
CASL

Erik Sandewall

The Leonardo Computation System

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science

Linköping University, Linköping, Sweden

Leonardo

This project memo pertains to the development of the Leonardo system.

Identified as PM-leonardo-002, it is disseminated through the CAISOR website

and has URL http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/002/

Related information can be obtained via the following www sites:

CAISOR website:

CASL website:

Leonardo system infosite:

The author:

Date of manuscript:

http://www.ida.liu.se/ext/caisor/

http://www.ida.liu.se/ext/casl/

http://www.ida.liu.se/ext/leonardo/

http://www.ida.liu.se/∼erisa/

2007-01-22

Abstract

The purpose of the research reported here is to explore an al-

ternative way of organizing the general software structure in

computers, eliminating the traditional distinctions between op-

erating system, programming language, database system, and

several other kinds of software. We observe that there is a lot

of costly duplication of concepts and of facilities in the conven-

tional architecture, and believe that most of that duplication can

be eliminated if the software is organized differently.

This article describes Leonardo, an experimental software sys-

tem that has been built in order to explore an alternative design

and to try to verify the hypothesis that a much more compact

design is possible and that concept duplication can be elimi-

nated or at least greatly reduced. Definite conclusions in those

respects can not yet be made, but the indications are positive

and the design that has been implemented so far has a number

of interesting and unusual features.

The author’s present affiliation is:

Department of Computer and Information Science
Linköping University
Linköping, Sweden

For the author’s up-to-date webpage and E-mail coordinates, please refer
to the article’s URL which is specified on the front page.

1

1 Introduction

Project Goal and Design Goals

Leonardo is a software project and an experimental software system that
integrates capabilities that are usually found in several different software
systems:

• in the operating system

• in the programming language and programming environment

• in an intelligent agent system

• in a text formatting system

and others more. I believe that it shall be possible to make a much more
concise, efficient, and user-friendly design of the total software system in the
conventional (PC-type) computer by integrating capabilities and organizing
them in a new way.

The purpose of the Leonardo project is to verify or falsify this hypoth-
esis. This is done by designing and implementing an experimental system,
by iterating on its design until it satisfies a number of well defined crite-
ria, and by implementing a number of characteritic applications using the
Leonardo system as a platform.

The implementation of the experimental system has passed several such
iterations, and a reasonably well-working system is in daily use at the time
of this writing. The following are the requirements that were specified for
that system and that are satisfied by the present implementation. We expect
to retain them in future system generations.

The system is of course organized in a modular fashion, where the modules
are called knowledge blocks and contain both algorithms, data, and interme-
diate information such as ontologies and rules. There shall be a designated
kernel consisting of one or a few knowledge blocks that is used as a basis on
which other blocks can be built, for the purpose of additional services and
for applications. The following were and are the requirements on the
kernel:

• It shall contain self-describing information and corresponding proce-
dural capabilities whereby it is able to administrate itself, its own
structure, and its own updates.

• It shall provide the extension capabilities that make it possible to
attach additional knowledge blocks to it and to administrate them in
the same way as the kernel administrates itself.

• It shall provide adequate representations for the persistent storage of
all contents of the blocks in the kernel, as well as the representations
and the computational services for performing computations on the
same contents.

• It shall provide capabilities for adaptation, in particular to facilitate
moving a system between hosts, and for defining alternative configu-
rations based on different sets of knowledge blocks.

2

• Although the experimental system will be based on an existing, con-
ventional operating system and ditto programming language, it shall
be designed in such a way that it can be ported to the weakest pos-
sible, underlying software base.

The last item in these requiements is included because in principle we believe
that the services of the operating system and the programming language
and system, should just be parts of one integrated computation system.
The longer-term goal is therefore that the Leonardo system itself should
contain the programming-language and operating-system services.

Furthermore, the facilities in the kernel have been, and will continue to be
designed in such a way that they do not merely serve the above-mentioned
requirements on the kernel itself; they shall also be general enough to provide
a range of applications with similar services.

Above the kernel and below the specific application areas and applications,
there shall also be an extensible platform consisting of knowledgeblocks that
are of general use for a number of applications of widely different character.

Main Hypothesis for the Leonardo Project

The main hypothesis for this project, for which we hope to obtain either
strong positive evidence or a clear refutation, is as follows: It is demon-
strably possible to design the kernel and a platform in such a way that (1)
repeated implementation of similar tasks is virtually eliminated in the ker-
nel and platform, and (2) the total software structure that is obtained when
several applications are built on this platform can also be essentially free
from repeated implementations of similar tasks.

Approach to the Design

The design of the system does not start by defining a programming lan-
guage, nor by defining a process structure or a virtual instruction set. In
Leonardo, the first step in the design is to define an object-oriented in-
formation structure that has some points in common with RDF (1) and
OWL (2), although also with significant differences. The notation used for
this purpose is called LDX, the Leonardo Data Expression language. It is
used for all information in the system, including application data, proce-
dures, ontologies, parameter structures, and whatever corresponds to data
declarations in our system.

The element in the LDX structure is called an entity, and entities can have
attributes and properties. Attribute values can have structure and are not
merely links to other entities; they can be constructed by the formation
of sets, sequences, and records, even recursively. Moreover, entities can be
composite expressions; they are not merely atoms with mnemonic names.
Property values are like long strings and can be used for expressing e.g. a
function definition, or a descriptive comment. Because of this expressive
power, LDX is best viewed as a knowledge representation language.

1http://www.w3.org/RDF/
2http://www.w3.org/TR/owl-features/

3

We use the term ‘entity’ rather than ‘object’ for the elements in LDX since
the term ’object’ has a connotation of message passing and a fairly restrictive
view of class hierarchy, which are not applicable in LDX.

Each knowledge block consists of a set of entity files; each entity file consists
of a sequence of entities; and each entity has its attributes and properties.

The experimental system which is based on conventional operating systems,
has in addition the following design. A Leonardo individual is a section of the
file system in a computer hosting the individual, that is, one directory and
all its sub-directories, with all the files contained in them (with the exception
of auxiliary files such as .bak files). Each entityfile in the Leonardo sense
(i.e., a sequence of entities) is represented by one file in the sense of the
file system; this file is a text (‘ascii’) file adhering to a particular syntax.
An activation of the individual is obtained by starting a run with a host
programming language, where the run is initialized using some of the files
contained in the individual. The run usually includes interactions with a
human user, but maybe also with robotic equipment, Internet information
sources and resources, or other Leonardo individuals. Entityfiles in the
individual can be read and written during the activation, for example for
storing information that has been acquired during the activation, or for
updating the software.

In accordance with the specified goals for Leonardo, as described above, the
individual shall be self-contained and be able to model its own structure,
and to update it. In that sense the individual is able to modify itself during
the activation. The individual shall also contain facilities for moving itself,
or allowing itself to be moved from one host to another, in ways that are
reminiscent of mobile agents (3).

The use of directories and files for representing aggregates of Leonardo enti-
ties is an intermediate solution. In the longer run we wish to port Leonardo
to a persistent software system that is able to represent entities directly, so
that the structures and services that are traditionally offered by an operat-
ing system and in particular by its file system, can instead be implemented
in the Leonardo kernel or platform.

Both the experimental system and the forthcoming persistent system must
use a host programming language. Functions, procedures, classes, or what-
ever other building-blocks are used in the host language will be represented
by Leonardo entities, and the definition of a function (etc) is expressed in
a property of that entity. Our main experimental system has been imple-
mented in CommonLisp; a part of the core has also been implemented in
Python. We expect that the persistent system will be based on a language
similar to Scheme. Interpretation-oriented languages such as these are the
best suited for our approach.

Notation vs. System

The language design and the system design in our approach are strongly
interdependent. The language design has come first in the present project,
but the system design is by far the largest part of the work and it has
arguably the largest novelty value. The main purpose of the present report

3http://en.wikipedia.org/wiki/Mobile-agent

4

is to describe the system design, but it is necessary to describe the language
design first.

2 Two Examples of LDX

By way of introduction we show two examples of how the Leonardo Data
Expression language, LDX, is used in Leonardo. A more detailed specifi-
cation of LDX can be found in the report “The Leonardo Representation
Language (4).

