KRF

Knowledge Representation Framework Project
Department of Computer and Information Science, Linkoping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

Erik Sandewall

Knowledge-Oriented Machine Learning

A Brief Introduction

This series contains technical reports and tutorial texts from the project on
the Knowledge Representation Framework (KRF).

The present report, PM-krf-028, can persistently be accessed as follows:

Project Memo URL: www.ida.liu.se/ext/caisor/pm-archive/krf/028/
AIP (Article Index Page): http:/aip.name/se/Sandewall.Erik.-/2011/008/
Date of manuscript: 2011-09-09

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:
KRFwebsite: http:/www.ida.liu.se/ext/krf/

AIP naming scheme: http:/aip.name/info/

The author: http:/www.ida.liu.se/~erisa/

Introduction

The word “learning” in English covers a broad range of activities, and the
same holds for the corresponding word in many other languages. It refers
both the the acquisition of knowledge by reading a book or listening to a
lecture, and to the modification of behavior by “learning from experience.”
The thing that is learnt may be a collection of facts, a motoric skill, or a
method for how to perform a task. These may be very different things:
learning the names of the capitals of the countries in Europe does not have
much in common with learning to ride a bike. However, learning to perform
a task may include some of each: in order to learn how to do simple plumbing
jobs you may both have to learn to know the required components and tools,
and the motoric skills of operating them.

It is not surprising, therefore, that the field of Machine Learning also cov-
ers a variety of methods that are based on a platform that includes both
probability theory, formal logic, programming languages and algorithms.
Consequently Machine Learning is an inherently multidisciplinary field.

The present lecture note is intended for use in a course on Artificial Intel-
ligence (A.L.) that emphasizes the role of Knowledge Representation in its
subject. It will therefore focus on those aspects of Machine Learning that
are relevant for Knowledge Representation and for the learning of know-
ledge, at the expense of the learning of motoric skills, for example. This
is the reason why topics such as Artificial Neural Networks and Genetic
Programming are not covered.

Previously covered lecture notes in this course are considered as prerequi-
sites for the present one. Please refer to the course webpage for details:

http://www.ida.liu.se/ext/kraic/

Contemporary research in Machine Learning is often strongly based on prob-
ability theory. Since the A.L. course that uses this lecture note makes only
light requirements for previous knowledge of probability theory, I have also
chosen to exclude probability-heavy topics such as estimation of the accu-
racy of hypotheses during learning. To learn more about the topics that
have been excluded here, the reader is recommended to use Tom Mitchell’s
textbook ‘Machine Learning’ which is the standard text in the field.

One effect of this approach is that it introduces a separation into the area
of Machine Learning, and arguably an artificial one. However, the positive
side is that this makes it possible to give a coherent treatment of knowledge
representation. This is otherwise hampered as books in different areas of
Artificial Intelligence (including Machine Learning) contain their own intro-
duction to, and their own use of a small part of Knowledge Representation.
The present series of lecture notes uses Knowledge Representation as the
major theme and restricts participating topics to those aspects that have a
meaningful connection to K.R.

1 Task-Oriented Learning

1.1 An Introductory Example

Suppose we want a software individual to learn the English names of the ma-
jor colors. Concretely speaking, we want it to obtain a function that receives
a sequence of three integer numbers between 0 and 255 which represent the
relative intensity in three components of the light spectrum according to the
RGB definition, and that returns a symbol such as yellow, red or violet
indicating what this color is called in English. This would be a classification
function for color codes.

One way of implementing such a classification function may be for the de-
veloper to inspect the three-dimensional space of these color codes and to
write the program herself. However, an attractive alternative is to use a
program that receives a training set consisting of a number of RGB color
codes together with the correct color symbol for each of them, and that
constructs the classification function automatically.

This is a simple but somewhat typical example of what is usually meant
by machine learning. We shall return later to a discussion of how well the
technical concept of machine learning corresponds to the standard notion
of learning in ordinary language, but actually there are many practical ap-
plications for machine learning of a kind that more or less resembles this
simple example. We shall therefore use it as the point of departure for our
presentation.

An obvious requirement on a learning program is that it must be able to
generalize from the given training set. If it were to generate a classification
function that answers “don’t know” to all RGB codes except those that
were actually in the training set, then clearly it would not be of much use.

Because of the need for generalization, every learning program has what is
called a bias, that is, a built-in orientation towards a particular way of struc-
turing the resulting classification function (or whatever is being learnt). For
example, one learning program may be designed so that it associates each
color symbol with a three-dimensional rectangle in the space of RGB codes,
that is, an interval for each of the three RGB components, and requires
these rectangles to be as large as possible while still being disjoint. Another
learning program may associate each color symbol with the union of a set
of spheres, namely one around each member of the training set. The choice
of bias will have an effect on the quality of the produced classification func-
tion, such as the percentage of incorrect classifications and the percentage
of “don’t know” outcomes.

