ones. Up to
a point it may be appropriate for a system to accumulate such new items
and merely label them with a measure of their adequacy or inadequacy, but
in the long run it will also be necessary to remove irrelevant information
from memory. A version management system may then be very useful as an
intermediate solution between full retention and full removal: information
that has been archived as an earlier version is removed from the field of
attention so it does not disrupt current operation, but it can be recovered
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if there is a need for this. — Additional uses of version management in the
context of autonomous self~-modification will be discussed in section 7.

Another aspect of self-modification is that there is a danger of changes that
disrupt the software individual doing it. There are several ways of meeting
this danger, for example using a “sandbox” technique for executing new
programs and scripts, or by arranging individuals in a residence so that one
of them can help another one to recover if it comes into distress.

A software design for self-modification should therefore contain a design for
version management and for other aspects of controlled self-modification in
its lowest layer. This is motivated in pure software systems terms, since
version management is used for all kinds of software development, but it
is also relevant for the implementation of self-modification. This may be
disappointing since version management is such a mundane issue compared
with the lofty goal of autonomous self-modification, but it is natural if one
wishes to build a system from bottom and up.

6.2 The Version Archive in Individuals

Our framework for version management is based on the same kind of infor-
mation structure as has been used in the previous sections, and it makes
active use of some of the entity-types that have been described there. It is
organized in the following major parts:

e A wersion archive within each individual
o A wversion exchange mechanism within each residence
o A facility for remote exchange of version archive information

o A facility for distribution and reception of amendments to the current
information state of an individual.

One purpose of the amendments facility is disseminate information about
new versions of knowledgeblocks that have been made available for indi-
viduals to download. It can also be used for distributing minor patches to
archived entityfiles and information of a temporary character, such as the
current location of mobile memories in computer hosts, and the location of
computer hosts in local area networks.

The purpose of the version archive in an individual is to preserve information
about how the contents of entityfiles have changed. This is done on the level
of the individual entity-descriptions, unlike the “file compare” mechanism
of conventional version management systems.

It works as follows. Each archiving operation operates on one specific know-
ledgeblock and preserves a copy of those entityfiles in the knowledgeblock
where there has been some change of contents since the previous archiving
of the same knowledgeblock. The archiving operations of an individual are
considered as a linear sequence, i.e. there is no possibility of concurrent
lines of archiving within one individual. An archive point is a Leonardo
entity representing such an archiving operation.

Technically, archive points are represented as symbols ap-0001, ap-0002,
etc. and as subdirectories with the same names in a designated directory
called Savestate in the persistent manifestation of the individual. Each
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subdirectory contains those entityfiles that were archived at its archive
point. In addition, each individual has an entityfile called syshist con-
taining entity descriptions for all the archive points, including which know-
ledgeblock and which entityfiles have been archived in each of them, as well
as a timestamp.

The version archive is useful for recovering older versions of a given entityfile
if need be, but it is also the basis for the exchange of updates between
individuals. To this end it maintains the information, for each entity in each
archived entityfile, about what was the latest archive point where this entity
obtained its current value. For example, if the entityfile colors was archived
at ap-0010, ap-0020 and ap-0030 and the entity yellow in that file had
one value in the archived version of colors in ap-0010 and a second value
in the later two archived versions, then the latest-rearchived attribute
of yellow is ap—-0010 in the first archived version and ap-0020 in both the
later two archived versions of the entityfile.

6.3 The Version Exchange Mechanism in Residences

Although the entityfile archive within one individual is strictly linear, there
is no such linearity when the archives of several individuals are considered
jointly. If a particular entityfile is maintained in several individuals and
these make updates to the entityfile independently of each other, then it
may be a nontrivial operation to reconcile the changes and construct a
new version of the entityfile that combines the changes of the participating
individuals.

Such reconciliation (often incorrectly called “synchronization”) of entityfiles
can however be simplified if the concurrent changes refer to different entities,
and by using the value of the latest-rearchived attribute.

