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Introduction

The computational methods of Artificial Intelligence include a number of
’engines’ which are essentially configurable algorithms. This means that
they perform a certain computation in a systematic way, but the way that
the computation is performed is subject to adaptations and adjustments
that are specific to the application at hand. The resolution method for
logical deduction, which has been presented earlier in the course, is one
example of such a computational engine.

The present lecture note is intended to contain descriptions of a few ma-
jor such engines, in particular SAT solvers, constraint programming, and
answer set logic. However at present it is only a ’stub’ (in the sense of
Wikipedia) or a placeholder, that is, it contains the beginnings of the in-
tended contents, awaiting that the full contents will materialize.



Chapter 1

Satisfiability Problems
and SAT Solvers

In general, a satisfiability problem has the following form: A logic formula is
given, and it is desired to identify a set of literals using the same vocabulary
as is used in this formula, such that if those literals are assigned the value
true and all others are assigned the value false, then the value of the
given formula is true.

There is an important special case of the satisfiability problem, namely, the
Boolean satisfiability problem, SAT, where the set of candidate literals is
held fixed. This case is obtained if the formula is restricted to propositional
logic, or if it is expressed in relational logic (only predicates, no functions)
and the domain of objects is selected as fixed. There are also important
uses of non-Boolean satisfiability problems, for example, the representation
of Partial-Order Planning as a non-Boolean satisfiability problem in the
lecture note ’Reasoning about actions and action planning.’ [1]

Satisfiability problems are solved using search where one gradually extends
or modifies a working set of literals until it satisfies the given restriction.
Since the working set only contains literals, i.e. variable-free atomic for-
mulas, we shall write these literals on successive lines and without their
surrounding square brackets, when we show examples of working sets of
literals. For ease of reading we shall also use infix notation of predicates
when this is natural, for example A = B and A before B instead of the
expressions [= A B] and [before A B]

1.1 The SAT Problem

The Boolean Satisfiability Problem (SAT) is defined as follows in its basic
form.

Given: a set of propositional clauses

Question: does there exist an assignment of truthvalues to the proposition
symbols whereby all the clauses are true?

1It is in fact possible to restrict and rewrite some planning problems as SAT
problems, but this will not be addressed here.
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In other words, does there exist an assignment whereby at least one of the
literals in each clause is true?

There are two major approaches to the SAT problem: (1) The DPLL En-
gine: search the space of truthvalue assignments in a systematic, depth-first
way, and (2) Stochastic Local Search: Pick one assignment randomly, then
change the value of one proposition symbol at a time. Each of these have
the character of computational engines.

1.2 The DPLL Engine

The DPLL Engine is based on a particular algorithm whose full name is the
the Davis-Putnam-Logemann-Loveland algorithm, after its inventors. It ob-
tains its strengths by the various plug-in methods that have been developed
for it, and it is use of these additional methods that give it the character of
a computational engine rather than just an algorithm.

The basic algorithm is as follows. Given a set A of clauses:

• Pick one of the proposition symbols in these clauses, e.g. p, and con-
struct one modification of A for each of the two truth-values. Obtain
A(p) by removing all clauses containing p and by removing -p in all
clauses where they occur. Similarly for A(-p).

• Repeat the same operation with another proposition symbol, obtain-
ing e.g. A(p,-q), and proceed recursively obtaining a search tree.

• If a branch obtains a descendant of A containing both {a} and {-a}
for some literal a, then close that branch, i.e. do not expand the tree
further from that point. This is called a conflict.

• If you can find a branch where all the proposition symbols have a
value, then you have found an assignment. If all branches become
closed then no assignment can exist whereby all clauses are true.

For an example of this algorithm, please see the e-slides (’powerpoint’) for
Lecture 13 in the course TDDC65.

The crucial issue in executing this procedure is to decide which proposition
symbol to use next, during the search in a particular direction of the search
tree. The following are some major decision strategies, i.e. rules for how to
make this choice.

