
KRF

Erik Sandewall

Ontology, Taxonomy and Type in Artificial
Intelligence

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-027, can persistently be accessed as follows:

Project Memo URL: www.ida.liu.se/ext/caisor/pm-archive/krf/027/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2011/007/

Date of manuscript: 2011-09-09

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

1

Preface

This lecture note is intended for use in a graduate-level (Ph.D. students)
course in Artificial Intelligence at Linköping University during 2011. It is
likely that parts of it will later be repackaged as a technical report or as a
chapter in a forthcoming book.

The following book is strongly recommended reading for the course, and
pages 100-146 in the book are required reading:

Adam Pease: Ontology. A Practical Guide. Articulate Software
Press, Angwin, CA 94508, USA.

The SUMO ontology is available from the following website:

http://www.ontologyportal.org/

Directly browsable files for the main part of SUMO are available at the
following webpage, but one must caution that they are a few years old and
therefore not entirely up-to-date:

http://piex.publ.kth.se/ckl-fields/sumo/page.html

This page links to pages that present SUMO as Leonardo entityfiles, with
some rudimentary structure so that each SUMO entity is presented as a
Leonardo entity with attributes and properties, and with those axioms that
are considered to pertain to an entity collected in a Leonardo property for
it.

The previously read lecture notes in this course are assumed as known in
the present lecture note. They can be found like before at

http://www.ida.liu.se/ext/kraic/

The material in the lecture notes for the Knowledge Representation Frame-
work and Principles of Domain Modelling for Knowledge Representation
will be extensively used.

Chapter 1

About Ontologies

This chapter is an overview of the role of ontologies in Artificial Intelligence,
and of major currently used ontology languages and ontologies. The follow-
ing chapters will describe the SUMO and KRF ontologies with respect to
their similarities and differences. Particular attention will be given to the
representation of actions and change in the two systems, and to the interplay
between the type system and the ontology in the case of KRF.

Some of the material in Chapter 1 has been obtained from Wikipedia pages
and other sources on the Internet. The permission of the page owner has
been obtained in each case, except for the Wikipedia pages where this is
permitted according to their copyright notice.

1.1 Content and Purpose of Ontologies

The Wikipedia article on ontology in computer science [1] says:

In computer science and information science, an ontology is a formal rep-
resentation of the knowledge by a set of concepts within a domain and
the relationships between those concepts. It is used to reason about the
properties of that domain, and may be used to describe the domain.

In theory, an ontology is a “formal, explicit specification of a shared con-
ceptualisation.” An ontology provides a shared vocabulary, which can be
used to model a domain that is, the type of objects and/or concepts that
exist, and their properties and relations.

Ontologies are used in artificial intelligence, the Semantic Web, systems
engineering, software engineering, biomedical informatics, library science,
enterprise bookmarking, and information architecture as a form of know-
ledge representation about the world or some part of it. The creation of
domain ontologies is also fundamental to the definition and use of an enter-
prise architecture framework.

Contemporary ontologies share many structural similarities, regardless of
the language in which they are expressed. As mentioned above, most on-

1http://en.wikipedia.org/wiki/Ontology (information science)

2

http://en.wikipedia.org/wiki/Ontology_(information_science)�

3

tologies describe individuals (instances), classes (concepts), attributes, and
relations. Common components of ontologies include:

• Individuals: instances or objects (the basic or ”ground level” objects)

• Classes: sets, collections, concepts, classes in programming, types of
objects, or kinds of things.

• Attributes: aspects, properties, features, characteristics, or parame-
ters that objects (and classes) can have

• Relations: ways in which classes and individuals can be related to
one another

• Function terms: complex structures formed from certain relations
that can be used in place of an individual term in a statement

• Restrictions: formally stated descriptions of what must be true in
order for some assertion to be accepted as input

• Rules: statements in the form of an if-then (antecedent-consequent)
sentence that describe the logical inferences that can be drawn from
an assertion in a particular form

• Axioms: assertions (including rules) in a logical form that together
comprise the overall theory that the ontology describes in its domain
of application. This definition differs from that of ”axioms” in gener-
ative grammar and formal logic. In those disciplines, axioms include
only statements asserted as a priori knowledge. As used here, ”ax-
ioms” also include the theory derived from axiomatic statements.

• Events: the changing of attributes or relations.

Ontologies are commonly encoded using ontology languages.

1.1.1 Formal vs Lightweight Ontologies

Citation from [2]

A variety of ontologies form a continuum from lightweight, rather informal,
to heavyweight, and formal ontologies. The lightweight ontology approach
and the formal ontology approach are often used differently and have dif-
ferent strengths and weaknesses. Lightweight ontologies usually are tax-
onomies, which consist of a set of concepts (i.e., terms, or atomic types)
and hierarchical relationships among the concepts. It is relatively easy to
construct a lightweight ontology. To use a lightweight ontology for inter-
operability purposes, all parties need to agree on the exact meaning of the
concepts. Reaching such agreements can be difficult. The lightweight ontol-
ogy and the agreements together form a standard that all parties uniformly
adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. In contrast, a formal ontology uses axioms
to explicitly represent subtleties and has inference capabilities. It can sup-
port data standardization in a different way, that is, the agreements are
explicitly specified in the ontology. More often, a formal ontology is used to
allow for data heterogeneity and to support interoperability, in which case

2http://web.mit.edu/smadnick/www/wp/2006-06.pdf

http://web.mit.edu/smadnick/www/wp/2006-06.pdf�

4

the different interpretations and representations of data are explicitly cap-
tured in the ontology. In either case, a formal ontology disambiguates all
concepts involved. Once created, a formal ontology can be relatively easy
to use. But it often takes tremendous effort to create a formal ontology due
to the level of detail and complexity required.

To summarize, lightweight ontologies are often used as data standards; as
artifacts, they are simple, and thus easy to create, but difficult to use. For-
mal ontologies are often used to support interoperability of heterogeneous
data sources and receivers; as artifacts, they are complex and difficult to
create, but easy to use. Either approach has its weakness that limits its
effectiveness.

(The Wikipedia article on lightweight ontologies is not recommended).

Domain ontologies and upper ontologies

The following distinction is mostly applicable for formal ontologies; lightweight
ontologies typically do not use it or need it.

A domain ontology (or domain-specific ontology) models a specific domain,
or part of the world. It represents the particular meanings of terms as
they apply to that domain. For example the word card has many different
meanings. An ontology about the domain of poker would model the “playing
card” meaning of the word, while an ontology about the domain of computer
hardware would model the “punched card” and “video card” meanings.

An upper ontology (or foundation ontology) is a model of the common ob-
jects that are generally applicable across a wide range of domain ontologies.
It contains a core glossary in whose terms objects in a set of domains can be
described. There are several standardized upper ontologies available for use,
including Dublin Core, GFO, OpenCyc/ResearchCyc, SUMO, and DOLCE.
WordNet, while considered an upper ontology by some, is not strictly an
ontology. However, it has been employed as a linguistic tool for learning
domain ontologies.

The Gellish ontology is an example of a combination of an upper and a
domain ontology.

Since domain ontologies represent concepts in very specific and often eclec-
tic ways, they are often incompatible. As systems that rely on domain
ontologies expand, they often need to merge domain ontologies into a more
general representation. This presents a challenge to the ontology designer.
Different ontologies in the same domain can also arise due to different per-
ceptions of the domain based on cultural background, education, ideology,
or because a different representation language was chosen.