Generalization may take place at the time of training or at the time when
the learned information is used. The former case is the most important
one in current Machine Learning methods. In the latter case, which is
called instance-based learning, the learning program is fairly trivial since
it merely accumulates the items in the training set to its knowledge base,
with some appropriate indexing scheme for facilitating the computation in
the classification function, and then it is up to the latter to use these data
in each case that it encounters. In the case of the color learning example,
one instance-based learning scheme might simply identify which of the RGB
codes in the training set has the smallest Euclidean distance to its input,

and return the color symbol that is associated with it.

1.2 General Technical Definition of Task-oriented
Machine Learning

The generally accepted definition of Machine Learning is due to Tom Mitchell
and goes as follows when adapted to the present context:

Definition (1): A software individual is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its
performance at tasks in 7T, as measured by P, improves with the experience
E.

In the color classification example, F is the training set, T is the classifica-
tion function, and the measure P may be defined in terms of the proportions
of incorrect classifications and “don’t know” classifications. Other applica-
tions may involve other kinds of tasks besides classification. They may
also include other kinds of criteria in the performance measure, such as the
computation time that is required for obtaining the result or performing the
task.

The formal definition may even apply to the case where the learning process
causes changes in some parts of the actual program code for performing the
task, and then recompiles it if a compilation-based programming language
is used, but this is unusual. The normal case is that the learning activity
modifies some of the data in the individual, and that these data are inter-
preted by a fixed program for performing the task. In the color learning
example, the data may be for example the lower and upper bounds of the
intervals that define RGB space rectangles for each of the color symbols.

As always in the case of software individuals, changes in the data contents
may take place during a session, but the modified data must also be saved
e.g. in entityfiles so that they can continue to be used during later sessions
with the same individual. It is in this way that information learnt during
one session for the individual can continue to be used during later sessions.

In fact, the definition that was given by Tom Mitchell begins “A computer
program is said to learn...” However, in order for the definition to make
sense with this wording, one must take the word “program” to mean not
only the program code that is written in a conventional programming lan-
guage; the “program” must also be taken to include those data that are
used together with the program code and that contain the learned informa-
tion. Since a software individual is an aggregate consisting of both program
code and data, and since it is organized for persistence, its organization is
appropriate for performing learning.

The use of the word task in this context should also be clarified. For the
purpose of Machine Learning, it should be understood as a computational
process that the software individual or “program” in question is designed to
perform repeatedly, with new input data each time it is invoked. This notion
of task is quite different from when the term is used for Hierarchical Task
Networks (HTN) as described in another one of the current set of lecture
notes. A task in an HTN is an intended and (usually) scheduled action, i.e.
something that the individual in question has on its agenda for things to

be done. If there is a possibility of misunderstanding one may use the term
repeatable task for a task in the sense of Machine Learning.

In our color classification example, the learned data are dedicated to be used
by one particular task, namely, the classification function, and they are not
likely to have any other use. However, it is easy to think of cases where
the learned information may be added to the general knowledgebase of the
software individual at hand, and where it may be used by several different
tasks in an open-ended manner. For example, the knowledge about the
color and other physical characteristics of various fruits may be used in
many different ways by an intelligent agent.

Therefore, any kind of information structure that can be used in the know-
ledge base of an individual should in principle be a candidate for being
learned. This includes assignment of attribute values, ground literals ex-
pressed using a suitable predicate, and so forth. Notice however that only
static information is suitable to be learnt, so literals using the H predicate
for expressing a transient fact, or using the D predicate for expressing the
occurrence of an action are not likely to be in the information structure that
is generated by a task learning process.

The role of the performance measure P in the learning process is particularly
interesting. If the learning activity only applies to one single task then
it may be relatively easy to define the performance measure, but if the
acquired knowledge is relevant for several different tasks then this adds to
the difficulty of defining it. Many kinds of human learning refers of course
to knowledge whose actual use is difficult to foresee. In such cases one may
wish to define a special testing task that can provide a useable performance
measure, much like how exams are used in schools.

1.3 Learning for the Characterization Problem

If the result of learning is a dataset, rather than modification and recom-
pilation of program code, it is better to use a definition of task learning
that makes this explicit. This definition can be developed in a few steps as
follows.

Definition (2): A characterization problem consists of three domains D*,
C* and R*, one function F' from D* to R*, and another function T from
C* x D* to R*. A member C in C* such that T(C,D) = F(D) for all
members D of D* is called an exact characterization in this characterization
problem. Also, a member C in C* such that T(C, D) approximates F'(D)
sufficiently well is called an approrimative characterization in this problem.
A learning activity is a computational process that calculates or improves
a characterization of F' for T using a subset F of F' called the training set.
Members of the training set will be called ezamples (of the function F).
Members of C' are called control datasets.

The function T is of course the task, in the sense of the previous definition,
the function F' (for Facit) is the function specifying the desired and correct
outcome of the task for each input dataset, D* is the set of all possible
inputs to the task and R* is a set that must include all possible outputs.

If the facit function F' is completely known then this may be seen as a kind of
approximation problem. What is characteristic about learning is however
that the function F' is only known partially and through examples. The

operational requirement on the learning process is therefore that T'(C, D) =
E(D) = F(D) for all or most D in the training set, and that there shall be
good reasons to assume that T(C, D) = F(D) elsewhere as well.