The implementation of this operation makes at present the assumption that
each individual designates a specific other individual in the same residence
as its guru, and that changes in entityfiles flow from a guru to its clients
and from a client to its guru, but not in other directions. In a simple case
the residence contains one single guru which has all the other individuals in
the residence as its clients. The guru has the common software repository
in the residence, but each client may develop its entityfiles independently
e.g. in a period of software development.

The entityfile syshist in a client contains one additional attribute for each
archive point that is listed there, namely, an attribute called agreement-ap
whose value (if present) is an archive point in the corresponding guru for the
same knowledgeblock. This attribute expresses a cross-connection between
these two archive points in the respective individuals, so that the contents
of all the entityfiles in that knowledgeblock had equal contents [] at the
respective archive points.

Notice that this equality requirement applies to all entityfiles that were de-
fined in the knowledgeblock at those times, and not merely those that were
archived at those times. For example, if the knowledgeblock at hand con-
tains the two entityfiles colors and sounds and it was archived at archive

Hapart from administrative information that is specific to the individual, such
as the value of the latest-rearchived attribute.
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points ap-0010, ap-0020 and ap-0030, like above, the entityfile colors
was archived at all three archive points, but the entityfile sounds was only
archived at the first two points because all its entities were unchanged at
ap-0030, then the archived version of sounds at ap-0020 is considered to
be logically present at ap-0030 as well for the purpose of comparison with
the corresponding archive point in the guru ['2].

The combination of the latest-rearchived attribute for all entities and
the agreement-ap attribute for archive points makes it possible to merge
changes in a clear and well-defined way. This operation is performed in
a client and operates on a specific knowledgeblock that is defined both in
the client and in its guru, and that has been archived in both, so that the
current versions of the entityfiles are equal to the most recently archived
versions. The purpose of the operation is to identify any differences between
the current versions of the given knowledgeblock and to update them if
necessary so that they are then equal. If an update is required on one or
both sides then a new archive operation is performed there after the update.
Finally, if there were any changes, the agreement-ap attribute of the most
recent archive point for this knowledgeblock in the client is reset so as to
refer to the most recent archive point for the knowledgeblock in the guru.

The realization of this operation in the client is straightforward. For a given
knowledgeblock, identify the most recent archive point for this knowledge-
block that has a value for its agreement-ap attribute. This archive point
will be called the client base; the value of its agreement-ap attribute will
be called the guru base. Now consider all the entityfiles that belong to this
knowledgeblock according to the syshist file of the client or the guru, and
all the entities in each entityfile. For each entity, compare the values of
its latest-rearchived attribute with the base on the respective side. If
both of them are equal to, or precede the base, then there has not been any
change. If both of them succeed the base on its side, then there has been
concurrent change in this entity for the purpose of the merge operation. If
one of them is equal to or precedes its base and the other one does not, then
there has been a change on one side only.

For each entityfile, if none of the entities in it has a change then there is no
change in that entityfile. If all the changes in it are on the same side (client
or guru) then the file will need to be copied from client to guru, or from
guru to client. If there are some client-side changes and some guru-side
changes, but no concurrent change, then it is straightforward to construct
a new version of the entityfile that contains the most recent version of each
entity, and to provide it to both the client and the guru.

If there is also one or more concurrent changes in an entityfile, then the
operation must produce a version of the entityfile that contains both the
competing current versions for concurrently changed entities, as well as
of course the appropriate entity description of any entity with single-side
change or without change. This entityfile is then referred to the user who
has to reconcile the differences manually.

Notice that up to the point where a concurrent update has been identified

120ne may then wonder what happens if an entityfile is removed from a know-
ledgeblock. The answer is that the entity description for an archive point in the
entityfile syshist contains both a list of the entityfiles that have been archived
in the archive directory for that archive point, and the larger list of all entityfiles
that are logically present in the knowledgeblock at that archive point.
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for one particular entity, all this processing is done on the entity-description
level, using archive points that occur as the values of attributes. A file
comparison, in the sense of a matching of two texts, may sometimes be
useful if there has been concurrent changes in a large property containing
e.g. a script or a piece of program of some size, but it is a rare occurrence.