1.2 Ontology Languages

Most of the representation languages that were described in the lecture
note about principles of domain modelling are used for representing ontolo-
gies, in particular KIF, CycL and OWL. The following are some additional

5

languages that have been developed specifically for representing ontologies
(quotation from the Wikipedia article on ontologies [3])

• The Common Algebraic Specification Language is a general logic-
based specification language developed within the IFIP (International
Federation of Information Processing) working group 1.3 ”Founda-
tions of System Specifications” and functions as a de facto standard
in the area of software specifications. It is now being applied to on-
tology specifications in order to provide modularity and structuring
mechanisms.

• Common logic is ISO standard 24707, a specification for a family of
ontology languages that can be accurately translated into each other.

• DOGMA (Developing Ontology-Grounded Methods and Applications)
- additional information not available.

• The Gellish language includes rules for its own extension and thus
integrates an ontology with an ontology language.

• The Integrated Definition for Ontology Description Capture Method
(IDEF5) is a software engineering method to develop and maintain
usable, accurate, domain ontologies.

• The Rule Interchange Format (RIF) and F-Logic combine ontologies
and rules.

• The Semantic Application Design Language (SADL) captures a subset
of the expressiveness of OWL, using an English-like language entered
via an Eclipse Plug-in.

• OBO, a language used for biological and biomedical ontologies.

1.2.1 The RIF Language

Wikipedia says:
RIF is part of the infrastructure for the semantic web, along with (princi-
pally) RDF and OWL. Although originally envisioned by many as a ”rules
layer” for the semantic web, in reality the design of RIF is based on the
observation that there are many ”rules languages” in existence, and what
is needed is to exchange rules between them. End of citation.

In practice RIF is therefore a family of languages, rather than a single
language, and in terms of the present compendium one may consider RIF
as a language style and its various so-called dialects as languages using that
style. The following are simple examples from some of these ‘dialects’.

The Production Rules Dialect

The Production Rules Dialect (PRD) can be used to model production rules.
Notably features in PRD include negation and retraction of facts (thus,
PRD is not monotonic). PRD rules are order dependent, hence conflict
resolution strategies are needed when multiple rules can be fired. The PRD

3http://en.wikipedia.org/wiki/Ontology (information science)

http://en.wikipedia.org/wiki/Ontology_(information_science)�

6

specification defines one such resolution strategy based on forward-chaining
reasoning.

Prefix(ex <http://example.com/2008/prd1#>)
(* ex:rule_1 *)
Forall ?customer ?purchasesYTD (
If And(?customer#ex:Customer

?customer[ex:purchasesYTD->?purchasesYTD]
External(pred:numeric-greater-than(?purchasesYTD 5000)))

Then Do(Modify(?customer[ex:status->"Gold"])))

The Uncertainty Rule Dialect

The Uncertainty Rule Dialect (URD) supports a direct representation of
uncertain knowledge, as in the following example.

Document(
Import (<http://example.org/fuzzy/membershipfunction >)
Group
(

Forall ?x ?y(
cheapFlight(?x ?y) :- affordableFlight(?x ?y)

) / 0.4
Forall ?x ?y(affordableFlight(?x ?y)) / left_shoulder0k4k1k3k(?y)

))

It is debatable whether these RIF languages should best be described as
knowledge representation languages, specialized ontology languages or high-
level programming languages.

1.2.2 Common Logic

Wikipedia writes:
Common logic (CL) is a framework for a family of logic languages, based
on first-order logic, intended to facilitate the exchange and transmission of
knowledge in computer-based systems.

The CL definition permits and encourages the development of a variety of
different syntactic forms, called ”dialects.” A dialect may use any desired
syntax, but it must be possible to demonstrate precisely how the concrete
syntax of a dialect conforms to the abstract CL semantics, which are based
on a model theoretic interpretation. Each dialect may be then treated as
a formal language. Once syntactic conformance is established, a dialect
gets the CL semantics for free, as they are specified relative to the abstract
syntax only, and hence are inherited by any conformant dialect. In addition,
all CL dialects are equivalent (i.e., can be mechanically translated to each
other), although some may be more expressive than others.

The standard includes specifications for three dialects, the Common Logic
Interchange Format (CLIF), the Conceptual Graph Interchange Format
(CGIF), and an XML-based notation for Common Logic (XCL). The se-
mantics of these dialects are defined by their translation to the abstract
syntax and semantics of Common Logic. Many other logic-based languages
could also be defined as subsets of CL by means of similar translations;

7

among them are the RDF and OWL languages, which have been defined by
the W3C (World-Wide Web Consortium). End of citation.

The following is a simple example of these formats:

CLIF: (exists (x y) (and (Red x) (not (Ball x)) (On x y)
(not (and (Table y) (not (Blue y))))))

CGIF: ~[[*x] [*y] (Red ?x) ~[(Ball ?x)] (On ?x ?y)
~[(Table ?y) ~[(Blue ?y)]]]

This shows how CLIF uses S-expression style and CGIF uses its own special
format for representing logic formulas using the standard (Latin-1) com-
puter character set. The peculiar conventions of CGIF include the use of
square brackets for enclosing a conjunction (and-expression) and a universal
quantifier, and the use of the asterisk for marking the quantification of a
variable.

Notice that the concept of dialect in Common Logic is almost opposite of
dialects in RIF. RIF dialects are languages for different purposes that use a
more or less common style, whereas the point with Common Logic dialects
is to allow different styles for the same, or at least overlapping semantic
content.

1.2.3 The Gellish Language

The Wikipedia article about Gellish [4] writes:
Gellish is a controlled natural language, also called a formal language, in
which information and knowledge can be expressed in such a way that it is
computer-interpretable, as well as system-independent. Gellish is a struc-
tured subset of natural language that is suitable for information modelling
and knowledge representation and as a successor of electronic data inter-
change. From a data modeling perspective, it is a generic conceptual data
model that also includes domain-specific knowledge and semantics. There-
fore, it can also be called a semantic data model. The accompanying Gellish
modelling method thus belongs to the family of semantic modelling meth-
ods.

The data model in Gellish is based on binary relations between entities,
similar to the model in OWL.

Etymologically speaking, “Gellish” is originally derived from “Generic En-
gineering Language.” However, it is further developed into a language that
is also applicable outside the engineering discipline.

1.2.4 The SADL Language

A simple example of the use of SADL, from its webpage:

shapes-top.sadl
uri "http://ctp.geae.ge.com/iws/shapes_top".

Shape is a top-level class.

4http://en.wikipedia.org/wiki/Gellish

http://en.wikipedia.org/wiki/Gellish�

8

area describes Shape has values of type float.

shapes-specific.sadl
uri "http://ctp.geae.ge.com/iws/shapes_specific".

import "file://shapes-top.sadl" as shapes-top.

Circle is a type of Shape.
radius describes Circle has values of type float.

Rectangle is a type of Shape.
height describes Rectangle has values of type float.
width describes Rectangle has values of type float.

Reasoning over a set of SADL documents takes two basic forms. Validation
of a model involves checking the model for contradictions or inconsisten-
cies. Rule processing involves examining the rules in the model in light of
the current instance data to see if any of the rules can ”fire” to infer addi-
tional information. Two reasoners are integrated with the SADL Integrated
Development Environment (SADL-IDE).