The indeterminacy in this problem can be handled in a variety of ways.
Inductive learning makes use of a a combination of biases, as was discussed
above, and the following assumption:

Inductive learning hypothesis: The facit function F'is “well behaved” in
the sense that it is possible to extrapolate relatively well from the members
of the training set to values for other members of D*.

In the color learning example, one may expect that each color word (blue,
brown, etc.) corresponds to one, or possibly a few regions in the three-
dimensional space of the RGB codes, which would then qualify as “well
behaved.”

The bias in the selection of the control dataset can be realized in a variety
of ways. With restriction bias one uses a domain C* for the control dataset
that is designed in such a way that it can not generate all possible mappings
from D* to R*, but only some of them, which means that often it will not
be possible to find any control dataset C' whereby T'(C, D) = E(D) for all
D in the training set, but only for a majority of them. With preference bias
one admits that there may be several control datasets C' that are consistent
with the training set, and one uses a preference relation over C* in order to
choose between them. Different choices of domain for the control dataset
and of preference relation will result in different bias.

As an alternative or complement to inductive learning, analytical learning
makes use of a collection of domain knowledge for the kind of information
that the learning activity refers to. The domain knowledge consists of logic
formulas or other similar structures that can be used to for imposing addi-
tional constraints on the control datasets that satisfy the members of the
training set at hand.

Although our definition of the characterization problem assumes that the
task is defined as a function of two arguments where the first one is the
control dataset, it is worth noting that this also suggests as systematic
method for converting the learnt control dataset to a dedicated program for
performing the task, namely by using partial evaluation.

1.4 Use of the Performance Measure during Learning

Most uses of Machine Learning today assume that the performance measure
is computationally available for the learning activity. The definition in
the previous section should therefore be extended so that the role of the
performance measure is made precise. At the same time the definition of
the characterization problem will be slightly generalized, as follows.

Definition (3): A performance-measured characterization problem consists
of four domains D*, C*, R* and B*, one function F' from D* to R*, another
function T from C* x D* to R* x B*, and a performance measure that is
specified below. For such a problem, a member C' in C* such that the first
element of T(C, D) equals F(D) for all members D of D* is called an ezact
characterization of F' for T. The definition of approximative characteriza-
tion and of learning activity are modified accordingly.

The performance quality of a member C' of C* and a member (D, R) of F,
where T'(C, D) = (R', B), is a measure that favors cases where R is equal
to R’ (or nearly equal to R/, if R* has a distance metric defined over it) and
that also has preferences with respect to the B component of the outcome
of the task.

A performance measure is a function that takes a subset E of F and a
member C' of C* and produces a numerical value based on the performance
quality for all members of E. (End of definition).

The B component is used for estimating the behavior of the learning activity
as it performs the task, for example, of the computation time that is required
for computing T'(C, D) for particular choices of D. If the behavior aspect
is not of interest then the B component can be chosen as the null element,
and the performance measure will simply be a measure of how well the first
component of T'(C, D) agrees with, or approximates F(D).

One may also consider a more general definition of the performance mea-
sure that takes aspects of the learning activity into account, for example,
the computation time that was required for obtaining the characterization.
However, such a definition is somewhat at odds with the notion of using the
performance measure within the learning process itself, which is the topic
of the present section.

Definition. An incremental learning activity is one that starts with one
choice of control dataset C' and that produces a modified value C’ that is
expected to be an improvement with respect to the performance measure
at hand.

An incremental learning activity may well be applied repeatedly, so that
the software individual that performs the activity gradually improves its
performance as new training sets become available. In particular, one way
of organizing the learning activity is by way of iterative learning where it
proceeds stepwise through the training set, addressing one example (D, R)
at a time, and modifying the control dataset just in order to take this
example into account.

A control dataset that is currently being considered during a learning ac-
tivity is often called a hypothesis in order to emphasize that it is tentative
and that it is based on the knowledge at hand at a particular point in time
during that learning activity.

1.5 Learning without Computational Performance
Measure

Although most uses of Machine Learning today are based on using the
performance measure computationally during the learning activity, in par-
ticular for the selection between alternative, proposed values of the control
dataset, there are also examples of learning techniques where the perfor-
mance measure is only used for the posterior evaluation of a learning ac-
tivity, and not within that activity. If the performance measure can not be
used to guide the learning process, then one alternative is to use domain
knowledge in the sense of analytical learning.

Case-based learning can be characterized as instance-based analytical learn-
ing.

2 State-based Learning

2.1 Definitions

In this section we consider task learning methods where the task is to classify
entities according to the values of their attributes. Definition (3) above is
specialized as follows, in KRF terms.

Definition: A task is state-based using the attribute set A if A is a set of
entities whose type is attribute and the domain D* for the task is formed
as the set of all states over A.

Please recall that a state over A is a mapping that assigns, to each member
a of A, one member of the range of a. The following is an example of a
state characterizing the current ‘state’ of a person or an animal:

{hungry = very, angry = yes, tired = no}

In our initial color-learning example, each RGB code is a state consisting
of assignments of integer values to three attributes.

