
KRF

Erik Sandewall

Illustration of Artificial Intelligence Techniques
in a Zoo Microworld

Knowledge Representation Framework Project

Department of Computer and Information Science, Linköping University,

and Unit for Scientific Information and Learning, KTH, Stockholm

This series contains technical reports and tutorial texts from the project on

the Knowledge Representation Framework (KRF).

The present report, PM-krf-021, can persistently be accessed as follows:

Project Memo URL: http://www.ida.liu.se/ext/caisor/pm-archive/krf/021/

AIP (Article Index Page): http://aip.name/se/Sandewall.Erik.-/2010/020/

Date of manuscript: 2010-12-19

Copyright: Open Access with the conditions that are specified in the AIP page.

Related information can also be obtained through the following www sites:

KRFwebsite:

AIP naming scheme:

The author:

http://www.ida.liu.se/ext/krf/

http://aip.name/info/

http://www.ida.liu.se/∼erisa/

http://www.ida.liu.se/ext/caisor/pm-archive/krf/021/�
http://aip.name/se/Sandewall.Erik.-/2010/020/�
http://www.ida.liu.se/ext/krf/�
http://aip.name/info/�
http://www.ida.liu.se/=xxxxx�

Chapter 1

The Zoo Microworld

1.1 Introduction and Motivation

This memo describes a microworld that illustrates a number of important
concepts and methods in Artificial Intelligence, and in particular in Know-
ledge Representation. The microworld consists of a simple zoo that is ‘pop-
ulated’ with animals, a warden and other personnel, a number of vehicles,
and physical structures that provide locations for, and resources for the
people and the animals in the zoo. The Warden can perform a variety of
actions, and some scenarios may allow other entities to be agents and to
perform actions as well.

The Zoo Microworld System (ZMS) is organized as a basic platform and a
number of scenarios that illustrate different A.I. techniques. The following
are the presently implemented scenarios:

• The Animal Care Scenario: the Warden makes a daily tour to visit a
number of animals in their stables, cages or other habitats in order to
look after each of them. The tour is executed repeatedly, and on each
execution there can be some unexpected events: an animal may be
sick and require treatment, two animals that are in the same location
may be in a fight and need to be separated, and so forth. The Warden
has to decide on appropriate actions for each of the problems that he
encounters.

• The Diagnosis and Treatment Scenario: similar to the previous one,
but now a sick animal is only characterized in terms of observed symp-
toms, and the Warden must make a diagnosis to identify the most
likely cause of the symptoms, and make a decision about appropriate
treatment for that illness.

• The Rainy Day Scenario: this scenario actually only involves the
Warden and not the animals. The road network in the Zoo has a
rectangular, “Manhattan-style” structure, and the Warden can plan
and carry out walks from one specific point in that road structure to
another one. While walking he may get wet for a variety of reasons,
including there being a rain shower, or passing by a point where
a lawn sprinkler is operating. The Warden has a desire not to be
wet, and if wet to be as little wet as possible, and he has means

1

2

of protecting himself (e.g. using an umbrella) and of getting dry
(go inside a building, or staying the sun). The Warden also has a
number of other desires for things to enjoy (eating an icecream) or to
avoid (being stung by a wasp), and during the walk he will adapt his
behavior in accordance with these desires.

These scenarios were first implemented as separate lab-assignment software
in our course on Artificial Intelligence, where each lab built on the previous
ones. They are now being integrated into one single system. The integration
is not yet entirely complete, and the present document describes the Zoo
Microworld Platform and the Rainy Day Scenario. The first two scenarios
will be updated in due course so that they can be integrated with this
system.

This Zoo Microworld System has been implemented in the Leonardo soft-
ware system which is very well suited for this task. The present memo
describes the Zoo Microworld Platform and the Rainy Day Scenario from
several points of view, including

• The static model: animals, the places where they stay, the road struc-
ture, and so forth

• The dynamic model: actions that can be performed by the Warden
and ‘actions’ performed by Nature

• The variant of the Belief-Desire-Intention behavior model that is used
for the Rainy Day Scenario

• The reportoires defining commands for using the system, features for
characterizing animals and other entities, predicates for characteriz-
ing static and dynamic aspects of the world, etc.

1.2 Static Aspects of the Zoo Microworld

The Zoo Microworld has a static structure that stays the same as time passes
in this simulated world, and a dynamic structure that changes due to spon-
taneous changes in the world and due to actions that are performed by the
Warden and by others. The static structure consists in turn of a conceptual
structure and an empirical structure. The conceptual structure consists of
analytical statements such as “giraffes are hoofed animals” whereas the em-
pirical structure consists of statements such as “The chimpanzee court is
located along route-4.”

Some statements about class membership are clearly empirical, for example,
“Rollo is in the class of animals having brown fur.” For some other kinds
of class membership statements it is debatable whether they are conceptual
or empirical, for example “Rollo is a chimpanzee” or “Rollo is a male,” but
for simplicity we include all statements about classes and their members
among the empirical ones.