A systematic transformation from SADL to OWL has been defined.

1.2.5 The IDEF5 Method and Language

The digit ‘5’ in the acronym IDEF5 is not a version generation number,
but represents the fact that there is an IDEF family of modelling languages
that serve different and complementary purposes, and IDEF5 is the partic-
ular language used for ontologies in this family. This family of languages
was developed by the U.S. Air Force in the early 1990’s, and is presently
maintained and used by a commercial company, Knowledge Based Systems,
Inc.

The IDEF5 method has three main components: A graphical language to
support conceptual ontology analysis, a structured text language for de-
tailed ontology characterization, and a systematic procedure that provides
guidelines for effective ontology capture. The graphical language appears
to be the primary representation.

1.3 Published Formal Ontologies

A substantial number of proposed formal ontologies have been published,
both general-purpose ones and specialized ontologies for different disciplines
or areas of knowledge or application. The following are some of the more
important general-purpose ontologies.

• The Cyc ontology, [5]

• The Suggested Upper Merged Ontology, SUMO, [6]

• The Generalized Upper Model, GUM

5http://en.wikipedia.org/wiki/Cyc
6http://en.wikipedia.org/wiki/Suggested Upper Merged Ontology

http://en.wikipedia.org/wiki/Cyc�
http://en.wikipedia.org/wiki/Suggested_Upper_Merged_Ontology�

9

• The Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE), [7]

Ontologies such as these are fairly elaborate things, often beginning with an
almost philosophical discussion of types of concepts and their relationships
and uses. It is not the purpose of the present compendium to address
those issues, and we shall merely make a few notes about the technical and
administrative aspects of some of the ontologies, and in particular how they
relate to the styles and representation languages that have been described
in earlier chapters.

1.3.1 The SUMO Ontology

SUMO – the Suggested Upper Merged Ontology – is an open resource that
uses the KIF representation language, which is essentially first-order logic.
It will be discussed further in the next chapter.

1.3.2 The DOLCE Ontology

For a description of the DOLCE ontology, please refer to the above-mentioned
webpage and to the section about DOLCE i the SUMO book.

The WonderWeb Foundational Ontologies Library (WFOL) is intended to
contain a variety of ontology documents together with tools for relating
them. DOLCE is the first item in that library.

1.3.3 The Protégé Ontology Library

The Protégé Ontology Library [8] contains a considerable number of ontolo-
gies, in particular in the two formats that are supported by Protégé, i.e.
OWL and OKBC. Contents range from the very general, such as DOLCE,
to the quite specific e.g. Daycare - “A demo ontology about a childcare
center showing the use of SWRL for reasoning,” or Camera - “An OWL
ontology about the individual parts of a photo camera.”

1.3.4 The Cyc Ontology

The Cyc ontology uses the CycL representation language (see the separate
lecture note about knowledge representation languages). It is largely pro-
prietary, by contrast to all the preceding ontologies that are open-source
and can be used freely.

7http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf
8http://protegewiki.stanford.edu/wiki/Protege Ontology Library

http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf�
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library�

Chapter 2

Taxonomies in SUMO and
KRF

As described in Chapter 1, ontologies are normally organized using a hierar-
chy of concepts together with informal and formal characterizations of these
concepts. The formal characterization uses restrictions, rules and axioms.
Usually the concept structure is strictly hierarchical, so that each node has
only one superior node. This hierarchical structure is called a taxonomy.

The present chapter will discuss the taxonomies used by SUMO (Suggested
Upper Merged Ontology) and the KRF (Knowledge Representation Frame-
work) in a comparative way. The intention is that this will be helpful for
understanding issues in the design of such taxonomies.

2.1 Background

2.1.1 About SUMO

The acronym SUMO stands for “Suggested Upper Merged Ontology” is
presented as follows on the SUMO webpage: The Suggested Upper Merged
Ontology (SUMO) and its domain ontologies form the largest formal public
ontology in existence today. In practice the acronym SUMO is used both in
the restricted sense for the top-level or “upper” structure, and for the entire
system that also includes the domain ontologies.

The upper ontology defines a considerable number of entities and contains
axioms that are intended to define the meaning of these entities. The files
for the upper ontology also contain verbal descriptions for entities which are
intended as guidance for the human reader who wishes to understand the
structure. Axioms include both ground literals that express relationships
between entities, and general axioms using quantifiers that range over the
domain of entities. A taxonomy over the entities is expressed using ground
literals.

Some of the domain ontologies consist entirely of literals that express el-
ementary facts. This applies for example for the domain ontologies for
people and for countries and regions. Other domain ontologies extend

10

11

the upper ontology in more substantial ways by also including non-ground
axioms.

The SUMO ontology is large; it contains around 20.000 terms and 70.000
axioms when all the domain ontologies are included.

2.1.2 About Ontology in KRF

The work on the Knowledge Representation Framework, the Leonardo sys-
tem and the Common Knowledge Library (CKL) needs to use a formal
ontology, or at least some aspects of a formal ontology, for the following
purposes:

• In order to have a coherent structure and a systematic terminology
for entity types that are used for self-description purposes in the
Leonardo system, where one of the design goals is that its software
shall contain an exhaustive description of itself

• In order to have a coherent and systematic structure for the types
that are used in the Common Knowledge Library

• In order to have an ontology that is consistent with the material about
knowledge representation in the lecture notes for the present course.
This applies in particular to the logic for reasoning about actions and
change, both for the general predicates and functions that are used
there, and for the required extensions when specific action verbs are
introduced

• The logical treatment of defeasible multiple inheritance similarly needs
to be related to the taxonomical aspect of ontologies.

The SUMO ontology and other existing ontologies were not considered en-
tirely adequate for these purposes, and our approach is therefore to intro-
duce our own structure, while at the same time keeping track of how it re-
lates in particular to SUMO, and being open to re-use small or large sections
of SUMO whenever appropriate. This working structure will be referred to
here as the KRF taxonomy or the KRF ontology. We emphasize that at
this point it is working material and by no means a finished ontology. This
approach is deemed reasonable for use within our own project. For external
presentation it will be a later question whether a finished KRF ontology
shall be presented, or whether this will result in a proposed extension of
SUMO.

In comparing the approaches it should be noticed that for those SUMO
domain ontologies that consist of ground clauses, the natural counterpart
in the KRF approach is the existing Common Knowledge Library which
consists of more than 60.000 entities, each with a nontrivial number of
attributes.

We proceed now to the discussion of the top level of the taxonomies in
SUMO and KRF.

12

2.2 Top Levels and Correspondences

We shall represent taxonomy structures using indentation, as in the follow-
ing diagram for the topmost level of the SUMO taxonomy.

Entity
PhysicalEntity

Process
Object

Self-connectedObject
Agent
Collection
Region

AbstractEntity
Attribute
Proposition
Graph
GraphElement
Set
Quantity

Number
PhysicalQuantity

The taxonomy continues with additional subtypes for the types shown here,
but this should give the general idea. The following is, by comparison, a
part of the topmost level of the KRF taxonomy.

item
entity

thing
process
individual-entity

tangible-entity
intangible-entity
social-entity

compound
spatial-entity
temporal-entity
quality

descriptor
attribute
dynamic-descriptor

SUMO entities are customarily written with a combination of capital and
small letters in the style that is suggested by these examples, whereas KRF
entities and constructs are written with small letters only, and using hyphens
for forming multi-word symbols. The use of these conventions here will make
it easier to keep track of which symbol belongs to which structure. [1]

In several cases there is a more or less exact correspondence between nodes
in the two structures. In particular, Process in SUMO corresponds to
process in KRF; these refer to processes in the same sense as in our lecture
notes, so that a process is one specific instance of an action.