A characterization problem for a state-based task is called a state-based
characterization problem, and similarly for a state-based learning activity.

Definition (4): A classification problem is a state-based characterization
problem where the behavior domain B* consists of only the null element
and where the performance measure is the proportion of the items (D, R)
in E where the first element of T'(C, D) is equal to R.

A common use of the classification task is to assign a member of a domain
R* to each member of a set entities, for example in a knowledgebase, based
on the values of some of the attributes of those entities. This can be phrased
as a classification task by representing each entity e as a state that maps
some or all of the entity’s attributes to the corresponding attribute value
for e. The RGB-color learning task is a classification task where R* is a set
of symbols each representing a particular color name.

The following is a special case of the previous definition.

Definition: An identification problem is a classification problem where the
domain R* consists of only the entities T and F which may be thought of as
true and false.

The members of R* will sometimes be chosen as yes and no, or as 1 and
0. For a given function F', the set of those elements in D* where F(D) is
true, is called the target set for the identification problem.

Learning in an identification problem has sometimes been called concept
learning in the Machine Learning literature [Mitchell, 1997] , the idea being
that the target set is a manifestation of a “concept” in some sense. However
the term concept learning is given a more general meaning in cognitive
psychology and in more recent Machine Learning literature, and we shall
not use it here.

The RGB-color learning problem can be represented as a set of identification
problems, namely, one identification problem for each one of the color names
being learnt. Notice that a classification problem does not allow one and
the same member of D* to map to more than one member of R*. For

example, in the case of the color classification problem, it will not allow
the same RGB code to be assigned two different color names, such as both
red and pink. If one considers one identification problem for each color
name, on the other hand, then it is possible to let a particular RGB code
be characterized by several color names, namely, by allowing this RGB code
to map to T in several of the identification functions.

In general, any classification problem can be re-expressed as a set of identi-
fication problems, namely one for each member of R*. A member (D, R) of
the original training set will then be converted to a member (D, T) in the
training set for the identification problem for R, and to a member (D,F)
in the training sets for the identification problems for all other members of
R*.

The present section will describe some major methods for learning identi-
fication and classification problems. These methods differ with respect to
what structure they use for the control dataset C.

2.2 Partial State Methods

Some methods for learning identification problems represent the control
dataset using partial states, including the well-known Candidate Elimination
Method. A partial state over a set A of attributes is a mapping that maps
some, but not necessarily all members of A to a member of the declared
domain for the attribute in question. States that map all members of A to
a value are called total. Two partial states are inconsistent iff they map the
same attribute to different values, and consistent otherwise. In particular,
a total state is consistent with a partial state iff the latter is a subset of (or
equal to) the former.

A partial-state representation would not be very useful in the RGB-color
example since omitting one or two of the RGB components loses too much
information. Moreover, it seems likely that a classification of RGB codes
will involve the use of intervals for the integer values in each of the three
RGB components, whereas partial states can only represent the choice or
absence of a value. Therefore, they tend to be useful in cases involving a
fair number of attributes, each one with a small and non-metric domain.

When a partial state is used as the control dataset, then the task function T
is defined so that T'(C, D) is true if and only if the total state D is consistent
with the partial state C, that is, C'is a subset of or equal to D. This implies
a restriction on the facit function F: for some choices of that function there
exists a partial state C' such that T'(C, D) = F(D) for all D, but for many
other choices of F' there does not exist any such C.

Since the facit function F' is truth-valued, the training set consists of one
set of positive examples containing states D that belong to the target set,
and one set of negative examples that don’t. [1]

The case where the target set consists of only one or a few members is not
of practical interest, and one is usually only interested in cases where the
target set has nontrivial size. The learning problem is then the problem

ITo be precise, since an example is a member of the target function, it is a
maplet i.e. a pair consisting of a state and a corresponding value T or F. Positive
examples are those maplets where the second element is T and conversely.

of finding which partial state is the correct one, using the assumption that
such a partial state does exist.

2.2.1 Using the Lattice of Partial States

Suppose we have an attribute set A consisting of eight attributes selected
as a to h in the alphabet, and s is a partial state assigning values to the
attributes from d to h but omitting values for a, b and c¢. Informally,
this is a way of characterizing the set of all the total states that have the
specified values for d through h , but regardless of their values for the first
three attributes. Formally speaking, s subsumes those total states that are
consistent with it.

Consider now an identification problem where all members of the training
set are consistent with s. Will it then be appropriate to return s as the
result of learning 7 Not necessarily, since if all members of the training set
also have the same value for a, besides having the same value for d through
h, then it would also be possible to return a partial state that only leaves
b and ¢ undefined.

In particular, if one makes the a priori assumption that the target set is
relatively small compared to the entire domain D* then it will be natural to
prefer a characterization that is as specific as possible, so that it subsumes
as few states as possible besides those in the positive examples. This is an
example of preference bias for the learning activity.

For the moment let us adopt the bias in favor of control datasets that are
as restrictive as possible. Now if all total states that are subsumed by s are
present in the training set then the matter is simple, and the partial state s
should be returned as the result of learning. However, what about the case
where 7 out of those 8 total states are present in the training set, then what
should the learning process do?