The LDX Syntax in a Simple Example

The basic LDX syntax is illustrated in attachment 1 which shows an exam-
ple of an entityfile called scandcountries containing entities representing
the Scandinavian countries Denmark, Finland, Iceland, Norway and Swe-
den. The first entity in the entityfile describes the entityfile itself; the next
one represents the type country. Each country is specified with an entity
representing its capital, named as the English name of the capital city, and
with a sequence of strings for the name of the country in its official lan-
guage or languages. We shall return later to the exact syntax that is used
in the textual representation of entityfiles, but already in attachment 1 one
can see how an entityfile contains a simple catalogue of its own contents
(through the contents attribute of the entity scandcountry), and how an
entity designating a type provides some information about the structure of
the instances of that type (through the attributes attribute of the entity
country).

Both the catalogue and the type description is simple in these examples.
This illustrates how type information in Leonardo comes in two layers. The
first layer, Catalogue and Type Specification (CAT) is built into the system
kernel and appears in our example. The second layer, Structure Specification
is considered as a higher design layer and is not included in the kernel.

Notice that entityfiles of this kind are used for expressing both programs
and data. Each named unit in a program, such as a function or a procedure,
is represented as an LDX entity, with the program code in a property of
that entity.

In general, each entity has an attribute called type whose value is another
entity representing the type of the given entity. Entities will be written in
typewriter font in this report.

One of the available types is entityfile. By convention, the first entity in
an entityfile shall always be an entity that has the type entityfile (or a
subtype of it) and that designates the file. It is used for harboring various
structural information about the entityfile.

The operation of loading an entityfile is performed by activations, and con-
sists of reading the text file for the entityfile, such as the one shown in
Attachment 1, and constructing the corresponding data structures in the
activation. The operation of storing an entityfile is the reverse operation
of re-writing its text file by converting data structures to corresponding,

4http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/001/

5

textual expressions. Loading and immediately storing an entityfile has a
null effect on its text file.

Cooperating Agents

We proceed now to an example of how a distributed computational process
is organized in Leonardo, and how the LDX language is used for represent-
ing the control information. Consider the following method description in
Leonardo:

--
-- method6

[: type method]
[: plan {[intend: t1 t2 (remex: lar-004 (query: makebid))]

[intend: t1 t3 (query: makebid)]
[intend: t4 t5 (query: propose-compromise)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]
--

This is a plan, i.e. a kind of high-level procedure, for a situation where two
separate users have to give their respective bids for some purpose, and when
both bids have been received, one user has to propose a compromise. This
requires performing the action query: three times with different arguments.
The time when the first two occurrences are to start is called t1; the third
occurrence starts at a time t4 which is defined as being when the first two
occurrences have ended. The time when the first mentioned occurrence ends
is called t2, and similarly for t3. The method consists of a set of intended
actions, and set of time constraints between them.

This plan is supposed to be executed in a particular individual (called
lar-003 in our specific run of the plan) but the first mentioned action
is to be remote executed (therefore remex:) in another individual called
lar-004.

The LDX language is used for representing this plan, or script. In this
example there is an entity called method4 with three attributes type, plan,
and time-constraints. The value of the type attribute determines what
other attributes may be present.

This examples uses more of the LDX expressivity than in the first example.
It shows how expressions in LDX may be atomic ones (symbols, strings,
or numbers), or may be formed recursively using the operators <...> for
sequences, {...} for sets, [...] for records, and (...) for forming com-
posite entities. In the example, (query: makebid) is a composite entity
that has a type and attributes, just like the atomic entity method4.

Appendix 2 contains details from an activation using the method shown
above, and it illustrates how LDX is used for the control information as the
plan or script is executed, and for retaining some of that control information
afterwards.

6

3 Information Structure

The Structure of Knowledgeblocks

The total information in a Leonardo system is organized as a set of know-
ledgeblocks, and each activation of Leonardo is initialized by loading one
specific knowledgeblock in that set. Some knowledgeblocks require others,
however, so that to load a knowledgeblock one first loads those other know-
ledgeblocks that it requires, recursively, and then one loads the entityfiles
that are specified for the given knowledgeblock itself.

Each knowledgeblock consists of a set of entityfiles. One of those entityfiles
represents the knowledgeblock as a whole and contains overall information
about it; it is called the index of the knowledgeblock. The first entity in the
index has the type kb-index which is a subtype of entityfile, and this
entity is used to designate the knowledgeblock as a whole. This means that
it can have both attributes that pertain to its role as describing its own
entityfile, and attributes that pertain to the knowledgeblock as a whole.

One important use of the knowledgeblock index is to specify where the
textfiles for other entityfiles in the same knowledgeblock are stored. The
kb index specifies the mapping from entities as understood by Leonardo,
to actual file paths in the computer or filestore at hand (5). This makes it
straightforward to move entityfiles and to redirect references to them, which
has a number of uses including that it makes it easy for several individuals
to share some of their files.

A few of the entityfiles in a knowledgeblock have special properties or play
special roles, besides its index. This applies in particular for ontology files.
To the largest extent possible, entities in the core Leonardo system and in
its applications are organized in terms of an ontology which is subject to
modularization like all other aspects of the system. The kernel contains
a ‘core ontology’, and every knowledgeblock contributes additional entities
and links to the ontology, thereby extending the core. Each activation of
an individual contains a working ontology that has been formed by loading
and integrating the ontology files of the knowledgeblocks that have been
loaded.

Entities in a knowledgeblock can be of three kinds with respect to mobility:
software specific, individual specific, or host specific. These are defined as
follows. If an individual is moved to another host, then it shall encounter
host specific entities of the new host instead of those it had on the old
host, whereas software specific and individual specific entities are retained.
On the other hand, if a knowledgeblock is exported from one individual
to another then only the software specific entities are exported and they
will be used with the individual specific entities of the receiving individual.
Individual specific information includes the history and experience of the
individual; host specific information includes e.g. the locations and prop-
erties of databases, printout devices, and other resources that the host can
offer to a visiting software individual.

In the present Leonardo design, each entityfile is required to have all its

5Some Leonardo individuals are placed on detachable memory devices, such as
USB sticks, which means that they can have activations on different hosts without
their file structure having been ’moved’ in a conventional sense.

7

members of the same kind in this respect, so that the distinction between
software specific, individual specific, and host specific applies to entityfiles
as well. The knowledgeblock index specifies only the locations of software
specific entityfiles that belong to it. There are separate catalogs for all host
specific and for all individual specific entityfiles.

Considerations for the Design of LDX

The Leonardo Data Expression Language (LDX) is a textual representation
for information structures, and the above examples have given the flavor of
this notation. The details of the syntax are described in a separate memo
that is available on the Leonardo website (6). The present subsection shall
discuss the design considerations that guided the definition of LDX.

The idea of allowing data structures to be expressed as text, and to define
input and output of data structures accordingly, was pioneered by John
McCarthy with Lisp 1.5 (7). It has been adopted in several interpretive or
’scripting’ programming languages that are used extensively, such as Perl
(8) and Python (9). It is also characteristic of high level message formats,
such as the KQML (10). With partly different goals, this tradition has also
been continued in the XML family of information representation languages,
including e.g. RDF and OWL besides XML itself.

There are several possible motivations for representing information struc-
tures textually, in text files or otherwise, and in particular:

1. For persistent storage of the information, between runs of computer
programs.

2. For presentation of the information to the user, and for allowing her
or him to edit the information.

3. As a message format, for transmitting chunks of information from one
executing process to another one.

4. For representation of internal system information, such as parameter
settings for particular programs or services.

These alternatives apply regardless of whether the text files are used for
representing pieces of code, application data, or declarations, ontologies, or
other metadata.

The choice of representation may depend on which of these are the intended
uses. In particular, if the second purpose is intended then it becomes im-
portant to have a representation that is convenient to read for the human.
The poor lisibility of XML was apparently accepted because it was thought
that XML coded information should mostly be seen and edited through
graphical interfaces, and not directly by users or developers.

In our case, we wish to use LDX for all four of the above mentioned purposes.
We also have some other design requirements:

6http://www.ida.liu.se/ext/leonardo/
7http://www.lisp.org/alu/home
8http://www.perl.org/
9http://www.python.org/

10http://www.cs.umbc.edu/kqml/

8

• The notation should be suitable for use in textbooks, research articles,
and manuals. This strongly suggests that it should stay as close to
conventional set theory notation as possible.