1A few entities in the KRF ontology are actually written with capital letters,
but we shall write them with small letters here to avoid confusion.

13

Likewise, Region in SUMO corresponds to spatial-entity in KRF: these
are used e.g. for geographical areas such as continents, islands, and coun-
tries. There is an allowance to also use these for things that have both a
geographical extent and other characteristic properties, as is the case for
countries.

A Self-connectedObject in SUMO has two subtypes namely Substance
and CorpuscularObject. The amount of water in a glass is an example
of a Substance whereas a person, a car, and a bee may be examples of
CorpuscularObject. This substructure corresponds to tangible-entity
with its two subtypes amorphous-entity and morphous-entity.

A Collection in SUMO corresponds to a combination of two types in KRF,
namely social-entity and compound. A social-entity is for example a
family, an enterprise, or the collection of guests at a dinner. A compound is
for example the set of subscribers to a computer newsletter.

The type PhysicalQuantity has a subtype that matches temporal-entity.
The type Attribute partly patches quality. The types for Agent and for
intangible-entity are less easy to match.

These examples have shown that in some cases the difference between the
two structures is mostly a question of naming, and they should also have
given some idea as to what may be included under the various types in a
hierarchy. We proceed now to some of the differences. This will actually be
more interesting since it will illustrate a number of taxonomy design issues.

2.3 Difficult Matches

In general one can say that for the entity or world-oriented part of the
KRF taxonomy it is easy to identify the correspondences with the SUMO
taxonomy, with one noteworthy exception on each side. In SUMO there
is the type called Proposition which has a quite broad meaning. It does
not merely refer to a proposition in the sense of formal logic, but it can
be applied to anything that makes a statement about things, including for
example a set of axioms, an article, or a book.

A partial counterpart for this can be found in the KRF taxonomy under
intangible-entity which was included in the figure above and which can
be expanded as follows:

entity
thing

process
individual-entity

tangible-entity
intangible-entity

computation-entity
cognition-entity
communication-entity
convention-entity
info-entity
model-entity
abstract-entity

social-entity

14

compound

The type Proposition corresponds partly to info-entity here. In this
structure, a computation-entity may be an command verb in an OS shell
language, for example, a cognition-entity may be a method for doing a
particular task, a communication-entity may be an email message, and a
convention-entity may be a natural language or a grammar rule in such
a language.

The presence of this relatively rich structure at a high level in the KRF tax-
onomy may be attributed to the fact that the taxonomy has been developed
together with the Leonardo software system that implements the KRF, and
one requirement on the design was that the software system should char-
acterize itself, and in fact all aspects of itself, using its own representation
system. The SUMO taxonomy did not have such a requirement, and as a
consequence types corresponding to these ones must be found further down
in the hierarchy.

The situation is different with respect to other parts of the KRF ontology
since they are related to an underlying type system that is oriented towards
the needs of the elementary knowledgebase, in the sense of entities and their
attribute values as represented in entityfiles, and to some extent also to the
needs of the software development. The type system is defined first, the
main purpose of the taxonomy is to characterize phenomena in the world
which is its entity part, and the reason for having a construct part at all
is in order to provide a bridge between the taxonomy proper and the type
system.

In the SUMO ontology, entities are characterized using a combination of
an English-language explanation and a number of axioms that are written
in the KIF language, which is essentially first-order logic. Therefore it is
a natural choice (although not a necessary one) that additional facts that
originate from an application area will also be expressed in KIF, so that the
fact base and the taxonomy can be combined smoothly.

In the case of KRF it is explicitly assumed that facts from the applica-
tion area will be expressed using the Common Expression Language (CEL),
which means that they besides first-order logic they can also use constructs
such as sets, sequences and records. This is one of the reasons why a non-
trivial type system is needed. It is furthermore assumed that applications
will use the design principles described in [2] in particular for the repre-
sentation of actions, processes, and changes over time. The corresponding
representational background for SUMO has not been documented to the
same extent.

2.4 Actions and Change in KRF Ontology

We shall now proceed to look more closely at the representation of actions
and change according to the two ontologies. In the case of KRF it is based
on the explicit-time logic of actions and change that has been described in
the lecture note on principles of domain modelling (as listed in the Preface).
This is therefore one example of how an ontology is not necessarily defined
in isolation and out of philosophical or intuitive considerations; it may also

2Principles of Domain Modelling for Knowledge Representation

15

be designed so as to go well with a formal-logical view of certain kinds of
information.

Quite briefly, the KRF representation for actions and change is organized
around two predicates H (for Holds) and D (for Do). In a proposition of the
form

[H t f v]

the first argument is a timepoint, the second argument is a feature, and the
third argument is a value for that feature. For example,

[H year.2011 (the: has-president of USA) Obama.Barack]

uses a feature formed by the function the with two arguments, an attribute
has-president and an entity USA. (The of that appears in an argument
position is only for cosmetic purposes). The H predicate assigns a value to
that feature at the time in question. This representation makes it possible
to assign different values to the feature at different points in time. It also
makes it possible to use a richer “time” concept than merely a linear time
axis; one may introduce timepoints in hypothetical futures for example.

Features may be viewed as a reification of an underlying binary relation, so
that the timeless proposition

[has-president USA Obama.Barack]

is converted to the expression shown above if one wishes to state that it
applies during the year 2011, for example.

The D predicate is used for propositions of the form

[D s t a]

where s and t are timepoints and a is an action, for example

[D 2011-04-06 2011-04-08 [visit :by John :at Stockholm]]

The third argument of the D predicate is syntactically a record and not a
proposition, so the representation is correct for first-order logic. Records
are composite terms in the same sense as sets and sequences are.

An action may be reified whereby an entity is introduced for one particular
occurrence of the action, i.e. for a process.

Features are entities so they have already been reified.

This representation is essentially the same as is used in time and action
logic and the modern event calculus, and the situation calculus can be ob-
tained from it by assuming forward-branching time, adding a situation suc-
cessor function, and adding one axiom. Please refer to the lecture notes
for reasoning about actions and planning for further details about these
representational alternatives.

The following is how this representational background is used in the KRF
ontology. Selected parts of the top level of the taxonomy are expanded as
follows.

item
entity
| thing
| process

16

| individual-entity
| compound
| quality
| spatial-entity
| temporal-entity
descriptor
| attribute
| dynamic-descriptor
| feature
| relationship
| action
| characterization
| type-descriptor
| expression-type
| formant
| (formant: quality)
| (formant: attribute)
| (formant: dynamic-descriptor)
| (formant: feature)
| (formant: relationship)
| (formant: action)
| quantity
| number+sort

Features and actions are considered as instances of the descriptor type,
and in particular as instances of their subtypes feature and action, re-
spectively. The function the: is therefore a function that maps an attribute
and a thing, to a feature. (Notice that qualities can not have time-
dependent properties). Since all entities must have a type and be ac-
counted for in the ontology, there is also the type of formant with its var-
ious subtypes, and the entity the: is an instance of the type (formant:
feature). The function formant: has a type as argument, and a subtype
of formant as its value.