• Maximum Occurrence in clauses of Minimum Size (MOMS) as a good-
ness measure for selecting prop symbol.

• Dynamic Largest Individual Sum (DLIS): choose the literal occurring
the most frequently in the clauses at hand.

• Variable State Independent Decaying Sum (VSIDS): keep track of
the ’weight’ of each literal, allow it to ’decay’ i.e. it is gradually
reduced over time, but if a literal is used for closing a branch then
it is ’boosted’ (its value is increased) for use elsewhere in the search
tree.



4

There are also several other decision strategies, some of them fairly complex.
One interesting method is Clause Learning and Randomized Restart which
works as follows. The basic algorithm is modified so that if you arrive to
a conflict, then analyze the situation and identify what clauses contributed
to the conflict. Extract one or more additional “learned” clauses that are
added to the given ones. Also, identify the level in the search tree that one
has to return to. Proceed from there.

Then, from time to time you let the search process do a randomized restart,
i.e. it restarts the search process from the root of the search tree, but retains
the learned clauses. The purpose of these techniques is to let the process
“learn” more direct ways of arriving to the desired result in the sense of the
closing of a branch in the search tree.

In addition there are the following important implementation considerations
that contribute to keeping down the search.

• Do a (modified) depth-first search, not a breadth-first search of the
tree of possible assignments.

• Implement iteratively rather than using recursion.

• Literals in unit clauses are immediately set to true (as a preprocessing
step and during the computation), except if you have a conflict (in
which case close that branch).

• Proposition symbols that only occur positively in all the given clauses
are immediately set to true and those clauses are removed. Conversely
for those prop symbols that only occur negatively.

1.3 Statistical Local Search Techniques

The basic method in this approach to pick an initial assignment randomly,
and then to change the value of one proposition symbol at a time, in such
a way as to gradually approach a solution to the given SAT problem.

A number of techniques of this kind exist. We only consider one, called
GSAT (G for Greedy). The basic idea in GSAT is: Start with an randomly
chosen assignment. Calculate, for each proposition symbol, the increase
or decrease in the number of clauses that become true if the value of that
prop symbol is reversed. Pick the one that gives the best increase. Repeat
this process until a satisfying assignment has been found or a maximum
number (max-flips) has been reached. If max-flips has been reached, then
try another randomly chosen assignment. Repeat until success or until a
maximum number (max-tries) has been reached.

1.4 State of the Art for SAT Solvers

SAT solvers have been strikingly successful, both within Artificial Intelli-
gence and in other areas. In principle, they provide a method for combina-
torial reasoning and search which is able to handle very large sets of clauses.
In comparison with the use resolution theorem-proving, SAT solvers use a
more primitive representation, but they have the advantage of a number of
very efficient implementation techniques.



Chapter 2

Constraint Programming

Constraint programming is an additional and important software technique
that exhibits some similarities with SAT solving, but also many differences.

In general, a constraint programming problem specifies:

• A set of “variables”

• A domain of possible values for each variable

• A set of constraints (“relations”) on these variables

An assignment of values to the variables that satisfies the restrictions is a
solution to the constraint programming problem.

This is similar to SAT solving in the sense that one searches for an assign-
ment of values to variables, but SAT solving is concerned with assignment
of truth-values whereas constraint programming can be applied to any kinds
of values, for example integers. Another difference is that constraint pro-
gramming requires the facilities of a programming language, so that it is
realized by extending a programming language with facilities for stating
and solving constraint programming problems. Logic programming was the
original host language for constraint programming. In this case we talk of
constraint logic programming.

A tight integration of constraint programming in its host language requires
that it should use as much as possible the data structures, declarations,
and operators on data that are provided by that language. Therefore, con-
straint programming is the most easily hosted by languages with an inter-
pretive character, e.g. functional programming languages (including Lisp
and Scheme) and even Java, besides logic programming languages. How-
ever, constraint programming packages do exist even for C++.

The Wikipedia article on Constraint Programming is a useful source of
examples and additional information.
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