• Since the notation is going to be the basis for an entire computa-
tion system, including its programming-language aspects, it must be
expressive enough for the needs of a programming language.

• The notation is used for the ontology structure that is a backbone
for the Leonardo system. It must therefore be expressive enough for
what is needed in ontologies.

These requirements led to the decision of not using an existing language or
notation, but to design our own. The following aspects of the LDX language
should be emphasized in particular.

1. The use of multiple bracket types. Most programming languages use sev-
eral kinds of parentheses and brackets, such as (...), [...], {...}, and
possibly others. On the other hand, representations for information struc-
tures often use a single kind of brackets, such as (...) in Lisp and <...>
in XML and other languages in the SGML tradition. This is sufficient in
principle, but it makes it necessary to rewrite sets, sequences, and other
“naturally parenthesized” structures along the lines of

(set a b c)
(sequence a b c)

and so on. LRX uses the multiple brackets approach and allows expressions
such as

{a b c}
<a b c>

for sets and sequences, and in addition a few other kinds of brackets. This
difference is trivial from an abstract point of view, but it makes surprisingly
much difference for the ease of reading complex expressions. Compare, for
example, the LDX reprsentation of the plan entity in example 2, which was
as follows:

--
[: type method]
[: plan {[intend: t1 t2 (remex: lar-004 (query: makebid))]

[intend: t1 t3 (query: makebid)]
[intend: t4 t5 (query: propose-compromise)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]
--

with a representation of just the second line of that information in an XML-
style (11) single-bracket notation:

--
<plan>

<planstep-set>
<planstep>

<intendstep>
<fromtime>t1</fromtime>
<totime>t2</totime>

11http://www.w3.org/XML/

9

<remote-execute>
<execute-at>

<indiv-name>lar-004</indiv-name>
</execute-at>
<execute-what>

<query-action>
<phrase>makebid</phrase>

</query-action>
</execute-what>

</remote-execute>
<intendstep>

<planstep>
--

Even the Lisp-style single-bracket representation is much less convenient to
read than the multi-bracket representation:

--
(maplet type method)
(maplet plan

(set (record intend: t1 t2
(term remex: lar-004 (term query: makebid)))

(record intend: t1 t3 (term query: makebid))
(record intend: t4 t5 (term query: propose-compromise))

))
(maplet time-constraints

(set (constraint afterall (set t2 t3) t4)))
--

In a historical perspective it is interesting to compare the great interest in
legibility issues when programming languages are designed, with the virtu-
ally complete disregard for the same issue in the design of so-called markup
languages for representing structured information in general.

2. The use of composite expressions for entities. LDX is similar to e.g. OWL
in that it is based on the use of entities to which attributes and properties
are assigned. In the simplest cases, entities are written as identifiers and
attributes are expressions that are formed using set, sequence, and record
forming operators. However, entities can also be composite expressions that
are formed using a symbolic function and one or more arguments which are
again atomic or composite expressions, for example as in

(payment: (membership: (member-number: 1452)
(year: 2006)))

for “the payment for the membership during year 2006, by member number
1452”, or

(b: 356 (remex: lar-004 (query: makebid)))

for “the instance of the action (query: makebid) that was initiated at
time 356 for execution in the individual lar-004“. Entities formed by
composite expressions share the same characteristics as atomic entities, for
example that they have a type and can be assigned attributes and properties,
and that they can be included in entityfiles with their assignments.

10

The YAML (Yet Another Markup Language) (12) allows assigning attributes
to composite structures, but does not make it possible to include such a
composite structure as a term in a larger expression.

The use of composite entities has turned out to be very useful in the design of
ontologies and other knowledge representations. It is included in the kernel
of the Leonardo system and is used in various ways even for representing
“system” information in the kernel, as the second introductory example
has showed. Another example is for intermediate structures in the version
management subsystem. On higher levels of the design, there is an extension
of LRX for representing formulas in first-order predicate calculus, in which
case composite entities are identified with terms in the sense of logic.

3. The use of event-state records. Records are formed in LRX using the
notation of the following examples:

[date: 2006 10 24]
[quantity: meter 42195]
[quantity: (per: meter second) 46]

for the date of October 24, 2006, for the quantity of 42195 meters, and
for the quantity of 46 meters per second, respectively. Records differ from
composite entities in that they are passive data objects that can not be
assigned attributes or properties.

One kind of records, called event-state records, actually allow some of their
components to change, but in restricted ways. They are used for represent-
ing the current state of an action instance that the system is performing
during a period of time, or the current observation state of an event that
the system observes. An event record such as (simple example)

[move-robot: r14 pos12 pos14 :start 16:22
:velocity [quantity: mps 4]
:current-pos [xy-coordinate: 47 12]]

where mps is an abbreviation for (per: meter second), may represent
the current state of an event where the robot r14 moves from position
pos12 to position pos14. The record contains the three direct arguments of
the operator move-robot:, and after them the three state variables of the
event with the respective labels :start, :velocity, and :current-pos.
The values of the state variables, except :start, can be changed while the
event executes in order to reflect the current state of the robot concerned.
When the event ends then the ending time is added as an additional state
variable, other state variables are added or removed so that the record
becomes a representation of the event as a whole and its final effects, the
record freezes, and no further changes are possible in it.

An event-state record such as this may be the value of an attribute of an
action-instance entity as formed by, for example, the symbolic function b:
that was introduced earlier.

The Leonardo Ontology

The Leonardo Ontology is similar to other “top level ontologies” that have
emerged in recent years, but it differs from them in two ways. First of all,

12http://www.yaml.org/

11

the ontology is intended to be used as the framework for the software system
Leonardo, and in particular for its autodescription. It is therefore modular
with much smaller granularity than in other ontologies, and it conforms to
the knowledgeblock structure of the Leonardo system: each knowledgeblock
makes its own contributions to an initial core ontology. Furthermore, the
core ontology consists of those constructs that are needed for internal system
purposes, although they have been designed in such a way that they also
constitute a platform for the ontologies needed by applications. This choice
has the effect that the core ontology is small and pragmatic, and that it
does not attempt to formulate a general, philosophical basis for its design.

Secondly, the ontology uses the Leonardo Data Expression Language, LDX,
which means in particular that ontological terms (i.e., nodes in the ontol-
ogy) can be composite expressions in the ways that were described earlier.
They are not restricted to symbols with more or less mnemonic or struc-
tured names. This provides a powerful means of expression in particular for
applications.

Beyond these differences, the Leonardo Ontology shares many characteris-
tics with other ontologies, in particular, the requirement that it shall contain
the means for describing its own structure.

Additional details about the Leonardo Ontology can be found in Appendix
3.

4 The Leonardo Kernel and Platform

The Structure and Constituents

The Leonardo Kernel consists of four knowledgeblocks, beginning with the
core which is called core-kb. By convention, the names of knowledgeblocks
end with “-kb“. The core satisfies all the requirements on the kernel except
version management. In addition there is chronos-kb that implements a
representation of calendar-level time and of events in the lifecycle of an indi-
vidual, config-kb that is used for creating new copies (”individuals”) of the
system and for configuring old and new individuals, and finally syshist-kb
that implements version management. Both reproduction and version man-
agement add entries to the system’s history of its own activities which is
maintained by chronos-kb. For example, a so-called synchronization in the
sense of version management is treated as an event in the representation
provided by chronos-kb.

The more basic aspects of self-modification in the system are implemented
in core-kb, however. This includes, for example, facilities for allowing the
user to edit attributes and properties of an entity, and to add entities and
entityfiles.

The core part of the Leonardo ontology, called coreonto, is an entityfile
within the the initial knowledgeblock core-kb. Every other knowledge-
block, including the other three kernel blocks, can have their own ontology
files that extend preceding knowledgeblocks.

12

The Core Knowledgeblock, core-kb

The following are the contents of the core block, as organized in a number
of entityfiles:

• The initial loading or ’bootstrap’ machinery. It consists of a few
entityfiles that are the very first ones to be loaded when an activation
is started, and it prepares the ground for subsequent loading.

• The index file of the core knowledgeblock. (core-kb).

• The ontology file of the core knowledgeblock, which is at the same
time the core or “top-level” ontology of Leonardo as a whole. (coreonto).