Similarly for actions, each action verb is considered as a member of the type
(formant: action) and the record expressing an action is an instance of
the type action.

There is no function for creating reified actions, but when reified actions
are created in the way described in Section 1.8 of “Principles of Domain
Modelling” then they obtain the type process. (Please recall that instances
of actions are called processes in the KRF terminology).

If one should wish to assign attributes to an action as such, rather than to
specific instances of it, then one would need a function that maps an action
to its generic reification. No such function has been defined at this point,
since there has not been any need for it, but it is of course possible to use
predicates that have actions as arguments - arguments of actions do not
need to be entities.

2.5 Actions and Change in SUMO Ontology

The SUMO ontology uses three major representations for actions and change;
they will be described here using CKL notation for the sake of uniformity.

17

(In these examples, which do not use quantifiers or other complications,
the difference is actually only between the use of square brackets or round
parentheses).

The assignment of attribute values that vary over time uses a modal operator
holdsDuring and the same binary predicate attribute as for assignments
that do not change over time. The predicate attribute of two arguments
is in general used like in the following literal:

[attribute car-14 has-sunroof]

Such a statement expresses that car-14 has the attribute has-sunroof
regardless of time. The following proposition is an example where the as-
signment holds during a time interval:

[holdsDuring Today [attribute car-14 green]]

Notice by the way that such an attribute assignment in SUMO representa-
tion consists of only two parts, whereas in KRF representation there is an
entity, an attribute, and a value, such as in

[H today (the: has-color of car-14) green]

On the other hand there is of course nothing to prevent one from introducing
a particular predicate such as has-color in the SUMO representation, so
as to be able to write

[has-color car-14 green]
[holdsDuring Today [has-color car-14 green]]

Notice also that the SUMO type Attribute is used for entities that are
intended for use as attribute values, such as has-sunroof, whereas the
KRF type attribute is used for the designator of the attribute, such as
has-color in the KRF example. (The KRF type called category is anal-
ogous to the SUMO Attribute but it is only used for pragmatic purposes
in the software).

A partly related issue concerns quantitative descriptors that vary over time,
such as the selling prize of a car or the temperature of the water in a bucket.
The SUMO taxonomy subdivides PhysicalQuantity into ConstantQuantity
and FunctionQuantity as follows:

Entity
PhysicalEntity

Process
Object

AbstractEntity
Attribute
...

Quantity
Number
PhysicalQuantity

ConstantQuantity
FunctionQuantity

A ConstantQuantity consists of a number and a sort, such as for example
“4 meters” whereas a FunctionQuantity is a function from a set of type
ConstantQuantity to another such set, where presumably all members of
the argument domain must have the same sort, and similarly for the value

18

domain. The argument domain can be an interval on the timeline, for
example.

The KRF representation represents situations such as these using the feature
construct and the H predicate.

A question that arises in this context is whether a FunctionQuantity is
only a mapping, or whether it also includes the characterization of the entity
having the quantity in question. For example, suppose you have two buckets
of water that stand side by side, so that their temperature as a function of
time is exactly the same during the time interval in question. Do you then
have one single FunctionQuantity or two different ones? (In the case of
the KRF representation, two features (the: a of e) and (the: a’ of
e’) are only equal if a equals a’ and b equals b’ so each bucket of water
has its own temperature feature).

For processes, finally, the SUMO representation uses reified action expres-
sions to represent specific processes, and it also defines a reportoire of “case
roles” for use in these. For example, the sentence “Lars travelled to Uppsala
on April 6, 2011” would be represented as the conjunction of the following
propositions, for some suitable choice of the first argument in the literals:

[instance travel-43 travel]
[agent travel-43 lars]
[destination travel-43 uppsala]
[time travel-43 2011-04-06]

This may be compared with the primary representation in KRF which is

[W 2011-04-16 [travel :by lars :to uppsala]]

while it is also foreseen that such a proposition can be reified, obtaining the
same representation as is used by SUMO. The primary representation in
KRF is more compact and is sufficient for use in action effect laws, but the
less compact, reified representation is needed if one wishes to add further
information about the process in question.

SUMO also introduces an ontology for processes in the form of abstract
verbs and relates them to the case roles. This is an important issue that
deserves separate study.

This comparison between the SUMO and KRF representations for actions
and change has shown that there are significant differences between the
two systems, but they are intertranslatable to quite a large extent. One
may therefore ask what are the situations (if any) where the difference is
of any importance, how strong are the preferences in those particular situa-
tions, and how big are the disadvantages of having to deal with alternative
representations?

With respect to what are the situations where a particular choice makes a
difference, the following can be said from the KRF point of view.

• The KRF representation using features and the H predicate stays
strictly within first-order logic, whereas the holdsDuring predicate
in SUMO is a modal operator. There is a general argument in favor
of staying within first-order logic for computational reasons. On bal-
ance, if the use of the holdsDuring operator is restricted to having
ground literals as its second argument, then the representation can

19

easily be transformed to a first-order one. If there is no such restric-
tion, so that expressions using propositional connectives and quanti-
fiers can be used as the second argument, then this representation is
significantly more expressive, but also significantly more difficult to
process.

• The use of features and the H predicate is essential for solutions to
the frame problem when reasoning about actions, in particular since
features are also used as an argument to the occlusion predicate.

• The use of action expressions in the KRF representation makes it
possible to write effect rules for actions much more compactly than
if only the reified representation is available, but it does not provide
any additional expressivity for effect rules.

• There are also examples where one wishes to make a statement about
an action in general, and not merely about one instance, or all in-
stances of that action. It may be argued, for example, that the sen-
tence “eating animals is wrong” is not correctly expressed by “every
activity where someone eats an animal, is wrong,” since one may wish
to allow for exceptions, and also since value statements may be ap-
plied even to action expressions for which there are no instances at
all. This speaks in favor of the use of KRF action expressions as a
complement to the reified representation.

With respect to the last question, the problems can only appear when one
tries to combine actual software that uses different representation. As long
as the exchange between representations only occurs on the level of publica-
tion, it is not much of an issue, provided of course that each representation
is clearly defined, and that the translation between them has been defined.

In his book, Adam Pease discusses the differences between SUMO and sev-
eral other representations and ontologies, and the differences that he iden-
tifies are often more profound than what we have seen between SUMO and
KRF, both because of a lack of effective expressiveness in other approaches,
and (sometimes) because of lack of precision in the definitions.

Although the SUMO ontology has many strong sides, it is not necessarily
the last word on ontology, and some other researchers may also have bigger
differences with SUMO than what I have. In fact there is a tension between
two objectives with respect to ontologies: one one hand the idea with an
ontology is that it should be a common representation that facilitates coop-
eration, but at the same time we know that further development is needed
so it would be premature to concentrate all activity in our field to a single
one. Doing so would be an obstacle to continued development. The use of
a healthy variety of alternative representation systems, not too many and
not too few, is in the interest of research.

Representation systems and ontologies are large and complex designs that
embody a large number of design decisions. The discussion in this section
has therefore only scratched the surface of its topic, but it is offered since
it provides some examples of the issues that may arise.

Chapter 3

Type Structure and
Ontology

The KRF ontology is complemented by a type structure which will be in-
troduced in this chapter. We shall describe the motivation for the type
structure and how it relates to the taxonomy. The next chapter will pro-
vide technical details for one part of the type structure.