Since this operation is done in the client, it can immediately perform re-
quired archiving operations on the client side. If some entityfiles must also
be changed on the guru side then it is possible for the client to change the
contents of files in the guru ['3], since they are located in the same resi-
dence, but it would be inappropriate to let the client also do the guru-side
archiving operation. There are two possibilities for realizing it: either the
user starts a session with the guru and commands the archive operation,
or guru and client are running continously as server agents and the client
sends a message to the guru requesting an archive operation.

The present implementation requires that each individual has one single
guru. It is straightforward to extend the design so that the choice of guru
is specific to each knowledgeblock in the client, but this has not been done
so far and is not considered as a priority.

6.4 Remote Distribution of Version Archive

If several individuals are permanently located in the same residence and are
going to use a particular knowledgeblock without any individual differences,
then there is no reason for them to have their own local copy of that know-
ledgeblock. It is sufficient to maintain one copy of it, for example in their
shared guru, and to let sessions for each individual load the knowledgeblock
from the common copy.

Residence-level version exchange is however useful for software development,
where a new facility can be developed in one (or more) of the individuals
without disturbing the others, and in order to be uploaded to the common
guru when a satisfactory new version has been obtained.

In addition, there is a need for remote exchange of versions and of version
archive information. Consider in particular the case where a distributed ap-
plication requires that Leonardo individuals using the same software operate
on several host computers, and one wishes to distribute software updates to
them in a systematic fashion.

The concept of a doppelginger is introduced for such situations. A dop-
pelgéanger of a Leonardo individual is another individual that is located in
another residence and has the same parent individual and the same name
(in the sense of the leoname attribute in the self-description) but of course
another identifier. The doppelganger shall also be a “mirror” of the original
individual in the sense that all the knowledgeblocks in it are copies of the
same blocks in the original individual.

For example, the following might be the entity-description of a doppelgénger
of 1ar-001-023-002 which was used in section 3.1 above:

131t would be a cleaner design to let the client place the updated files in a
mailbox where the guru can pick them up, but in practical operation this does
not make a difference.
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-- lar-001-023-011

type leo-individual]

leoname leordo-2]

self-location "../../../leordo-2/"]
leoprovider "../../../leordo-2/"]
leoguru "../../../leordo/"]
uses-hostfiles <software madman-roots>]
latest-offspring-nr 0]

: parent lar-001-023]

: parent-archivenr 6]
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However, doppelganger are used in particular for guru individuals which do
not usually have a value for the leoguru attribute.

Suppose in the example there is going to be three hosts, each containing a
residence with one or a few active individuals. One of the hosts is designated
as the primary one and will be the source of software updates. The guru in
the primary host is considered as the primary guru, and the gurus in the
other two residences are doppelgiinger [*4] of the primary one. The contents
of a doppelgénger are updated automatically whenever there is a change in
the corresponding contents of its original. Client individuals in each of the
residences may load entityfiles from the guru in their respective residence,
or download their own copies using the intra-residence version exchange
mechanism.

One of the features of this design is that it is possible to move the persistent
manifestation of a client individual from one residence to another without
any changes whatsoever in the directory structure and the files representing
the individual. Relative access paths to entityfiles in the guru will work
correctly as access paths to the doppelgéanger, since the original individual
and all its doppelgédnger have the same name. The same is true for the
agreement-ap attribute used in version exchange.

In particular, when additional individuals are needed in the application, it
is possible to breed them in the primary residence and then move them to
the residence where they are to operate. It is also possible to breed them in
the subsidiary residence, but this results in an exceptional situation where
a change is first made in a doppelgénger guru and has to be mapped back
to the primary guru. Such situations have to be handled with due care.

The automatic update of doppelgénger has not yet been implemented at
the time of writing this report but it ought to be straightforward since it is
a one-way update operation, except for the occasional case of breeding new
individuals in a subsidiary residence.