• Miscellaneous additions to the core ontology that are needed for his-
torical or other reasons. (toponto).

• Definitions of procedures for loading entityfiles and parsing the tex-
tual representation of entities. (leo-preload, leoparse).

• Definitions of elementary operations on the structured objects in the
Leonardo data representation, such as sequences, sets, and records.
(leoper).

• Miscellaneous auxiliary functions that are needed in the other entity-
files but which have a general-purpose character. (misc).

• Major timepoints in the history of the present instance of the system
(mp-catal).

• Functions for administrating entities, entityfiles, and knowledgeblocks,
for example, for creating them and for editing their attributes. (leo-admin).

• Functions for writing the textual representation of entityfiles, and for
producing the textual representation of Leonardo datastructures from
their internal ones. (leoprint).

• Definitions for a simple executive for command-line operation of the
system. (lite-exec).

The entityfile mp-catal mostly serves chronos-kb, but it is initialized in
the core block which is why it is present in this list.

Many of these blocks are straightforward and do not require further com-
ment here; their details are described in the systems documentation. I have
already described and discussed the data format for the textual represen-
tation of entityfiles. The files for loading and storing that representation
(leo-preload, leoparse, leoprint) are direct implementations of the
data format. Furthermore I shall discuss the ontology, the bootstrap ma-
chinery, the machinery for cataloguing entityfiles using knowledgebase index
files, and the facility for defining multiple configurations within an individ-
ual. Final sections will describe the other parts of the kernel, namely, the
facility for administrating and ‘remembering’ information about calendar-
time-level events in the history of a Leonardo individual, and the facility
for version management of entityfiles.

13

The Leonardo Startup Machinery

One of the basic requirements on the Leonardo Kernel is that it shall be
able to administrate itself, and as well it shall provide facilities for self-
administration of other knowledgeblocks that are built on top of the four
knowledgeblocks in the kernel. This self-administration requirement in-
cludes several aspects:

• All program code in an implementation shall be represented as enti-
tyfiles, without exceptions. This guarantees that general facilities for
administration and analysis of Leonardo software can apply even to
the initial parts of the bootstrap process.

• Since interactive sessions with the Leonardo system typically involve
loading information from the textual representation of entityfiles,
modifying their contents, and re-storing those entityfiles, it shall be
possible to edit all entityfiles for software in that way as well.

• However, it shall also be possible to text-edit the file representation
of an entityfile and load it into an activation of Leonardo, in order
for the edits to take effect there.

• In addition, there shall be a version management system that applies
to software entityfiles like for all other entityfiles.

The first three of these aspects is implemented using the core-kb know-
ledgeblock; the fourth one using the separate syshist-kb knowledgeblock.
Notice, however, that the first aspect is a step towards (i.e., facilitates
greatly) the fourth one.

The startup process for Leonardo activations is actually a good illustration
of how a somewhat complex process can be organized around its symbolic
data structures. Appendix 4 describes this in some detail.

Configuration Management

One Leonardo individual may contain the software for a number of applica-
tions, for example for simulation, for robotics, for document management,
and so on. However it may not be necessary, or even desirable to have all
of that software and its associated application data present in a particu-
lar activation of the system. The individual should therefore have several
configurations that specify alternative ways of starting an activation. The
startup files that were described above serve to define such configurations.
In particular, the kb-included attribute specifies which knowledgeblocks
are to be loaded when the system starts. Knowledgeblock dependencies
whereby one knowledgeblock may require some other knowledgeblocks to
be loaded first are supported, and are represented by particular attributes
on the knowledgeblocks themselves.

Each configuration may also make some other specifications, for example for
extra information that is to be loaded in order to start it. Furthermore, each
configuration shall specify its user interface, in the sense of a command-line
interpreter, a GUI, and/or a web-accessible service. This is done with the
execdef attribute on the startup-file that was described in Appendix 4.

14

The Knowledgebase Index Files

Each Leonardo individual is represented as a directory structure, consist-
ing of a top-level directory and its various subdirectories on several levels,
with their contents. In a predecessor to Leonardo, the Software Individuals
Architecture, we used fixed conventions for where the entityfiles would be
located within the directory structure, and relative addressing for accessing
them. This turned out to be too inflexible, and for Leonardo we have a
convention where each entity representing an entityfile is associated with
the path to where the textual entityfile is to be found.

At first it would seem that this should be one of the attributes of the entity
that names and describes the entityfile, and that is the first element in the
entityfile. However, it would be pointless to put that attribute within the
file itself, since the system needs it in order to find the file so it can load
it. One can think of two ways out of this dilemma: either to divide the
attributes of an entity into several groups that can be located in different
physical files, or to construct a composite entity with the entityfile entity
as its argument.

Both approaches have their pros and cons. Leonardo does provide a mech-
anism for overlays whereby one can introduce entities and assign some at-
tributes to them in one entityfile, and then add some more attributes in
an overlay, which is a separate file. However, that facility is not part of
the kernel, and we are reticent of putting too much into the kernel. Also,
overlays require the entity as such to have been introduced first, before the
overlay is added. The attribute for the location of an entityfile is needed
before the entity itself is available.

We have therefore chosen the other alternative. The following is a typical
entity in an index file for a knowledgeblock, such as core-kb:

-- (location: leoadmin)

[: type location]
[: filepath "../../../leo-1/Coreblock/leoadmin"]

@Comment
Loading entityfiles and knowledgeblocks, creating new ones,
etc.

It defines the location of the entityfile leoadmin by introducing a composite
entity (location: leoadmin) whose type is location, and assigning a
filepath attribute to it(13). Among the files that occur at the beginning
of the startup phase, self-kb, kb-catal and core-kb consist mostly or
entirely of such entities.

13Actually this attribute is called filename in the current system, for historical
reasons. This is due to be changed.

15

5 Other Kernel Knowledgeblocks

Until this point we have described the design of the core knowledgeblock,
core-kb. The Leonardo kernel also contains three other knowledgeblocks,
beginning with chronos-kb that enables the Leonardo activation to register
events and to have an awareness of the passing of time and a notion of its
own history. Based on it there is the reproduction facility, config-kb, and
the versions management facility, syshist-kb.

Both reproduction and version management are essential for the evolution
of the Leonardo software through concurrent strands of incremental change
in several instances of the system, i.e. several Leonardo individuals. This is
the decisive factor for considering these to be an integral part of the system
kernel. In addition, by doing so we also provide a set of tools that can be
used in applications of several kinds. – The importance of having software
tools for version administration do not need to be explained; it has been
proven through the very widespread use of tools such as CVS (14).

The following are brief summaries of the services that are provided by these
knowledgeblocks in the kernel:

Awareness of Time in the Leonardo Individual

The basic contributions in chronos-kb are the following:

• A facility for defining and registering significant timepoints. Such a
timepoint is registered with its date, hour, minutes, and seconds, and
it can be associated with the starting or ending of events.

• A facility for introducing events in a descriptive sense: the system is
told that a particular event starts or ends, and registers that infor-
mation.

• A facility for defining sessions which are composite events correspond-
ing to the duration of one activation of the Leonardo system, and for
defining individual events within the session.

All of this information is built up within the Leonardo system, and is main-
tained persistently by placing it in entityfiles.

System History and Version Management

The system history is a kind of skeleton on which several kinds of contribu-
tions can be attached. The first of these is the version management facility
which consists of two parts, one that is local within an individual, and one
that requires the use of two individuals.

Local version management works as follows. The individual maintains a
sequence of archive-points which are effectively a subset of the timepoints
that are registered by chronos-kb. Archive-points have names of the form
ap-1234, allowing up to 9999 archivepoints in one individual. Each archive-
point is associated with the archiving of a selection of files from one par-
ticular knowledgeblock. The archiving action takes a knowledgeblock as

14http://www.nongnu.org/cvs/

16

argument, obtains a new archivepoint, and for each entityfile in the know-
ledgeblock it compares the current contents of the file with those of the latest
archived version of the same file. It then allocates a new directory, named
after the new archive-point, and places copies there of all entityfiles where a
nontrivial difference has been identified. The archive-point is an entity that
is provided with attributes specifying its timepoint, its knowledgeblock, the
set of names for all entityfiles in the knowledgeblock at the present time,
and the set of names for those entityfiles that have been archived.