3.1 Type and Subsumption

Consider the elementary situation where “car 14 is green.” It is fairly clear
that we will like to say that car 14 is an instance of the type of automobiles,
and green is an instance of the type of colors. In order to make this structure
explicit, we should also consider automobile and color as entities, and in
particular they will have a place in our ontological taxonomy, where they
are subsumed by vehicle and visual-quality, respectively.

It is quite possible to stop there, but in the case of the KRF ontology we
wish to make it a consistent principle that every entity shall have a type.
Besides the aesthetic aspect, types are used in order to charaterize what
attributes a particular entity can have, what is the permissible structure of
those attributes, what are is the permissible structure for arguments and
values of functions, and what is the permissible structure for the case roles
of an action.

Therefore we need to have an answer to the question as to what is the type of
the entities such as vehicle, visual-quality, automobile, and color.
In the KRF ontology this is handled by making a clear distinction between
type membership and subsumption, with two separate inclusion relations.

With respect to type membership, there are essentially three type levels.
Entities such as vehicle and has-color belong to level 2; entities such as
car 14 and green belong to level 3. Each entity of level 3 shall have a type
that is an entity of level 2; each entity of level 2 shall have a type that is
an entity of level 1. The type of an entity of level 1 is also on level 1, so
circularities are allowed on that level.

20

21

Subsumption is widely applicable among entities on level 2, as our example
has illustrated, and in fact the KRF taxonomy is a structure for that level
only. Two of the main branches in the KRF taxonomy are thing and
quality. An interesting difference between them is that for level-3 entities
whose type is quality (including a type that is subsumed by quality) it is
also often natural to use the subsumption relation, whereas the same rarely
holds for entities whose type is (subsumed by) thing. For example, red
is subsumed by brownish-red and pale-read, but there is no reasonable
way of subsuming a particular car. On the other hand, the part-of relation
is very often applicable for entities that are instances of concepts in the
thing branch, while this is not the case in the quality branch.

The number of entities in level 1 is quite small. It includes thingtype
which is the type for the level-2 entity thing and for all level-2 entities that
are subsumed by it. Similarly there is qualitytype which is the type for
all items subsumed by the level-2 entity quality including that one itself.
There is spatial-entity-type and temporal-entity-type corresponding
to spatial-entity and temporal-entity which are the top levels for their
respective branches on level 2. Finally there are two most general entities
type and supertype that are above everything else on level 1, and which
is where the circularity takes place.

The KRF ontology is mostly concerned with level 2 in this structure. Items
on level 3 are represented in specific applications and in the Common Know-
ledge Library (CKL) which is a relatively large knowledgebase consisting of
elementary facts about individual level-3 entities.

3.2 Data Items and Ontology Items

Besides the considerations of type level, there is an issue about how entities
in the ontological taxonomy relate to the data structures of the software sys-
tem using the ontology. This is particularly important in the KRF ontology
since the structure of the software system is an integrated part of the Know-
ledge Representation Framework, and since this framework is implemented
as the Leonardo software system.

The approach to this problem uses a taxonomic structure that has the top
levels shown in the following diagram:

item
data-item

scalar
string
number

data-entity
symbol
composite-entity

set
sequence
record
term

descriptor
attribute
dynamic-descriptor

22

feature
relationship

action
characterization

type-descriptor
expression-type
formant

(formant: quality)
(formant: attribute)
(formant: dynamic-descriptor)

...
quantity

number+sort
entity

thing
quality
spatial-entity
temporal-entity

The three branches of this structure are headed by data-item, descriptor,
and entity, respectively. The first of these lists the syntactic types for
Knowledge Representation Expressions (KRE) in an obvious way, except
that what is called entity in the lecture note on the Knowledge Represen-
tation Framework is called a data-entity here in order to avoid ambigu-
ity. (There is also an issue about whether variable and tag should also
be included, but this is marginal for the present discussion). The branch
for entity contains things that are of obvious concern for the ontology
since they refer directly to phenomena in the real world. The branch for
descriptor is in an intermediate position.

All instances of the types in the descriptor and entity branches are rep-
resented as instances of some type in the data-item branch. Usually they
are instances of data-entity but sometimes they are instances of record,
for example for instances of relationship and of number+sort.

Instances from the descriptor branch are often composite entities, for
example, entities formed using the function the: The arguments for these
functions may come from any of the three branches. Therefore, for example,
if one should wish to introduce a function that maps an integer such as 1789
to the concept of year 1789, then that function would have a natural place as
an instance of a type in the descriptor branch, and more particularly as an
instance of (formant: year-entity) for example. A function that takes a
number and an entity representing a measurement sort, such as kilogram,
and maps this to a record that represents an instance of number+sort will
accordingly be an instance of the type (formant: number+sort).

We consider it convenient to let the ontology in the proper sense and its
taxonomy focus on the entity branch of the above structure, since the
items in the data-item and descriptor branches are fairly mechanical
and formal. In particular their relation to the modelling of phenomena in
the real world is merely to provide some notational instruments for this,
rather than to participate in the modelling as such.

23

3.3 Data Items and Descriptor in SUMO

The SUMO ontology differs from the approach of the KRF ontology by
integrating the counterparts of data items and descriptors into the main
ontology. This means that concepts such as set and sequence are the
subject of characterization in the ontology, including the introduction of
axioms that characterize the elementary properties of such constructs.

Some correspondences are easy to see: Number matches number, ConstantQuantity
matches number+sort, and Set matches set, at least to the extent that
one only considers sets that are defined by enumerating their members.

(It is intended to add more details about the SUMO approach in this respect
here, together with a discussion of the pros and cons of these approaches).

3.4 Type Descriptors for Composite Expres-
sions

Returning to the KRF perspective, suppose you wish to characterize an at-
tribute (in the KRF sense) where the attribute value shall be either an entity
whose type is automobile or a subtype thereof, or a set of such entities.
This will be an example of a type descriptor for a composite expression.
It may be of interest when specifying how the attribute in question may
be used, or for a routine that checks compliance for a large collection of
attribute-value assignments. Such a type descriptor may also be needed,
for example, for characterizing permitted arguments and possible values for
a function with a procedural definition.

However, the types that occur in the ontological taxonomy, and in its level
2 in particular, tend to be atomic symbols that are not well suited for char-
acterizing structured data items. The KRF type system therefore contains
a number of operators that can be used for forming descriptions such as
these, for example

(join automobile (setof automobile))

for the aforementioned example. These operators and expressions must then
in turn have a place in the type system, and so on until closure is obtained.
All of this is also included in the descriptor branch of the entire system
for types and taxonomy. This means that the descriptor branch contains
facilities for describing both entities, data items, and items that are obtained
from its own branch.

The next chapter will describe the details of how this is realized in the KRF
type system, with the caveat that the presentation is a few years old and
that there have been some marginal changes to it in order to bring the
structure in line with the more recently developed ontology and taxonomy.

Chapter 4

The KRF Type System

In order to see how the KRF type system relates to the ontology, it is neces-
sary to first understand the type system itself. Its purpose is to characterize
the structure where entities have attributes and where attribute values can
be arbitrary KR expressions, including sets, sequences, records and so forth.
It shall specify what types of entities can have what attributes, and what is
the permissible structure for an attribute value given the choice of attribute
and the type of the carrier of the attribute. It shall also be able to express
this for all entities that may occur in a software individual.