In practice one will of course work with larger numbers, and sometimes
much larger ones, either by having a larger set of attributes, or by having
larger domains for the attributes, but we keep the numbers small for the
purpose of exposition, and the principles are the same in any case.

There are two possibilities if a proposed partial state is not entirely covered
by the training set: to generalize, or to decompose the partial state being
used. If one would say, in the example, that 7 out of 8 is good enough for
assuming that all 8 total states shall belong to the identified set, then one
has generalized.

If multiple partial states are used, then the control dataset consists of a set
of partial states, rather than a single one. Such a control dataset represents
the set of all total states each of which is consistent with at least one of the
partial states in the control dataset.

For example, if one wishes to represent the set of all total states for at-
tributes a, b and c that have arbitrary values for these attributes, except
the one that assigns t to all three attributes, then one could use the following
partial states:

{a = £}
{b = £}

10

{c = £}

As we proceed now to specific learning methods for the identification task,
we need to make a distinction between one-sided and two-sided methods. A
one-sided method is applicable in cases where the training set only contains
positive examples. In other words, it gives examples that are members of
the target set, but no examples of non-members. A two-sided method is
applicable if the training set contains both positive and negative examples.

2.2.2 One-Sided Methods

The Find-S Method is a method for the one-sided identification learning
task that works as follows. (Please refer to the description of this method
in Tom Mitchell’s book for further information).

2.2.3 Two-Sided Methods

We proceed now to two-sided methods which offer a greater variety of possi-
bilities. The Candidate Elimination methodis due to Tom Mitchell (1977); it
is an incremental method for the two-sided identification problem that uses
generalization but not decomposition. The domain C* of control datasets is
therefore chosen as the set of partial states, which means that exact charac-
terizations can only be obtained for those task functions that can be defined
as a conjunction of literals each of which specifies a required value for one
of the attributes.

Therefore, for example, a facit function that is true if at least one of the
attributes a and b is true, but false if both are false, can not obtain an exact
characterization. Also, if an attribute ¢ can have four different values 1, 2,
3 or 4, and a facit function is true if the value is 1 or 2 but false otherwise,
then again it can not obtain an exact characterization when the Candidate
Elimination method is used.

We shall describe the Candidate Elimination method, or C-E-method, for
the special case where all attributes in A are truth-valued. It is easy to
generalize it to the case of attributes having a finite set of discrete values in
their domains.

The algorithm for the C-E-method maintains a working structure consisting
of two sets of partial states, referred to as the general boundary and the
specific boundary, respectively. These two boundaries characterize a set
of partial states that we shall call the current hypotheses consisting of the
members of the two boundaries plus some additional partial states that are
“between” the boundaries. [?]

The idea for these boundaries is as follows. Suppose the incremental learning
activity according to the C-E-method has processed some members of the
training set, and the boundaries have been constructed accordingly. Then
you select again any of the already used examples in the training set and

2Please recall that a currently considered control dataset in a learning activity
is often called a hypothesis, since it describes the currently available experience
at that time. The set of current hypotheses is usually called the version space
in the literature on Machine Learning, but we shall avoid that term as being too
idiosyncratic.

11

relate it to the current hypotheses. If it is a positive example then it will
be subsumed by all the current hypotheses; if it is a negative example then
it will not be subsumed by any of the current hypotheses. In this sense all
the current hypotheses are consistent with (i.e. return the same value as)
all the training examples so far.

Let H be the set of current hypotheses and let U(H, D) be a function
that is defined as follows: If T(C, D) is the same for all members C in
H then it returns that value (true or false), but if different members of
H obtain different values for T' then it returns a third value representing
“don’t know.” Clearly U will return the correct value for all examples in
the training dataset that have been used up to the current point. Moreover,
there is a built-in generalization due to the restriction bias. For example, if
the training dataset contains one example where a is true and b is false, and
another example where a is false and b is true, then every current hypothesis
must be a partial state that leaves both a and b undefined. This is since it
is not possible to have a control dataset that characterizes disjunction.

For these reasons, the set of current hypotheses will correctly characterize
the currently used examples in the training set, and also some other mem-
bers of D*, but (in general) not all of them, so there will be some members
of D* where the function U will return the value “don’t know.” However, as
more and more examples are added from the training set, the C-E-method
will move the specific boundary and the general boundary closer to each
other, and if sufficiently many examples are added then these boundaries
will converge so that the set of current hypotheses will consist of one single
member, namely, the one that exactly characterizes the facit function.

How can the result of learning according to this method be put to use if the
training set has not been sufficient for obtaining convergence? One possibil-
ity is to use the function U together with the set of current hypotheses that
one has obtained with the training set, which means that one has to live
with a solution that sometimes returns “don’t know.” Another possibility
is that if the specific boundary consists of only one partial state, then one
may adopt it, which means effectively that all “don’t know” answers are
considered as “no.”