However, the comparison between current and archived version of the enti-
tyfile also has a side-effect on the current file, namely, that each entity in the
file is provided with an attribute specifying the most recent archive-point
where a change has been observed in that particular entity. This makes
it possible to make version management on the level of entities, and not
merely on entire files, which is important for resolving concurrent updates
of the same entityfile in different individuals.

Local version management is useful for backup if mistaken edits have de-
stroyed existing code, but it does not help if several users make concurrent
changes in a set of entityfiles. This is what two-party version management is
for. In this case, there is one ’server’ individual that keeps track of updates
by several users, and one ’client’ that does its own updates and sometimes
’synchronizes’(15) with the server. Such synchronization must always be
preceded by a local archiving action in the client. Then, downward syn-
chronization allows the client to update its entityfiles with those changes
that have been incorporated into the server at a time that succeeds the lat-
est synchronized update in the client. If the current entityfile version in the
client is not a direct or indirect predecessor of the version that is presently
in the server, then no change is made. After that, an upward synchroniza-
tion identifies those entityfiles whose contents still differ between the server
and the client. If the version in the server precedes, directly or indirectly,
the current version in the client, then the current version in the client is
imposed on the server.

In the remaining cases, the system attempts to resolve concurrent changes
in a particular entityfile by going to the level of the individual entities. If
that is not sufficient, the user is asked to resolve the inconsistency.

A particular technical problem arises because these synchronization actions
require the Leonardo activation to read and compare several versions of the
same entityfile. The problem is that normally, reading such a file makes
assignments to attributes and properties of the entities in the file, but for
synchronization purposes one does not wish the definitions in one file to
replace the definitions that were obtained from another file. This problem
is solved using composite entities, as follows: The procedure for reading
an entityfile in LDX format has an optional parameter whose value, if it
is present, should be a symbolic function of one argument. If it is absent
then the file is read as usual. If it is present, on the other hand, then that
function is applied to each entity that is read from the file, obtaining a
’wrapped’ entity, and the attributes and properties in the file are assigned
to the wrapped entity. After this, the comparisons and updates can proceed
in the obvious way.

We have now seen two examples of how symbolic functions and composite

15This is the usual term, although it is of course a terrible misuse of the word
’synchronize’.

17

entities have been useful even for internal purposes within the kernel. This
illustrates the potential value of reorganizing the overall software architec-
ture so that certain, generally useful facilities are brought into, or closer to
the system kernel, instead of treating them as specific to applications.

Configuration and Reproduction of Individuals

One of the important ideas in Leonardo is that the system shall be self-
aware, so that it is able to represent its own internal state, to analyze it
and to modify it, and it shall be able to represent and “understand” its
own history. Furthermore, all of this shall occur in persistent ways and over
calendar time, and not only within one activation or “run” of the system.

We believe that these properties are important for a number of applications,
but in particular for those that belong to, or border on artificial intelligence,
for example for “intelligent agents”. A system that acquires information
during its interactions with users and with the physical world, and that is
able to learn from experience for example using case-based techniques, will
certainly need to have persistence. It does not make sense for the system
to start learning again each time a new activation is started. It is then a
natural step to also provide the system with a sense of its own history.

One must then define what is “the system” that has that persistence and
sense of its own history. What if the software is stored in a server and is
used on a number of thin clients that only contain the activations? What if
several copies of it are taken and placed on different hosts? What if a copy
of the system is placed on a USB stick so that it can be used on several
different hosts?

In the case of Leonardo, the answer is in principle that each individual is a
self-contained structure that contains all of the software that it needs. Dif-
ferent individuals may contain equal copies of that software, but in addition
each of them contains its own history and its own “experience”. However,
it is also perfectly possible for each individual to modify its software so that
it comes to differ from the software of its peers.

What if additional copies (individuals) are needed, for example because
additional persons wish to use the system? The simplest solution is to have
an archive individual from which one takes copies for distribution, but in
any case that archive individual will change over time, so a notion of version
or generation of the entire individual will be needed. But more importantly,
separate strands of the Leonardo species may develop in different directions,
and a particular new user may be more interested in obtaining a copy of his
friend’s Leonardo rather than one from the archive.

In principle, a new individual that is obtained from a Leonardo individual
by copying its software but erasing its history and other local information,
is to be considered as an “offspring” and not as a “copy”. If the copy is
perfect and all history is preserved in it, then it shall be called a “clone”.
The administration of clones offers additional problems that will not be
addressed here.

For offspring, the following conventions are adopted. The making of an off-
spring from an individual is to be considered as an action of that individual,
and is to be recorded in its history. Each individual has a name, and the off-
spring of a particular individual are numbered from 1 and up. No individual

18

is allowed to have more than 999 offspring. The first individual under this
scheme was called lar, and its direct offspring are called lar-001, lar-002,
etc. The offspring of lar-002 are called lar-002-001, lar-002-002, and
so forth. The abbreviation lar stands for “Leonardo Ancestry Root”.

The overall convention for the population of Leonardo individuals is now
that new individuals can only be produced as offspring of existing ones, so
that the parent is aware of the offspring being produced and so that no
name clashes can occur in the population. Additional information about
when and where offspring are produced is of course valuable, but can be
considered as add-on information.

Notice in particular that version management information is not inherited
by offspring, and they start with an empty backup directory as well as an
empty memory of past events.

In principle, each new individual should obtain a copy of all the software
of its parent. In practice this is quite inconvenient when several individuals
are stored on the same host; one would like them to be able to share some
of the software files. This has been implemented as follows: Each individual
may identify another individual that is known as its “provider”, and when
its index files specify the locations of entityfiles, they may refer both to files
in its own structure, and files in its provider. An individual is only allowed
to update entityfiles of its own, and is not supposed to update entityfiles in
its provider (16). When a new individual is created, then it is first produced
with a minimal number of files of its own, and it relies on its parent as its
provider for most of the entityfiles. After that, it is up to the offspring to
copy whatever software it needs from its provider to itself, until it can cut
that umbillical cord. Only then is it in a position to migrate to other hosts.
Besides, given adequate software, it may be able to import knowledgeblocks
and entityfiles from other individuals and not only from its parent.

What has been said so far applies to Leonardo-specific software. In addition,
applications in Leonardo will often need to access other software that is
available in the individual’s host for its current activation, for example text
editors and formatters. The kernel contains a systematic framework for
administrating this.

Facilities for reproduction of individuals were first developed in the earlier
project towards the Software Individuals Architecture. In that project we
considered reproduction and knowledge transfer between individuals to be
very central in the architecture, besides the abilities for self-modelling. In
our present approch reproduction has been relegated to a somewhat less
central position, due to the experience of the previous project.

Other Facilities in the Kernel

The four knowledgeblocks in the kernel also contain a number of other fa-
cilities that have not been described here. In particular, there is a concept
of a “process” in a particular sense of that word. Leonardo processes are
persistent things, so they exist on calendar time and not only within one
activation of the system. Each process has its own subdirectories where it

16This restriction is not enforced at present, but users violate it at their own
risk.

19

maintains its local state between activations, and each activation is an acti-
vation of one particular process. Each process can only have one activation
at a time, but different processes can have activations concurrently.

6 Platform Facilities

The next layer in the Leonardo software architecture, after the kernel, is
called the platform. This layer is under construction and is intended to be
open-ended, so that new contributions can be added continuously as the
need is identified and the implementation is completed. The following are
some platform-level knowledgeblocks that exist and are in use at present.

Channels

Leonardo channels are a mechanism for sending messages between individu-
als, for the purpose of requesting actions or transmitting information. Each
channel connects two specific individuals for two-way, ansynchronous com-
munication and is associated with a number of attributes, including one
specifying the data format to be used for the messages. The LDX data
format is the default choice.

Communicable Executive

The initial example in this article describing the interactions between two
Leonardo individuals was executed using our communicable executive (CX).
The basic command-line executive in the kernel is not sufficient for it. CX
performs incessantly a cycle where it does three things:

• Check whether an input line has been received from the user. If so,
act on it.

• Check what messages have arrived in the incoming branch of the
currently connected channels for this individual. If so, pick up the
messages and act on them.

• Visit all the currently executing actions in the present individual,
and apply an update procedure that is attached to each of them.
This procedure may perform input and output, update the local state
of the action, and terminate the action with success or failure, if
appropriate.