1.2.1 Conceptual Structure: Types and Classes

The Zoo Microworld Platform defines the following types for entities that
can be introduced in the various scenarios:

3

animal
personnel
building
route
food
medicine
tool
vehicle

Each scenario uses only some of these types, and some scenarios introduce
additional types, but combined use of material from several scenarios is
facilitated by having a standardized collection of commonly used types in
the Platform.

The type route is used for roads and footpaths within the premises of the
Zoo. The type tool is used for scissors, spades, scales and the like. The
type building is used for stables, cages etc where the animals are kept, as
well as for the administration building, the restaurant and other buildings
for the personnel. (There is no type for visitors to the Zoo in the Platform).

In addition the following types of entities are used for classification or other
static characterization of entities of the above types:

species
occupation
ailment

Entities in these types occur in attribute-values and may be associated with
information in ways that are specific to each scenario. Each animal belongs
to a particular species; each personnel has a particular occupation; ailments
include diseases, wounds and other problems that may afflict animals and
personnel.

Besides types, the model of the Zoo Microworld also contains a number
of classes. Each class pertains to one specific type, and has a number of
instances of that type as its members. For example, if chimpanzee is an
entity of type species, and Rollo and Lollo are specific animals whose
type is animal and whose in-species attribute is chimpanzee, then there
may be a class our-chimpanzees that pertains to the type animal and that
has Rollo and Lollo as its members. If Rollo and Lollo are the only
chimpanzees in the microworld then this class can also be written using the
following expression in Description Logic [1]

(those animal that in-species all {chimpanzee})

1.2.2 Physical Structures

Scenarios typically include the possibility of movement by personnel or by
animals, which means that there must be some physical structure for the
Zoo that defines the available locations, their properties and relationships.
This subsection describes the currently used physical structures.

1This uses the CLE variant of the Description-Logic notation, with the addi-
tional proviso that the first argument of the those operation shall be a type and
not a class.

4

The Locations of Animals

The simplest physical structure introduces a set of distinct locations and
makes it possible to assign a location to each animal and to each personnel.
These location assignments may change over time within each simulation
of the Zoo microworld. Locations for animals may be specified as stables,
cages, or other similar habitats; locations for personnel may in addition
include buildings of various kinds and rooms within those buildings.

The definition of connections and distances between locations is specific for
each scenario definition.

The Road Network in the Zoo

A slightly more complex physical structure defines a rectangular road net-
work, containing roads in the east-west direction called paths and in the
north-south direction called trails. Each path and trail has an integer num-
ber between 1 and some upper limit, presently set to be 6. Each intersection
between path and trail is a crossing and is described in the obvious cartesian
way as (trailnr, pathnr), so that the first component represents the x axis.

This physical structure is used for the Rainy Day Scenario. The following
are some additional details in this model.

Each crossing is a roadpoint. In addition there are roadpoints halfway
between the crossings but on the paths and trails, for example (3+, 2) and
(3, 2+), but not (3+,2+) since that would not be on a road. These are all
the roadpoints there are. The following diagram of roadpoints illustrates
this structure:

| |
-- 3,4 -- 3+,4 -- 4,4 -- 4+,4 -- etc

| |
-- 3,3+ 4,3+

| |
-- 3,3 -- 3+,3 -- 4,3 -- 4+,3 -- etc

| |

It follows that when the warden is at a crossing he has four possible moves,
namely north, south, east and west, and each of these will take him to a
roadpoint that is not a crossing. Non-crossing roadpoints only allow two
possible moves, in the obvious way.

The Platform contains a simple route planner that can construct a sequence
of moves that will take the warden from his present position to a given new
position. The route plan is a sequence where the elements are north, south,
east, or west.

1.3 Dynamical Aspects of the Zoo Microworld

The dynamical aspects of the Zoo Microworld use the common notation for
actions and change using first-order logic with explicit discrete time, includ-
ing the use of features, the H and D predicates, and so forth. This formalism
has been introduced in the lecture-note on actions and change in our set of

5

lecture notes. The present chapter adds notation and conventions that are
specific to the Zoo Microworld, and also repeats some of the material from
the earlier lecture note.

1.3.1 Time, Episodes and Situations

The basic facility in the Zoo Microworld Platform is a simulator that makes
it possible to obtain simulated episodes in the Zoo Microworld. Each episode
is organized as a sequence of timepoints which are represented as integers
from 0 and up. Each timepoint in the episode is associated with information
about the values of certain features at that time. Each episode also contains
information about the actions that have occurred or are presently occurring
in the episode. Actions have a starting time and an ending time which must
be timepoints, and the ending time must be strictly larger than the starting
time.