2.2.4 The Algorithm for the Candidate Elimination Method

Let us now proceed to the algorithm that is used by the C-E-method and to
some examples. The algorithm is expressed in terms of the lattice formed
by all the partial states, with the empty (most general) partial state at the
bottom, and with more specific partial states higher up. Moreover, in the
description of the algorithm one adds an artificial top element to this lattice,
in such a way that it is above all the total states. Yet another possibility
which has been proposed is to make a vote between the current hypotheses
and use the opinion of the majority.

The algorithm for the C-E-method is defined as follows. It uses the symbol
G for the general boundary and S for the specific boundary.

12

Initialize G to the set of the empty partial state.
Initialize S to the set of the artificial top element.
For each example d in the training set:
If 4 is a positive example:
Remove from G any hypothesis inconsistent with d
For each hypothesis s in S that is inconsistent with d:
Remove s from S
Add to S all minimal generalizations h of s such that
h is consistent with d, and
some member of G is more general than h
Remove from S any hypothesis that is below another one in S
If d is a negative example:
Remove from S any hypothesis inconsistent with d
For each hypothesis g in G that is inconsistent with d:
Remove g from G
Add to G all minimal specializations h of g such that
h is consistent with d, and
some member of S is more specific than h
Remove from G any hypothesis that is above another one in G

With respect to the negative examples, notice that a negative example (D, F)
is consistent with a current hypothesis h if D is inconsistent with h, and
vice versa. The meaning with the hypotheses is that they shall subsume
states that are at least possibly in the target set, so the state in a negative
example must differ from such a hypothesis in at least one of its components
otherwise there is a conflict.

A walk-through example of the use of this algorithm is shown in Tom
Mitchell’s book, Section 2.5.5 (pages 33-36).

2.3 Perspectives on Learning

Partial state methods is one class of learning methods; other learning meth-
ods for the characterization problem use other choices of domain for the
control dataset. Decision Tree Learning uses decision trees for this purpose.
Some aspects that we have seen for partial state methods can be generalized
since they are applicable to other classes of learning methods as well. This
applies, for example, for the need for a bias in the learning method and the
use of the inductive learning hypothesis.

Moreover, the Candidate Elimination method can be understood as a search
process that operates on the set of all control datasets, and that performs
successive operations for narrowing down the set of those control datasets
that satisfy the training set at hand. The view of machine learning as
search in the space of control datasets can be used for several other types
of learning methods as well, with their respective control dataset domains.
In the Machine Learning literature it is common to use the term hypothesis
for a control dataset, and the term hypothesis space for the domain C* of
control datasets. Learning is then seen as a search process in the hypothesis
space.

This general use of the term “hypthesis” has the advantage of being appli-
cable even if the task function T is defined in some other way than as a
function of a control dataset and a data instance. For example, if the learn-
ing activity should produce a revised algorithm for performing the task, as

13

a function of a single argument, then there is no control dataset but the
terminology using the hypothesis concept is anyway applicable, and each
possible revised algorithm is a member of the “hypothesis space.”

Moreover, in those cases where the learning process produces and modifies
a neural net, it is true that the neural net can be seen as the control dataset
for a neural-net executive, but in some contexts one may wish to disregard
that aspect and view the neural net itself as the “program” that has been
learnt from the training set. Then, again, each possible configuration of the
neural net would be a hypothesis and a member of the hypothesis space.

In the present textbook we emphasize the role of the knowledge structures in
artificial intelligence systems, which is the reason why we prefer to use terms
that refer directly to the kinds of data being used, such as partial states,
decision trees, and other choices of control datasets. This has the advantage
of facilitating comparison with other chapters in the present textbook where
similar structures are being used. The use of partial states is fundamental
in the section on planning and reasoning about actions, for example.

2.4 Decision Tree Learning

A major method for state-based learning is decision tree learning, where
of course the control dataset is a decision tree rather than a partial state.
The original method for decision tree learning is called ID3 and it will be
described here for the particular case of the identification problem, i.e. the
R* domain consists of only true and false.

Whereas the C-E-method is an incremental method, ID3 is not. The basic
idea in ID3 is to consider the entire training set and to construct a decision
tree from it with a preference for decision trees that perform the classifica-
tion task using as few tests as possible on the average. It therefore starts
with the empty decision tree, selects one of the attributes for use in the
top-level node of the decision tree, partitions the training set into one part
for each of the possible values of the selected attribute, and then repeats
the process recursively in each of the branches.

This is straightforward enough, but the interesting question is how shall
one select the “best” attribute in each step of this process, given the overall
goal of the learning algorithm. Intuitively it is plausible that the tree shall
be as “balanced” as possible. For example, if all the attributes in the set
A are truth-valued so that the decision tree is a binary tree, then it would
make sense to select the attribute for which the two parts of the example
set at hand are the most equal in size.

This intuition is fine for binary decision trees but it does not help much
if some attributes are multi-valued. The ID3 method uses entropy as the
measure for choosing between the remaining attributes at each step in its
algorithm. At this point we need some notation and formal definitions.