The communicable executive is a natural basis for several kinds of appli-
cations, including for some kinds of robotic systems, dialog systems, and
simulation systems.

7 Extending the Kernel into Applications

Until this point we have described the overall design of Leonardo and in
particular its present kernel. We have already a number of applications
that operate on the basis of this kernel, and that are represented by around

20

fifteen knowledgeblocks in various stages of completion. Some are in daily
use; some are still being developed.

In line with the plans for the Leonardo project as a whole, it is our intention
to complete a sufficient number of these and to verify that it has been
possible to implement both the kernel and those applications without any
major duplication of representation schemes and services. It is still too early
to report on the confirmation (or refutation) of that hypothesis, and this
must be a topic of a later publication. At any rate we have not seen any
signs yet of it being refuted, and the outlook is promising.

8 Discussion and Conclusions

Design Considerations

Some aspects of the rationale for the design of the present Leonardo system
have been explained from time to time in the previous sections. Overriding
aspects, such as the absence of datatype declarations and of a conventional
database system in the kernel will be discussed in the subsection on software
consolidation, below. Here we shall mention one design consideration of
more specific nature.

Namespace for entity names. It may seem strange that the names of entities
are global, and there is no explicit facility for having multiple namespaces.
The reason for this is that there is a more general facility that can also
provide the need for namespaces, namely the use of symbolic functions and
composite entities. Suppose, for example, that one would like to use the
symbol key both for the key for a lock, and for the key on a keyboard, and
that these are introduced in two different knowledgeblocks, security-kb
and equipment-kb. One could then simply represent them as

(local: key security-kb)
(local: key equipment-kb)

Other choices of qualifiers are also possible; one might represent the former
kind as

(usedfor: key lock)

but notice that the term lock may also be ambiguous. If the ambiguous
identifier, such as key or lock appears in a context, then the proper meaning
of it there has to be determined by inference.

History and Current Status of the Experimental
Implementation

The design for Leonardo started in early 2005. It was based on the ear-
lier experience with the Software Individuals Architecture (SIA), and with
several earlier systems before that. The SIA was used as the platform the
a major part of the Linköping-WITAS Robotic Dialog Environment, RDE
(17), which contributed valuable background for the present system.

17http://www.ida.liu.se/ext/casl/

21

During the almost two years of Leonardo development we have tried to make
‘laboratory notes’ documenting what steps were taken, what design changes
were made, and so on. We shall study the possibility of extracting a more
concise account of essential design decisions and design changes from these
laboratory notes.

The present author uses a Leonardo-based software application as his stan-
dard tool for the preparation of articles and other documents and for website
pages, including the extensive CAISOR website (18). This is a way of check-
ing that the system is always kept operational while it is being revised and
extended continuously.

The first additional user of Leonardo, besides the present author, started
using the system in October, 2006.

The Need for Software System Consolidation

The main goal of the Leonardo project, as we stated initially, is to explore
the possibility of obtaining a much simpler design of the overall software
system in a computer, in particular by reorganizing and realigning its major
parts so as to eliminate duplication of concepts and of software facilities. It
is not yet possible to evaluate the concrete, experimental Leonardo system
design against that goal, but it is possible to identify how the new design
relates to some of the concrete redundances in conventional systems. They
are as follows:

Duplication of procedural language between operating system (shell scripts)
and programming languages. In Leonardo there is a host language which
may vary between generations of the system, but which shall in any case
be a language of the ‘interpretive’ or ‘script’ type, such as Scheme, Python,
etc. The Leonardo kernel provides the command-script situation, and the
language can be extended with more facilities, and restricted using e.g. type
system, in order to satisfy the needs of other usage situations.

Duplication of notations and systems for type declarations of data structures,
between programming languages, database systems, communication systems
e.g. CORBA, etc. The two-layered approach to the type system in Leonardo
was explained in the beginning of section 2. Exactly because the type system
is not built into the system kernel, we foresee that it shall be possible to
design it in such a flexible way that it can satisfy the varying needs of
several kinds of contemporary type systems. This is of course one aspect of
the main design hypothesis that was stated at the beginning of the present
report.

Scripting languages in various software tools, for example spreadsheet sys-
tems, webpage languages such as Javascript, etc.. The idea is that such
tools ought to be implemented based on the Leonardo kernel and inherit its
facilities, including in particular the use of the host language.

Duplication between the file-directory system and database systems. Al-
though the present, temporary implementation of Leonardo is based on a
conventional OS and makes fairly extensive use of its file system, the long-
term idea is to replace it with an implementation of entities and aggregates

18http://www.ida.liu.se/ext/caisor/

22

of entities that is done on directly on the base software. This new infor-
mation structure shall then subsume what the file-directory system does
today.

In the continued work on Leonardo we are going to build a number of
applications for the purpose of obtaining additional experience with these
and other aspects of duplication. At the same time we shall be vigilant
about what new duplications may arise as the system and the applications
grow in size and complexity.

References

Due to the character of this material, most of the references are to websites
that provide information about a particular language or system. These
references have been placed in footnotes on the page where the reference
occurs.

References to published articles and released reports from the Leonardo
project can be found on the project website, (19). References to published
articles from the preceding Software Individuals Architecture project (SIA)
can be found on its past project website (20).

19http://www.ida.liu.se/ext/leonardo/
20http://www.ida.liu.se/ext/caisor/systems/sia/page.html

23

Appendix 1: A very simple entityfile

The following is a very simple example of an entityfile, for the purpose of
illustrating their charateristics.

Notice in particular how entities are separated by a line of dashes. This line
is syntactically significant, and it has been chosen because of how it facili-
tates reading the file. Conventional ways of designing a syntax for complex
objects would rather have resulted in a notation where the separation be-
tween two entities consists of an ”end” symbol immediately followed by a
”begin” symbol for the next entity. We maintain that the dashed-line syntax
makes it much easier for the reader to orient herself or himself in the text.
Admittedly it does not allow recursive nesting of entity-descriptions, but
that is not really needed. (It is possible however to subdivide an entityfile
into sections, where each section begins with a line of equality-signs instead
of dashes. This is probably as much hierarchy as we would need within one
and the same entityfile).

-- scandcountry

[: type entityfile]
[: contents <scandcountry country denmark finland iceland

norway sweden>]

-- country

[: type thingtype]
[: subsumed-by spatial-entity]
[: attributes {ownnames capital}]
[: create-proc cre-country]

-- denmark

[: type country]
[: ownnames <"Danmark">]
[: capital Copenhagen]

-- finland

[: type country]
[: ownnames <"Suomi" "Finland">]
[: capital Helsinki]

-- iceland

[: type country]
[: ownnames <"Island">]
[: capital Reykjavik]

24

-- norway

[: type country]
[: ownnames <"Norge" "Noreg">]
[: capital Oslo]

-- sweden

[: type country]
[: ownnames <"Sverige">]
[: capital Stockholm]

ooo

25

Appendix 2: A Session with two Interacting Agents

Section 2 in this article described the representation of an action plan in
LDX. Consider an interactive session where this plan is put to use. There
are two open command-line windows on the computer screen or screens, one
for each of the two Leonardo individuals lar-003 and lar-004 which may
be located on the same computer or on two different ones. The interactions
on lar-003 go as follows, after the obvious startup of the system:

025-> adg (achieve: demo example A)

026-> selmeth method6

The command prompt consists of an interaction number and the characters
->; user input consists of a command often followed by an argument. The
adg command requests the system to adopt a particular goal which is char-
acterized by the command’s argument. In the full system this should lead
to a process for obtaining a plan, either by planning from first principles
or by retrieving a plan from an archive. However, in this example we have
suppressed the planning phase using the second command, selmeth, which
simply instructs the most recently introduced goal which plan to use. The
plan starts to execute when the user enters the command seg, for ’start
execute goal’:

027-> seg
> (adogoal: 25 (achieve: a b c))

029=>
----> Please make your bid: 444

030=> [28] Succeed, result: 444

031=>
032=>
----> Please propose a compromise: 666
033=> [31] Succeed, result: 666
Completed goal: (achieve: a b c) adopted at: 25

The following is what happens. When the user types in seg, the action
(query: makebid) starts to execute in the individual at hand, which has
the effect of displaying the prompt Please make your bid: in the indi-
vidual’s user dialog. At the same time, the first action in the plan starts
to execute remotely, in the other individual, where it displays a similar
prompt on its screen. (The seemingly redundant command prompts reflect
intermediate stages in the system’s internal processing).