The structure that has been described here, using clients, gurus and dop-
pelgénger is a relatively rigid one. Specific types of applications will require
different extensions. The most general case is of course if any individual
may exchange scripts and other information with any other individual, but
some kind of structure on the update activity will always be necessary in
order to protect the integrity of the software in each individual. This may
be a communal structure where the individuals participate, like the one just
described, or it may be a structure that is internal to each individual and

The word doppelgénger is the same in the singular and in the plural.
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whereby it protects its own integrity, but at least one of those is needed.
The next section will briefly discuss one direction that the extensions can
take, but this should only be seen as an example.

6.5 Distributed Software Development

One particularly important case occurs if several persons are developing
software for a joint system of Leonardo individuals, and where they use sep-
arate host computers. (If they work on the same computer or on computers
sharing a file system then the guru-client structure in a single residence may
be appropriate). The question is what version management discipline will
be appropriate for such distributed software development.

There are two obvious possibilities: either to emulate the single-residence
structure across network connections, or to arrange that each developer has
his or her own residence with its own guru and client structure, and to ar-
range for the respective gurus to exchange information. The first method is
simple and easy to implement. The second method is more complicated, but
may be preferable if a developer often works off-line and wishes to maintain
his own guru-client structure, for example in order to try different develop-
ment directions, or even for experimenting with independent learning and
knowledge acquisition in each one of several client individuals. However,
neither of these alternatives has been implemented yet.

6.6 The Distribution and Reception of Amendments

The version management mechanism that has now been described is useful
for archiving software changes in a systematic way. However, it has two
limitations: it is a bit impractical when minor changes need to be circulated,
and it does not define the mechanism for bringing required changes to the
attention of software individuals.

The amendment facility responds to both of these needs. It works as follows.
Each guru maintains a set of amendments, each amendment being an entity
that describes an action to be taken or a change to be made in an individual
session if a particular knowledgeblock has been loaded there. Amendments
also specify conditions for their applicability, in particular with respect to
which version they require for the knowledgeblock(s) that they update, or
depend on.

Technically, each amendment is a script in the Generic Scripting Language,
including information about when it is appropriate to execute that script,
and about the expected results of doing so.

When a knowledgeblock is loaded into a session then the amendments that
pertain to that knowledgeblock shall also be loaded, and executed if appli-
cable. This applies both if the knowledgeblock is loaded when the session
is started, and if it is loaded later on in the session.

The most straightforward type of amendments are those that request a
particular, additional entityfile to be loaded, typically an entityfile that is
only present in the guru and not in the client. This makes it possible to add
material to a knowledgeblock in a quick way and without having to update
its local copies in individuals. The new entityfile may be incorporated as
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a normal entityfile in its knowledgeblock the next time a major archiving
operation is performed.

Other simple uses of amendments are for minor corrections to the self-
administration information in individuals, since this information is main-
tained locally and should not be modified by entityfiles in ordinary know-
ledgeblocks that can be loaded from the guru.

A further use of amendments is for distribution of the current configura-
tion information. The attachment of data carriers to computer hosts and of
computer hosts to local area networks can change from one session to the
next, and it is information that shall be shared between the participating
individual sessions. Therefore, the definitions of alternative configurations
is maintained by the guru in each participating residence (including dop-
pelgénger gurus), and the amendment file is edited so that it specifies which
of the configurations is the one that operates at present.

In fact, the configuration information for client individuals within one res-
idence may instead be collected bottom-up, if one so wishes, by allowing
each individual session to identify where it is located and to communicate
this to the local guru which in turn informs the clients that have registered
previously. However, there is still a need for some preloaded configuration
information, at least for specifying the IP addresses of participating local
area networks.

Finally, one important use of amendments is to specify for a client individual
that one of the knowledgeblocks that it maintains in a local copy has been
changed in the guru. In such cases the client shall first check whether it
has made any changes to the contents of that knowledgeblock, and then
take appropriate action for downloading or for reconciliation of changes.
If the local contents have changed then more care must be exerted before
executing the amendments, for example, by checking with the user.