Let E’ be the set of examples (from the training set) that are being con-
sidered at a particular point in the construction of the decision tree, and
let A’ be the remaining set of attributes at this point, i.e. containing those
members of A that have not yet been tested for on the path to the present
point in the tree. We call E’ the current training subset. For any attribute
a in A and any permitted value v of this attribute, let select(F’,a,v) be

14

the subset of E’ consisting of those members of E’ where the value for the
a attribute is v. Moreover, the proportion function prp is defined so that

prp(E',a,v) =| select(E', a,v) | /| E" |

These functions are extended by considering the value of the classification
task at hand as a virtual attribute, called r, so that select(E’,r,T) is the
set of positive examples in E’.

Then the entropy for the choice of a particular attribute a (including r) is
defined as

entropy(E',a) = =3, prp(E’, a,v) logs prp(E’, a,v)

If a is a two-valued attribute then this sum over two elements is maximized
if the two partitions are equal in size.

The information gain for a particular choice of attribute a in A’ is then
defined as follows.

gain(E',a) = entropy(E',r) — > w entropy(prp(E’, a,v),r)

v [

Here, entropy(E’,r) is the entropy of E’ when it is only partitioned accord-
ing to r, i.e. as positive and negative examples, whereas the second term
on the right-hand side is the entropy of E’ as partitioned according to both
r and the value of the attribute a. Zero entropy means that tha given iden-
tification task has been completed, high entropy means that much remains.
Zero gain means no progress on the task, high gain means much progress.

In order to understand this informally, notice that —p logsp is zero if p
is 0 and when it is 1, and positive in-between. If all members of E’ are
positive, or if all are negative, then entropy(E’,r) is zero, the classifica-
tion has already been done, and no improvement is possible. On the other
hand, if £’ has equally many positive and negative examples, but for each
value v for the attribute a the partition is either all positive or all nega-
tive, so that the attribute a obtains a value T or F without any doubt, then
entropy(prp(E’,a,v),r) obtains the value 0 for every v, which means that
the gain is large. Finally, to understand the weighting component, suppose
you have 10 possible values for a, one of them has all positive examples,
another one has all negative examples, the other 8 have an even mix, but
almost all members of E’ belong to one of the first two partitions. In this
case the attribute a is a good one since it obtains a classification in most
cases. This illustrates the reason why the sum in the definition of gain is
weighted by the relative size of the respective partition.

The ID3 method is an example of a depth-first hill-climbing algorithm:
it operates in a space of possible control datasets (namely, the possible
decision trees), at each point it uses only one “current” decision tree, it
considers the set of “neighboring” decision trees in the sense of those that
contain one more node, and it selects the one among these that obtains
the best improvement with respect to the entropy criterium. It therefore
runs the same risk as is always present for hill-climbing, namely that it may
not find the best possible solution. Some of the other well-known search
methods can be applied to alleviate this risk, for example using beam search
that maintains a working set of several alternative decision trees during the
search process and expands them in parallel.

4

At this point: Read section 3.7, “Issues in decision tree learning,” in Tom

Mitchell’s book, pages 66-76.

15

2.5 Nearest Neighbor Algorithms

Nearest-Neighbor algorithms are methods for instance-based learning, i.e.
they use a learning process that merely stores away the training examples,
and the actual use of them takes place within the task. These algorithms
require that a metric has been defined over the state domain, for example,
using the Euclidean distance if states are coordinates in an n-dimensional
space. In the simplest case the classification task uses the classification of
the nearest state in the preserved training set as an answer to a given state.

There is a generalization called the k-nearest-neighbor algorithm where one
uses the k nearest neighbors in order to obtain an answer. The classifications
provided by these are used, and the answer is obtained by voting, possibly
also using a weight function or other modifying device.

Further details about this type of learning algorithm is found in Section
8.2 in Tom Mitchell’s book, pages 231-236. The subsequent sections, which
address generalizations to regression methods and radial basis functions, are
recommended for the mathematically inclined.

3 Rule-Based Learning

Please recall the following definition from the chapter (or lecture note) on
the Knowledge Representation Framework:

A one-way rule is formed like in the following example:
[! [grandfather .x .z] if [father .x .y][father .y .z]]

In general, a one-way rule is formed as a record where the symbol ! is
the record former, the second “argument” is the symbol if, and all other
arguments are positive or negative literals. One-way rules are intended to be
used in axioms that define predicates or functions: the rule in the example
is intended to mean the same as the formula

(imp [exists .y person (and [father .x .y][father .y .z])]
[grandfather .x .z])

The exact and more general definition is given elsewhere. Parameters in
the one-way rule can be used for restricting the type of each variable that
occurs in it.

A two-way rule is similar but uses the symbol iff instead of if and its
meaning uses two-way implication (i.e. equivalence) instead of imp.

The use of the existential quantifier in the formula defining meaning of the
rule is of course redundant for the one-way rule, but it is needed for the
two-way rule.

Definition: A task is rule-based if it is defined as a function T'(C, D) where
C is a set of rules and D is a set of ground literals, and where the value of
T(C, D) is a set of ground literals.