The wordings of the prompts is obtained because the arguments of query:
are separately defined entities that have the wording as an attribute. The
following is the definition of the entity makebid:

--
-- makebid

[: type output-phrase]
[: englishphrase "Please make your bid:"]
[: swedishphrase "Var god ge Ditt bud:"]

26

--

The user for the first individual answers the prompt with the value 16200,
which counts as interaction 029, and the system confirms completion of that
action in interaction 030. The first individual also receives the value from
completion of the action in the other individual, in interaction 031. The
top level executive listens to input both from the user and in channels from
other agents/individuals.

The completion of the first two actions allows lar-003 to start performing
the third action in the plan, leading to interaction 032, after which the goal
is reported as completed in interaction 033.

The information about what actions were performed, for what reason, and
with what results, is represented as LDX data structures and is therefore
available for inspection and for further processing. The command log, for
’list old goals’, displays the current information about the goal used above,
as follows:

050> log
(adogoal: 25 (achieve: a b c))
[: plan-name method6]

method6
[: type method]
[: plan {[intend: t1 t2

(remex: lar-004 (query: makebid))]
[intend: t1 t3 (query: makebid)]
[intend: t4 t5 (query: propose-compromise)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]

This is the actual plan that the system uses for achieving the goal, and
since in our case we told the system what plan to use, it is not surprising
that this is the same structure as in the method except for the addition of
the :done elements that represent that the action-intention in question has
been completed.

Notice that the logs are also expressed in LDX. The command loa, for ’list
old actions’ displays the actions that were performed in the first individual,
as follows:

075-> loa
(b: 27 (remex: internal-ch-02 (query: makebid)))
[: type action-instance]
[: state [requested:]]
[: subactions <>]
[: outcome [result: 555]]
[: endtime 32]

(b: 28 (query: makebid))
[: type action-instance]
[: state [result: 444]]
[: subactions <(b: 29 (ask: makebid))>]
[: outcome [result: 444]]
[: endtime 31]

(b: 29 (ask: makebid))

27

[: type action-instance]
[: subaction-of (b: 28 (query: makebid))]
[: outcome [result: 444]]
[: endtime 30]

(b: 31 (query: propose-compromise))
[: type action-instance]
[: state [result: 666]]
[: subactions <(b: 32 (ask: propose-compromise))>]
[: outcome [result: 666]]
[: endtime 34]

(b: 32 (ask: propose-compromise))
[: type action-instance]
[: subaction-of (b: 31 (query: propose-compromise))]
[: outcome [result: 666]]
[: endtime 33]

The functions adogoal: and b: are further examples of functions that
form composite entities. The function b: takes two arguments, namely
a timepoint and an action, and forms an entity for the action instance
that is/was invoked at the time given in the first argument. The function
adogoal: is similar but it forms a goal instance from a timepoint and a
goal, representing the particular goal instance that results when the goal is
adopted at a particular timepoint.

Actions are hierarchical, so actions can have subactions, or more precisly,
each action instance can have sub-action-instances. In our example, a
query: action invokes an ask: subaction that makes the prompt and re-
ceives the answer. If the answer is malformed then query: asks the user
again until a correctly formed answer is obtained.

Each action instance has a starting time and an ending time, and is execut-
ing between those times. The executive in a particular individual visits all
currently executing action instances cyclically and applies an update proce-
dure for each of them; the update procedure is determined by the ’verb’ or
operator in the expression for the action, for example query:. It is therefore
straightforward to define actions that map incoming sensor data to outgo-
ing actuator data in each cycle during their execution period. Our example
here does not illustrate this possibility.

When an action instance or goal instance terminates, it obtains an outcome
attribute and an endtime attribute. The latter is the timepoint of termi-
nation. The outcome attribute represents whether the action succeeded or
failed, using records beginning with result: and fail:, respectively. Re-
sult records can report a ’value’ that results from the action, as well as
ancillary information; fail records can report the character of, and possibly
the reasons for the failure. The outcome of an action is reported to the
superaction from which the current action was invoked, or the goal instance
invoking it, or the other agent invoking it in the case of remote execution,
or a combination of these.

Pursuit of a goal is straightforward if there is an appropriate plan and if all
the actions in the plan succeed. If some action fails, and unless a remedy for
the failure has already been defined in the plan, then replanning or resort to
the user must follow. Replanning has not been implemented in the current

28

system, but it is of course on the agenda for future work.

29

Appendix 3: The Leonardo Ontology

Figure 1 shows the top-level structure of the Leonardo Ontology. Two
attributes of particular importance are shown in the diagram as arrows,
namely the type attribute (black v-type arrow) and the ako attribute, or
subsumption, which is shown as a red solid arrow. (Here “ako” stands for
“a kind of”, as usual). The type attribute is obligatory for all entities, and
its value is always another entity. The value of the subsumption attribute
shall be a set of entitites, although the entitites in the diagram have at most
one member in their subsumption attribute.

The graph formed by the type attribute assigns an order to each entity;
the order being a non-negative integer. The type of a zero-order entity
shall again be zero-order; the type of a k-order entity shall be k-1 if k is 1
or greater. Zero-order, first-order, and second-order entities are displayed
with blue, yellow, and salmon color, respectively.

Four zero-level entities are used as roots for structures of higher-order enti-
ties, namely thingtype, qualitytype, spacetime-type, and descriptortype.
Each of these structures is a flat tree with respect to the type attribute, but
it can contain more structure using the ako attribute.

The qualitytype hierarchy is easy to grasp using figure 1 and the more
detailed diagram in figure 2. For example, light-red is a kind of red, and
both light-red and red are colors, so that their type attribute is color.
Furthermore, color is a kind of visible-quality which in turn is a kind
of quality. It is clear that the ako relation is transitive, and that the type
relation is not.

All of color, visible-quality, and quality have the same type, namely
qualitytype. That last entity is synthetic, in the sense that it is needed
for the logical coherence and proper operation of the system, and it does
not have any particularly strong intuitive motivation.

The tree rooted at thingtype is similar in the sense that it contains both
first-order and second-order entities. In one part of the tree the second-order
entities are tangible ones, such as persons and physical objects, as illustrated
in figure 3. It is clear how the first-order entities there have a natural
subsumption structure, and how the second-order entities donot, although
they may have other structures such as a partof structure. Another part
of the tree contains actions and events, and there the intuition does not
provide the same strong guidance. We have chosen however to use a two-
level structure for events that is analogous to the one for physical entities.

The main difference between the qualitytype structure and the thingtype
structure is therefore that the former admits a subsumption structure in its
second-order entities, and the latter one does not. Within the thingtype
structure there are two main subdivisions, for individual-entities and for
events (21). Individual entities are subclassified into tangibles, intangibles
(for example ideas, plans, goals), and social entities. Soccer teams, corpo-
rations, and editorial boards are examples of social entities. Dinner parties
are not; they are examples of events.

21One may debate whether maybe the entity thingtype should be split up into
two entities, namely, one for individual objects and one for events. Considerations
such as this one are not very important, and a change of the design in such respects
can be done without much affecting the total structure.

30

31

32

33

Tangible entities include persons and physical objects. Within intangible-
entities we have (presently) the following subtypes: abstract entities (e.g.
formulas, triangles), cognition entities (e.g. plans), communication entities
(e.g. journal articles, websites), computation entities (e.g. file directories),
and leonardo entities (e.g. entityfiles).

Spatial and temporal concepts are organized in the third entity tree which
is rooted in spacetime-type Finally, there is a fourth entity tree that is
rooted in the entity descriptortype. It contains for example the type
leoslot that has the tags for attributes and for properties as some of its
instances.

None of the zero-order entities is really needed for applications; they are
only there so that the system’s self-description is complete and coherent.
In particular, the type attribute of all zero-order entities is toptype, and
this entity is zero-order and therefore has itself as its type. In the sub-
sumption dimension, the top-level element among the zero-order entities is
called metatype, and all other zero-order entities are directly or indirectly
subsumed by it.