There is an unfortunate terminology conflict with respect to the term entity
for the KRF ontology. From the point of view of the type system, entities
are represented as symbols or composite-entity expressions, and they can
have attributes. Numbers and strings are not entities, and sets, sequences
are records are not entities although their elements can be entities. From
the point of view of the ontology, on the other hand, it is natural to de-
fine entity as the overreaching concept at the top of the taxonomy, with
construct as a relatively minor alternative to the side as shown above, but
then one ends up with having the type of action as a subtype of entity
although actions are represented as records and not as entities in the type-
system sense.

The present chapter contains a description of the type system that was
written in year 2008. A few details have changed since then, but the general
structure is the same.

4.1 Signatures

An entitystate is a set of entities and their descriptions. A signature is an
entitystate that is used to characterize the structure of other entitystates,
called its object entitystates. The signature must always specify what types
are used in the object entitystate and what attributes may be used by
instances of a type. It may also provide other information, for example,
what is the admitted structure for the values for a particular attribute.

24

25

A Very Simple Signature

Since signatures are entitystates, it makes sense to ask that a signature shall
also have its signature. In order to avoid an infinite regress, it is desirable
to have first of all a signature that can be used as a signature for itself.
Consider first the following very simple example of a signature. We specify
a number of entities and the attribute-value assignments for each of them.
Type [·type Supertype]·

[·has-attributes {}]·
Supertype [·type Supertype]·

[·subsumed-by Type]·
[·has-attributes {subsumed-by has-attributes}]·

Descriptortype [·type Supertype]·
[·subsumed-by Type]·
[·has-attributes {subsumed-by}]·

Descriptor [·type Descriptortype]·
Attribute [·type Descriptortype]·

[·subsumed-by Descriptor]·
type [·type Attribute]·
subsumed-by [·type Attribute]·
has-attributes [·type Attribute]·

This signature has the following property. For each entity e in the signature,
one identifies the value t of its type attribute. Then, for every assignment
to an attribute a of e, except when t = type, a shall be a member of
the has-attributes attribute of t. Having this property is one of the
requirements for being self-describing. As a matter of convention we omit
type in the value for has-attributes since every entity must have a value
for type.

The problem with this very simple signature is of course that it does not
even begin to specify the permitted structures for attribute values. We
shall add this soon below, but this extension requires introducing quite a
number of auxiliary entities. This is because attribute values may be sets
of entities, as we observe for the has-attributes attribute, and therefore
we must introduce a way of characterizing such sets, and this again leads
to a need for describing those set-expression characterizers. For this reason,
we shall make another and much simpler extension before we turn to the
attribute-value specifications.

Categories

In many applications there is a need to put a “flag” on some of the entities,
for example for marking entities whose description needs further checking
before it can be released. Rather than having to introduce one more at-
tribute for each such flag, it is convenient to have a single attribute whose
value is a set of applicable “flags”. These flags are called categories in the
KRF ontology. The following additional definitions are needed.
Category [·type Descriptortype]·

[·subsumed-by Descriptor]·
[·has-attributes {applicable-for}]·

applicable-for [·type Attribute]·
has-categories [·type Attribute]·

26

The idea is that each category or “flag” shall be represented as an en-
tity of type Category and that the has-categories attribute of an en-
tity shall have as value the set of the categories that apply to that entity.
Furthermore, each entity of type Category shall have an attribute called
applicable-for whose value shall be a non-empty set of types for entities
for which this category may apply.

Since Category has a has-attributes attribute, it becomes necessary to
amend Descriptortype, Descriptor, and Attribute as follows.
Descriptortype [·type Supertype]·

[·subsumed-by Type]·
[·has-attributes {subsumed-by has-attributes}]·

Descriptor [·type Descriptortype]·
[·has-attributes {}]·

Attribute [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {}]·

These amendments will anyway be needed in later steps, so they are not
made only for serving the category concept.

In addition, if it should be desired to assign categories to Descriptortype,
Thingtype, etc. then the description for Supertype must be amended as
follows.
Supertype [·type Supertype]·

[·subsumed-by Type]·
[·has-attributes {subsumed-by has-categories

has-attributes}]·
This addition is probably rarely useful in practice, but we include it here in
order to provide additional work for the validation procedure to be defined
below.

The Supersignature

We proceed now to a signature that also specifies attribute structure. This
signature will be introduced in several steps. First, we repeat the same
entity descriptions as above, including the amendments for categories, but
introducing in addition an attribute for Attribute called valuetype. This
attribute is going to be used for expressing the permitted structure for the
value of the attribute in question.

Type [·type Supertype]·
[·has-attributes {}]·

Supertype [·type Supertype]·
[·subsumed-by Type]·
[·has-attributes {subsumed-by has-categories

has-attributes}]·
Descriptortype [·type Supertype]·

[·subsumed-by Type]·
[·has-attributes {subsumed-by has-attributes}]·

Descriptor [·type Descriptortype]·
[·has-attributes {}]·

Attribute [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {valuetype}]·

27

Category [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {applicable-for}]·

type [·type Attribute]·
subsumed-by [·type Attribute]·
has-categories [·type Attribute]·
has-attributes [·type Attribute]·
valuetype [·type Attribute]·
applicable-for [·type Attribute]·

Next, we extend the definitions of the entities of type Attribute so that
they also have a value for valuetype. This value shall specify what is
admissible structures for the value assigned to the attribute in question.

type [·type Attribute]·
[·valuetype Type]·

subsumed-by [·type Attribute]·
[·valuetype Type]·

has-categories [·type Attribute]·
[·valuetype (setof Category)]·

has-attributes [·type Attribute]·
[·valuetype (setof Attribute)]·

valuetype [·type Attribute]·
[·valuetype Type]·

applicable-for [·type Attribute]·
[·valuetype (setof Type)]·

The second requirement for self-description in a signature is as follows.
Consider any assignment of a value v to the attribute a of an entity e in the
signature, and let s be the value of the valuetype attribute of a. If v is an
entity then s must either be equal to the type attribute of v, or it must be
an element in the subsumed-by trail from the value of the type attribute of
v. If v is a non-entity expression such as a set or a sequence, then it must
conform to s according to the rules for every such kind of expression.

For example (writing henceforth e.a for the value of the a attribute of
e), above, Attribute.subsumed-by is Descriptor the type of which is
Descriptortype; subsumed-by.valuetype is Type; this is accepted since
Type is on the subsumed-by trail from Descriptortype. Also, type.valuetype
is Type the type of which is Supertype; valuetype.valuetype is Type; this
is also accepted for the similar reason.

Continuing with composite attribute values, Descriptortype.has-attributes
is {subsumed-by has-attributes} and has-attributes.valuetype is
(setof Attribute). This is accepted according to the rule for the setof
expression, since {subsumed-by has-attributes} is a set and each of its
members has the type Attribute.

In order for the entire structure to be self-describing we need to introduce a
type for operators such as setof (there will be more of them in the sequel)
as well as a way for defining their structure. The following definitions do
this.

Ecomposer [·type Descriptortype]·
[·subsumed-by Descriptor]·

28

[·has-attributes {argtypes valtype}]·
argtypes [·type Attribute]·

[·valuetype Seq-type]·
valtype [·type Attribute]·

[·valuetype Type]·
setof [·type Ecomposer]·

[·argtypes (seq Type)]·
[·valtype Set-type]·

Set-type [·type Supertype]·
[·subsumed-by Type]·
[·has-attributes {}]·

Much of this is self-explanatory. The value of the argtypes attribute shall
be a sequence consisting of the types for the successive arguments of the
composer in question, which is why we select its valuetype as Seq-type.
The value of the valtype attribute shall be the type of expressions formed
using the Ecomposer in question. (Notice the difference between valuetype
and valtype).