The particular task may specify what is desired as the value of T(C, D). In
some cases it may be the ground closure of D with respect to C, i.e. the set
of all ground literals that can be inferred from D using the rules in C; in

16

other cases it may be just the information whether one particular ground
literal or its negation are a members of the ground closure.

Techniques for rule learning are defined for allowing a software individual
to learn rules such as these from a training set. We distinguish between
propositional rule learning for rules that only contain one variable, namely a
variable representing the given example, and first-order rule learning where
rules admit additional variables, such as the rule example shown above. In
this section we shall address propositional rule learning, then first-order rule
learning, and finally Inductive Logic Programming.

Notice that in a state-based classification task there is a distinction be-
tween the attributes that occur in the members of D* and the additional
“attribute” that is obtained through the classification, but in the case of
rule-based learning there is no such distinction. A particular predicate may
occur in the conclusion in some rules and among the conditions in some
other rules.

3.1 Learning Propositional Rules

The following is an example of a propositional rule:
[! [is-dangerous .x] if [is-snake .x] [has-zigzag-back .x]]

This rule can be applied to any entity that satisfies the two predicates
is-snake and has-zigzag-back and allows one to conclude that this entity
satisfies the predicate is-dangerous.

The major approach for learning propositional rules is by sequential cov-
ering. In this method, the training dataset is converted to a set of given
literals each of which consists of a monary predicate, such as those in the
example, and an entity that is the argument of that predicate. Notice that
both positive and negative literals may be used.

The sequential covering algorithm uses a working datastructure consisting
of a set of current literals and a set of current rules. The deductive closure
of the current literals and the current rules is the set of literals consisting
of all the current ones and all other literals that can be obtained from the
given ones using the current rules in one or more steps.

The learning activity is initialized with the representation of the training set
in terms of literals as the current literals set, and with the empty set as the
current set of rules. Then, in each step of the learning activity, one identifies
a new rule that covers a sufficient number of current literals, according to
the following requirements, where the extended rule set is the current set of
rules plus the new rule:

e The deductive closure of the current literals set and the extended rule
set is consistent.

e There is a subset M of the current literals set such that the deductive
closure of M and the extended rule set equals the deductive closure
that is obtained with the current literals.

e The difference set i.e. the set of those current literals not in M is
sufficiently large.

17

If such a rule can be found then it is added to the current rule set, the set
M is adopted as the current literals set, and the process is repeated until
no additional rule qualifies.

The difficulty lies in finding such a rule. Rule learning consists therefore of
two nested loops, computationally speaking, where the outer loop adds one
rule at a time, and the inner loop performs a search for an appropriate rule
with good covering properties.

One possibility with respect to the inner loop is to use a variation of the
ID3 algorithm for learning decision trees. Notice that a decision tree can be
seen as a set of rules, namely, one rule for each path through the tree from
the root node to a terminal node. Each choice node in the tree corresponds
to one antecedent in the rule, and the outcome from the path corresponds
to the consequent of the rule. If one operates the ID3 algorithm in depth-
first fashion, so that it only extends one branch of the tree in the depth
direction and never pursues any other branches, then what one is doing is
effectively to construct one propositional rule. The entropy-based choice
criterium that is used by the ID3 method is equally applicable then.

Clearly this is again a greedy method, with the same well-known problems
as we discussed before, and one can modify it for example by performing a
beam search, that is, by expanding a few paths rather than one single path
in the underlying decision tree.

Additional variations of this method are described in Section 10.2.2 (pages
279-280) in Tom Mitchell’s book.

3.2 Learning First-Order Rules: The FOIL Method

The FOIL method (Quinlan, 1990) is a generalization of the sequential
covering method for the case of first-order rules. For this method, the
given training set is assumed to consist of ground literals which may be
both positive and negative. The control dataset is a set of rules, as defined
above, where functions are not allowed so the arguments of predicates must
be entities or variables. Again, both positive and negative literals may occur
in the antecedents of the rules.

Although the training set should contain both positive and negative ex-
amples, the FOIL algorithm only looks for rules where the consequent is
positive, i.e., rules that characterize the target set directly.

The construction of a rule in the inner loop of FOIL proceeds in a way
similar to the propositional case. Suppose the learning task consists of
learning the predicate [dangerous .a] for a variety of animals .a. The
rule construction procedure starts with the following rule

[! [dangerous .a] if]

which means that it says that all animals are dangerous. It then adds
successive literals containing .a and possibly also other variables to the list
of antecedents. In each step it considers several alternative literals that may
be added; for each such literal it considers the set of all possible assignments
of values to all the variables in the rule at hand when this literal has been
added, checks for which of these assignments the new rule is consistent with
the literals in the training set, and calculates the information gain due to

18

the addition of this literal. The best candidate literal is added to the rule,
and the rule construction process continues until a rule with sufficiently
good information gain has been found.

For additional details, please see Section 10.5.2 (pages 288-290) in Tom
Mitchell’s book.

4 Additional Topics

The following additional topics would also have a natural place in the present
lecture note but must be omitted due to lack of time.

e Inductive Logic Programming
e Case-based Learning

e Analytical Learning

I hope to be able to provide additional text for them in the near future.