The entire ontology of the core knowledgeblock, coreonto, contains around
35 ontology nodes, all represented as entities. The top level structure that
has been described here is included among them(22). In particular there are
a number of entitytypes that are used in the information that the core know-
ledgeblock organizes itself. This includes types such as leo-individual,
os-command, and startup-file.

The ontology represents a tradeoff between two opposing tendencies: in the
interest of simplicity we would like to restrict the ontology of core-kb to
those concepts that that knowledgeblock needs itself, but on the other hand
we also want to start with a core ontology that is flexible enough so that
the needs of other knowledgeblocks and of applications can be accomodated
as extensions in a natural way.

It is not our intention to build yet another ontology, beyond all those that
exist already, and the plan is incorporate one or more existing ontologies
within the top level that has been described here, and whose design is
dictated by the overall systems design. We expect that some adjustments
of the top level structure will be needed in this process.

22except for obvious examples, such as the ’color’ part

34

Appendix 4: Startup of Activations

Problem and Approach

It is particularly attractive to implement Leonardo in interpretive and ’script’-
type programming languaes, such as CommonLisp and Python, but then the
implementation of the startup machinery along the lines that were described
in section 4 of the article, involves an interesting chicken-and-egg problem.
In principle, you want the interpreter of the programming language to be
able to read, parse, and digest textual entityfiles, and if an entityfile con-
tains e.g. function definitions then those definitions shall take effect along
the way when the file is loaded. More generally, if an entityfile contains an
executable expression in the programming language, then that expression
is to be executed, since typically the way to define a function is to execute
an expression that stores the definition.

Consider now the very first entityfile that is going to be loaded into the inter-
preter at hand (CommonLisp, Python, etc) in order to start the bootstrap
process. The interpreter has been invoked with that file as its argument,
and that file is going to add other entityfiles that are needed. If this file is
edited and then loaded into the Leonardo system, for example for program
analysis or for version management, then the bootstrap process will start
again.

Clearly the system needs to be able to make a distinction between ’hot’ and
’cold’ loading of software entityfiles, where some of the commands in the file
are only executed during ’hot’ loading. In our (CommonLisp) implementa-
tion we obtain this property as a side-effect of a more general facility.

The general facility is as follows. Entityfiles are seen by the user as text
files in LDX format which has already been introduced. However, when
an entityfile is stored then actually two versions of the file are written: the
standard one that the user sees, and a “compiled” one consisting of plain
Lisp code (i.e., S-expressions), which means that the Lisp interpreter can
read the compiled file even before any definitions have been made to it.
The primary purpose of this is to produce a faster-loading version of the
entityfile.

Normally, loading the “source” (LDX) version and the “compiled” version
of an entityfile has exactly the same effects on the executing activation
of Leonardo. However, specific entity properties that contain executable
program code (CommonLisp code, in our case) can be marked with a special
flag having the effect that the code is only executed when the compiled file
is loaded, and not when the source file is loaded. Moreover, the index file
for a knowledgeblock, which contains information about where the files in
that block are located, also contains information about which files shall be
loaded from their compiled version or their source version when they are
loaded as part of their knowledgeblocks. A separate command by the user
to load a particular entityfile will always load the source version.

The first entityfiles that are loaded during the bootstrap of a Leonardo acti-
vation are therefore marked for compiled-version loading, and they contain
a few expressions that only execute in compiled-version loads. This is suf-
ficient for getting the bootstrap process to work as intended. When the
user wishes to modify some of the code in those early-session files, she will

35

typically text-edit the source version of the entityfile, load it into Leonardo,
and immediately store it.

Details of the Startup Process

The startup or ’bootstrap’ process is actually a nice illustrative example of
the declarative style of system design in Leonardo, and we shall therefore
describe it in some detail. The reader that is not so interested in the tech-
nical details is advised to skip to the beginning of section 5, a few pages
ahead.

Suppose minileo is the entityfile that is first read by the interpreter of
the host programming language, and that it will only load the minimal
knowledgeblock, core-kb, and no other knowledgeblocks. The following
are the first entityfiles that are read during startup:

minileo
bootfuns
selfdescr
self-kb
kb-catal
core-kb
coreonto

...

In this sequence, core-kb is the first file for loading the core knowledge-
block and from there on, the system reads the entityfiles that are defined
by the knowledgeblock. They were listed in section 4, page 21, and are
loaded in exactly the same way as for all other knowledgeblocks. The five
simple files preceding core-kb are the only ones that have a special role.
Going backwards, kb-catal is a catalog containing the physical locations
(directory and filename) for the index files of all the knowledgeblocks in the
individual at hand. This is needed so that the system can look up core-kb
in order to load it, as well as for loading any other knowledgeblock. Before
it, self-kb is a catalog of those entityfiles whose contents are specific to
the present individual and/or host, in particular, the location of kb-catal.
Again before, selfdescr is a small entityfile containing the name and an-
cestry of the individual at hand, so that it ’knows’ what it is called and
from where it was generated. The locations of selfdescr and self-kb are
hardwired into the software.

The file bootfuns contains function definitions for functions that are used
in the immediately following files, and it ends with an executable expression
that is only executed when the compiled version of bootfuns is loaded. It is
this expression that loads selfdescr, self-kb, and kb-catal as individual
files.

The file minileo, finally, is a small file containing a compiled-mode exe-
cutable expression that does two things. First it loads bootfuns in com-
piled mode, which defines a number of functions and then loads selfdescr,
self-kb, and kb-catal. Then it invokes a particular function leoboot of
no arguments; this function is defined in bootfuns and has the effect of load-
ing the knowledgeblock required by the startup file, as well as performing
some simple administrative duties.

36

Data-driven initial startup

This structure of interacting loads and invocations has been designed so
that it shall be easy to reconfigure the system, for example when moving
a Leonardo individual to another host, or when creating an offspring of
an individual. (An offspring inherits the software that is contained in an
individual, but not its history of past events). Notice the simplicity of the
definition of the entity minileo that was used in the example:

[: type startup-file]
[: contents <minileo>]
[: batname "minileo"]
[: kb-included <core-kb>]
[: bootfile "../../Coreblock/cl/bootfuns.leos"]
[: execdef lite-exec]

Its type, startup-file, is a specialization of the type entityfile. All
aspects of startup are datadriven using its attributes, so other configurations
can be defined by setting up other entityfiles of the type startup-file
and providing them with other values for the attributes. In particular, the
bootfile attribute specifies where to find the first file to be loaded after
itself, which in this case is bootfuns. The kb-included attribute specifies
a list of knowledgeblocks that are to be loaded, which in this case is only
core-kb. Finally, the execdef attribute specifies which entityfile to load in
order to obtain the configuration’s user interface. The bootfile attribute
specifies the exact position of the boot functions relative to the current one.

The interpretation of the attributes in a startup-file entity is not per-
formed by a central procedure, but by procedures that are attached to the
entity itself, in the following way. The following executable expression is
added in the compiled version of such a file.

(setq *myconfig* ’minileo)
(load (get *myconfig* ’bootfile))
(leoboot)

or, in translation to conventional programming-language syntax:

myconfig := ’minileo;
load(myconfig:bootfile);
leoboot()

This expression is identically the same in any compiled startup-file, except
that of course it is the name of the file at hand that appears in the assign-
ment on the first line. The expression is generated by a procedure attached
to a handle that is provided for every subtype of entityfile and that allows
the addition of extra material at the end of a ’compiled’ entityfile.

When the Leonardo system starts with this configuration, it first loads
the compiled version of minileo, which contains CommonLisp assignment
statements for the entity attributes, followed by the statements just men-
tioned. The assignment statements assign in particular the value of (get
myconfig ’bootfile) which determines which file is going to be loaded
next. There may be a choice of several such files, but any file that is used in
this way must define the function leoboot. This arrangement makes it pos-
sible to define entirely different startup sequences with just a few attribute
assignments.

37

The special procedure for writing startup-files makes one additional thing
(in the Windows environment): it generates a .bat file that invokes the
CommonLisp interpreter with the compiled startup-file at hand as the initial
load. The batname attribute specifies the name of that .bat file.

In this way the construction of configurations is automatic and datadriven,
and is done within the general framework of entityfiles and the LDX repre-
sentation language. This is very convenient when configurations are main-
tained manually, but it is also essential for automatic maintenance and
generation of configurations.