This again requires us to introduce a definition of the operator seqof which
is analogous to setof, as well as an operator seq of an arbitrary number of
arguments, obtaining
seqof [·type Ecomposer]·

[·argtypes (seq Type)]·
[·valtype Seq-type]·

seq [·type Ecomposer]·
[·argtypes (seqof Type)]·
[·valtype Seq-type]·

Seq-type [·type Supertype]·
[·subsumed-by Type]·
[·has-attributes {}]·

For example, (seqof vehicle) is the type for sequences of any number
of elements where each element has the type vehicle or a type that is
subsumed by vehicle. Similarly, (seq person vehicle) is the type for
sequences of exactly two elements where the first element is a person and
the second element is a vehicle. It is clear that the type for the argument-
list for seqof is (seq Type), and the type for the argument-list of seq is
(seqof Type).

With this, we obtain the following inferred descriptions for those composite
entities occurring above:
(setof Category) [·type Set-type]·
(setof Attribute) [·type Set-type]·
(setof Type) [·type Set-type]·
(seqof Type) [·type Seq-type]·
(seq Type) [·type Seq-type]·

This makes it possible to apply the self-description requirement even on
those attribute values that are composite entities. For example,
applicable-for.valuetype is (setof Type) whose type is Set-type,
valuetype.valuetype is Type, and this is accepted since Type is on the
subsumed-by trail from Set-type.

29

In order to verify the choice of argtypes.valuetype, consider for example
the attribute assignment for seq.argtypes as (seqof Type), the type of
which is Seq-type. This agrees with argtypes.valuetype which is also
Seq-type so the assignment is accepted.

Notice by the way the distinction that is made between composite enti-
ties such as (setof Type), and LDX expressions that are not entities but
e.g. sets or sequences, such as {argtypes valtype} or 〈Type〉. Entities
whose type is Ecomposer are operators for forming composite entities, and
composite entities have a type and other attributes just like atomic entities.

The actual supersignature that is used in Leonordo and CKL at present
(April, 2008) contains the following additional entities in addition to those
described above.
setofall [·type Ecomposer]·

[·argtypes (seq Type)]·
[·valtype Set-type]·

setofsome [·type Ecomposer]·
[·argtypes (seq Type)]·
[·valtype Set-type]·

join [·type Ecomposer]·
[·argtypes (seqof Type)]·
[·valtype Type]·

Of these, setofall and setofsome are used like setof but provide addi-
tional information concerning whether the set in question shall be assumed
to be the complete set or not; this has been described in the textbook. The
join operation can be used in the valuetype attribute in order to form
the union of several given types. It is not used in the supersignature itself,
but its definition has been included there so that it is available for other
signatures that are based on the supersignature.

Extensions to the Supersignature

The supersignature is self-describing in the sense that it is an adequate
description of itself with respect to what attributes are used for which entity
types, and what structure is admitted in attribute values. Signatures for
applications may be thought of as a three-step structure consisting of the
actual knowledgebase (K), the signature for the knowledgebase (S), and the
signature for the signature which is the supersignature (SS). However, it is
more fruitful to think of it as follows: S is a signature having the property
that the union of S and SS is self-describing, and likewise K is a signature
having the property that the union of K, S and SS is self-describing.

The advantage with this way of seeing things is that it is modularity-
oriented: it makes it possible to build a library of signature modules which
can be assembled according to need. Global library information specifies
which modules depend on which other modules, and the union of a given
set of modules is self-describing provided that for each module in the set,
the set contains all the modules that the given module depends on (pro-
vided that the modules have been designed correctly and do not have any
conflicts).

Self-description is important because it is a way of expressing type-checking.
In the simple case of K, S and SS for a knowledgebase and its signature,
the union of K, S and SS can only be self-describing if the contents of K

30

conform to the type information that is given in S and the signature S is
organized according to the conventions that are represented in SS.

We proceed now to describing a few small signature modules that are often
used.

The Scalar Signature

Most applications require the use of attribute values that are strings, num-
bers or other scalars. The signatures for such applications require the use
of the appropriate scalar types, which are defined as follows.

Scalar-type [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {}]·

String [·type Descriptortype]·
[·subsumed-by Scalar-type]·
[·has-attributes {}]·

Number [·type Descriptortype]·
[·subsumed-by Scalar-type]·
[·has-attributes {}]·

Niltype [·type Descriptortype]·
[·subsumed-by Scalar-type]·
[·has-attributes {}]·

Symbol [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {}]·

The absence of a value for an attribute is defined as equivalent to the at-
tribute having the entity nil as value, and this entity is by definition the
sole instance of the type Niltype.

The entity Symbol is included as a catch-all that can be used when an
attribute has values that are implemented like entities but without any
value for the type attribute.

The Signature for Records and Predicates

Besides sets and sequences, the LDX notation also allows the use of records
which are written on the form e.g. [R a b c] consisting of a record com-
poser R and an unspecified number of arguments. A record composer does
not in itself specify the number and the types of the arguments, so when
an attribute is going to have records as values then the valuetype of that
attribute must specify any restrictions on the number or types of the argu-
ments.

However, there is also the more specific case of predicates which are record
composers that do specify the number and the type restrictions for their
arguments. Records formed using predicates are called literals and are used
to form logic formulas in LDX.

The following is the signature extension for records and predicates.

31

Record-type [·type Supertype]·
[·subsumed-by Type]·
[·has-attributes {}]·

Rcomposer [·type Descriptortype]·
[·subsumed-by Descriptor]·
[·has-attributes {}]·

record [·type Ecomposer]·
[·argtypes (seq Rcomposer)]·
[·valtype Record-type]·

record-args [·type Ecomposer]·
[·argtypes (seq Rcomposer (seqof Type))]·
[·valtype Record-type]·

Literal-type [·type Supertype]·
[·subsumed-by Record-type]·
[·has-attributes {}]·

Predicate [·type Descriptortype]·
[·subsumed-by Rcomposer]·
[·has-attributes {argtypes}]·

literal [·type Ecomposer]·
[·argtypes (setof Predicate)]·
[·valtype Literal-type]·

For example, suppose Email is a record composer whose arguments are in-
tended to be the to, cc, Subject, etc. fields in an electronic mail message.
Suppose also that the value of the attribute mail-exchange is going to be
a sequence of such records. The signature information for this is
mail-exchange [·valuetype (seqof (record Email))]·

If instead it is required that each record in that attribute shall only con-
tain two arguments, one with the type person and the other with the type
String, then the signature information should be
mail-exchange [·valuetype

(seqof (record-args Email 〈person String 〉))]·

Finally, in a scenario where a university dean wishes to keep track of which
of her faculty are consulting for which outside companies, the value of the
consulting attribute for each department may be a set of literals of the
form [consults-for person company]. This would be defined through
consults-for [·type Predicate]·

[·argtypes (seq person company)]·
consulting [·type Attribute]·

[·valuetype (setof (literal {consults-for}))]·

The argument for the operator literal is a set of predicates in order to
allow for more than one predicate being used in a particular collection of
literals.