In fact, the kernel of the Leonardo system maintains an attribute called
changed-since-archived for entityfiles. This attribute shall have the value
nil when the entityfile has just been archived, and the value t if some of
its contents have been changed or, more precisely, if the persistent manifes-
tation of this entityfile has been rewritten since it was last archived.

Fully general use of amendments for performing changes in client individuals
may be problematic since it may duplicate, or even interfere with the version
management that was described in the previous subsections.

7 Autonomous Self-Modification

Autonomous self-modification must be based on two pillars: autonomous
action in general, and controlled self-modification. It is therefore natural
that a detailed discussion of this topic must belong to a report on au-
tonomous action that succeeds and builds on the present report. However,
some considerations may be made already at this point, and in addition to
the remarks at the beginning of the previous section.

A pivotal question must be what can be gained by autonomous self-modification.
There is an abstract interest in it as an important component of intelligence
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as we know it in humans, but a concrete resulting advantage is important
both in order to motivate and to focus the design.

The essence of the matter is, in our view, that it concerns self-modification
of the behavior of the individual or agent that is concerned. This can only
be achieved by the individual modifying its own information state, but this
is a technical aspect and is therefore a secondary consideration.

Self-modification of behavior appears to presuppose an important design
principle, namely, that actions that are performed by the system at hand
are characterized both by a goal and a script. The goal is a characterization
of the desirable state of affairs after the action has ended; the script is the
sequence of subactions that will be performed, or attempted, in order to
carry out the action. Sometimes a user may state a goal and leave it to the
system to select the script, and sometimes the user may specify the actions
on some level of detail and leave it to the system to infer what the user
“really” wants. Finally, some goals may be standing goals that serve as
initiators or as constraints for a number of specific actions.

The importance of combining scripts and goals was illustrated in the section
about the Soar architecture, where we suggested that an impasse can best
be processed if it contains, or is associated with a specification of what is
to be achieved. The combined use of scripts and goals is of course well-
known in several parts of artificial intelligence, including algorithms and
systems for action planning, intelligent agent architectures, and case-based
reasoning and planning. At present we focus on its use in the context of
autonomous self-modification.

The learning mechanism in Soar leads to the formation of new “chunks”
of behavioral knowledge that can be used at later times when the system
encounters a similar problem. It can be seen as self-modification in the sim-
ple sense that additional information is stored in Soar’s long-term memory,
but the more important aspect is that this improves the system’s ability to
choose and to use an appropriate script, or action plan, in later situations.

If the assumption of a combined goal/script view of actions immediately
suggests at least some kinds of autonomous self-modification, the converse
is also true: if a system is only defined in terms of scripts and of program
modules on different levels of granularity, then in the absence of a notion of
goals it is difficult to see how autonomous self-modification may come into
play. There is of course the possibility of automatic tuning, performance
optimization of certain scripts, partial evaluation of interpreters on different
levels, and compilation of program modules to lower level operation sets.
All of these may be very worthwhile, but it is not natural to consider them
under the heading of self-modification of behavior.

Since the goal/script view of actions is arguably a prerequisite for au-
tonomous self-modification in a software system, the next question will
be whether it also enables other kinds of behavioral self-modification be-
sides the introduction and adaptation of scripts that lead to specific goals.
One interesting possibility is for goal revision, which may work as follows.
Consider an autonomous agent that operates in an environment where it
performs tasks within the framework of its own permanent goals, or poli-
cies, but where the environment is a dynamic one in the sense that there
may be chains of cause and effect there. Assume also that the agent is able
to observe these causal chains, and in particular to observe the eventual
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consequences of its own actions in the environment. The preferences and
dispreferences that the agent already applies to the immediate effects of
actions can also be applied to their indirect consequences.

When the agent addresses one specific task in the framework of its current
goal structure, it may not be possible for it to identify all the possible
indirect consequences of a given plan. This is in particular so in dealing
with consequences that are merely possible, with a small probability of
occurring, but resulting in a very bad disadvantage. It would be reasonable
for the agent to let repeated observations of negative indirect effects of
actions and scripts lead to a revision of its current goal structure, so that
such action plans can be rejected because already their predicted direct
effects are inconsistent with the agent’s goal structure after the revision.

In this case as well, the benefit of the revision of the goal structure should be
that it improves the system’s ability to deal adequately with situations and
tasks that it encounters and within the framework of its overall preferences
concerning the state of its environment. It is therefore another example of
self-modification of behavior.

The behaviors under consideration may be the physical actions of a robot,
but they may also be behaviors of other kinds. In particular, the choice
of actions that are consistent with a number of standing goals, and the
modification of the standing goals based on observed negative effects may
also be applicable to communication actions and to the constraints that are
applied to such actions.

So far, we have only discussed autonomous self-modification that arises as
a result of the agent’s own experience, and in particular by accumulating
methods or scripts that have turned out to be successful. However, self-
modification in people arises often as a result of interactions with other
people, where a person becomes convinced of the need for changing some
aspect of his or her behavior. This would be a very interesting facility in
an intelligent autonomous agent as well.

To what extent can the architecture that has been described in the previous
sections of the present report support self-modification of the two kinds that
have now been proposed, i.e., evolution of scripts and of goal structures?
We have already remarked that it can harbor the information structures
that are used by Soar, which provides one datapoint in this respect. More
generally, we notice that the representation framework has the ability to
express both scripts, records of past action sequences, and expressions in
logic that can be used e.g. for expressing task-specific as well as standing
goals.

Furthermore, the architecture provides systematic ways of preserving older
policies, in particular using the version management system. The Soar
example provides a relatively weak case, for as long as “chunks” are accu-
mulated but never removed there is in fact no need for version management.
Of course, at some point the unused information has to be removed from
actual use, and then archiving may be of interest.

There are however stronger examples. Autonomous agent systems in some
contemporary robotic projects (examples forthcoming) perform consider-
able processing in the elaboration phase of their decision procedure, to use
the Soar terminology, and this typically results in a plan that can be quite
large, up to several thousand lines of conditions and actions. It is clear that
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plans of this size, or major building-blocks that are used in such plans are
likely to evolve at a fairly regular pace. Also, systems of this kind are likely
to generate a number of plans that are similar but not identifical, for ad-
dressing situations that are similar but not identical. Version management
is then likely to be very useful as a basic resource in the system.

The use of goal revision is also a case in point, since the set of standing goals
for an autonomous system can not be viewed as a collection of independent
goal elements; it should be seen as an integrated structure. This means that
also in this case there is a need for archiving an older version of the goal
structure after that structure has been modified.

On the other hand, it is also clear that self-modification functionality of
the kind described here will require additional facilities, in particular of a
computational character. This includes algorithms for planning and plan
revision, for causal and diagnostic reasoning, and for reasoning about goals
and the consequences of adopting particular goals. From an architectural
point of view, the important question is not whether these facilities exist
already or not; the important question is whether it is appropriate to im-
plement them as a higher layer on top of what has already been defined and
implemented, or whether they should instead have been made an integrated
part of the kernel. The reason for the latter alternative would be that some
of the additional facilities could simplify the tasks or the structure of some
existing part of the system kernel. We do not see any such possibility, and
therefore propose that the Leonardo architecture described in this report is
suitable as a first layer in the implementation of a system that is capable of
(among other things) autonomous self-modification.

8 Discussion and Conclusions

The term “self-modifying program” has negative connotations in software
technology. The established wisdom is that self-modifying programs are use-
less toys, except for viruses and other software pests that use self-modification,
and that in any case they are impossibly difficult to document and to main-
tain. This view was established in the early days of computing and has
persisted since then.

It is a paradoxical position, however, since software is written in order to
be executed in a von Neumann-type computer, and the most characteristic
and unique feature of the von Neumann computer is that it can modify its
own programs. Why is it that contemporary software technology does not
allow this unique capacity to be used to its full power?

The truth is, of course, that self-modification is used in practice, although
we do not think of it as such. Every time that a new piece of software is
installed on a computer, and every time that a software update is received
and installed, and every time that a user changes the dynamic definition of
a field in her spreadsheet, the effect is that “the program” of that computer
has changed. However, these self-modification operations are often mysti-
fied, for example by using the term “wizard” for the program that executes
an installation script.

It is our thesis that self-modification is a legitimate topic in software technol-
ogy. Practical, controlled self-modification should be related to autonomous
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self-modification which is an important research area. The entire topic of
self-modification merits a systematic study of the design principles that are
needed in order to support it in a clear and comprehensive way. The first
of these design principles, in our view, is that the entire system must be
organized in terms of an information structure consisting of entities and in-
formation that is associated with these entities. The term “self-modification
of software” should not be identified with the autonomous modification of
a sequence of machine instructions, or a sequence of lines in a conventional
programming language. A software system should not be seen as a struc-
ture of compiled modules that can invoke each other during execution; it
should instead be seen as an information structure that has a large number
of program fragments and scripts attached to it. Self-modification of the
“program” should then be understood as the autonomous modification of
that richly connected structure.

The architectural philosophy of the Soar system is a well-known early exam-
ple of this view of software systems, and A.I. systems are in fact often built
in this way. I propose however that the same philosophy is well motivated
for many kinds of practical software systems as well, and that it should be
considered as a standard method in practical software engineering.

A second design principle is that the information structure that holds a
software system together must be expressive enough. The question of ex-
pressivity is however a difficult one to analyze, since in principle any digital
representation of information can represent any other in some way. The
question is therefore what are the consequences of a particular representa-
tion when one constructs a knowledgebase, and when one is to define scripts
or rules.

For example, one difference between the representation of states in Soar and
information states in Leonardo is that Soar does not work with composite
expressions. Therefore it is necessary to introduce additional ‘objects’ in
order to construct e.g. a set or a record. This is certainly always possible,
but we propose that it makes the rules much more complicated, and that
manipulation of the rules therefore becomes more difficult. The same infor-
mation structure as in Soar is also used in representation languages such as
RDF and OWL.

The self-description in the Leonardo system makes extensive use of com-
posite entities and structured attribute values, and provides ample evidence
for this design principle. In addition, our discussion of autonomous self-
modification indicated that such a facilities will place even stronger demands
on the representation system. For example, both the Prolog language and
more general theorem provers for first-order logic support the use of func-
tions in the sense of first-order logic, and using them purely relationally is
a very inconvenient restriction.

A third requirement on the information structure is that it must be under-
standable for the human, which includes the requirement that its textual
representation must be easily readable. In fact, the same readability consid-
erations that we apply to programming languages should also be applied to
the textual representations of information structures. This immediately dis-
qualifies XML as a notation in this context, regardless of what advantages
it may have for other purposes.

Our approach to the topic of self-description and self-modification is to
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work bottom-up. The present report has described relatively mundane self-
description and self-modification facilities. Still, one observation that one
can make for the design described here is that it contains many interde-
pendencies. It is not just a collection of independent facilities; its different
parts depend on each other so that the whole is more than the sum of its
parts. According to this experience it is worthwhile to give full attention
to the basic layers of the self-description architecture before proceeding to
higher-level facilities, so that the synergy effects between different parts of
the basic layer become as strong as possible.

One advantage with this bottom-up approach is that it is realistic to imple-
ment the basic layers in moderate time and to obtain extensive experience
with it. By the way, there exists of course a working implementation of the
design that has been described in this report, with merely minor exceptions.

Although the present design is a software tool in its own right for existing
and forthcoming, practical applications, it is also intended as a platform for
more advanced services, in particular for autonomous action. With respect
to artificial intelligence, we propose that in order to construct an intelligent
system, and not merely computer programs that use some A.Il. techniques
the most viable strategy is to build such systems on a platform that provides
self-description and self-modification facilities in a systematic way and be-
ginning with a number of very practical aspects of software operation. The
Leonardo system whose self-description and self-manipulation facilities have
been described here is proposed as a candidate for that platform.