At each point in the simulation of an episode there is a current time for
the simulation. The state of the simulated world is saved at each timepoint
(or more precisely, the changes from the previous timepoint are recorded)
so that it is possible to inquire about the state of the simulation at earlier
timepoints.

Within a computational session, i.e. a run of the system in a computer, it
is possible to initiate and perform several episodes. This is useful e.g. for
demonstration purposes: the recorded history of an individual episode can
be extracted and saved on a file for later inspection and publication.

At a given point of a simulation where the current time is .t it is possible to
construct successor situations. These are hypothetical future states of the
world that will be obtained, according to the agent’s prediction, if particular
actions are being performed. If a1, a2, and a3 are actions then one can
construct, for example,

(succ .t a1)
(succ .t a2)
(succ (succ .t a1) a2)

and so forth. Thus, the current time is a situation, and for every combina-
tion of a situation .s and an action .a there is a specific situation which is
written as (succ .s .a). The Platform contains the facility for constructing a
sequence of situations corresponding to a given sequence of actions, and to
calculate the changes of feature values in the successive situations in that
sequence.

1.3.2 Features

The dynamic structure is represented using features that are assigned a
value at each point in time using the H predicate. The Platform provides
only one way of constructing features, namely using the the function, like
in

(the fur-color of Rollo)

for example. This function has two arguments, namely fur-color and
Rollo in the example; the word of is only inserted for readability. The

6

first argument shall be an attribute whose value can change over time; the
second argument shall be an entity whose type is such that it may have that
attribute.

The following are features that are defined in the Platform for possible use
in several scenarios, with an indication of the required type for the carrier
of the attribute in each case:

(the location of /personnel)
(the location of /animal)
(the hunger of /animal)
(the thirst of /animal)
(the ailments of /animal)

This is merely the beginning of the list; additions to be made.

1.3.3 Actions

Each scenario contains definitions of a set of verbs that are used in that
scenario. An action is an expression consisting of a verb and appropriate
arguments and/or parameters for the verb, using the syntax of the CEL
notation. Most actions have a parameter with the tag by that indicates the
subject of the action, as in the following examples:

[eat :obj banana-4 :by Rollo]
[pass-overhead :by airplane-4]

or, using the slash notation for specifying the required type of the parameter:

[move-to :by /personnel :obj /animal :to /location]

There are a few examples of actions that do not have any by parameter
(“natural actions”), such as

[startrain]

Actions that are performed by the Warden of the Zoo (or the primary
warden if there are several of them) have the entity TheWarden as the value
of the by parameter.

It may be argued that natural actions and actions having an inanimate
subject (for example “the stone falls”) ought to be called events rather than
actions. However we stay with the term “action” since the term “events”
has another meaning in the BDI terminology, and since that meaning is also
widely used.

1.3.4 Duration of Actions and Features

Long and Short Actions

Some of the scenarios use a distinction between long and short actions. A
long action consists of several steps that are normally performed in sequence,
but it is possible to intersperse one or more short actions between successive
steps in a long action, or even perform them concurrently with long-action
steps. The most important type of long action is the promenade where the
Warden goes from one waypoint to another, or where he makes visits to

7

a number of animals in their different locations. Short actions during a
promenade may include curing an animal, taking out an umbrella, scaring
away a wasp, or answering a question by a customer.

The distinction between long and short actions is useful since it allows
one to define an agent behavior where the agent acts towards an overall
goal, namely, the goal of the current long action, and where anyway it is
able to adapt his behavior to the situations that are encountered. It is a
simple and not very flexible solution to that problem, and more sophisticated
approaches are certainly possible, for example using an HTN architecture
(Hierarchical Task Networks), but it is sufficient for illustration purposes.
In particular, the Rainy Day Scenario uses long and short actions and uses a
BDI behavior model (Belief-Desire-Intention) for the choice of short actions
between successive steps in a long action.

Persistent and Transient Features

Some features are persistent in the sense that they retain their value until
the value is changed for some specific reason, which is usually due to the
occurrence of an action; most actions have the effect of changing the value(s)
of some feature(s). Other features are transient in the sense that they have
a normal value, and if they are changed to another value at some point in
time then they return spontaneously to the normal value, usually already
in the next timepoint. We refer to transient values and stable values for
transient features. For persistent features all values are stable.

Persistent attributes can be used for representing phenomena that we think
of as actions but where there are no distinguishable “steps” like for long
actions as described above. For example, the statement that the Warden
carries a particular bag for a period of time may be represented by using
an attributes carries for the entity TheWarden where the value is an entity
such as TheBag, or a set of entities if the Warden can carry more than one
thing. There will then be short actions for representing that the Warden
picks up the bag and puts down the bag, that is, for the beginning and
ending of the natural-language action of the Warden carrying the bag.

1.3.5 Basic Verb Vocabulary

Although each scenario uses its own collection of verbs, there is a definition
of basic verb names in the Zoo Microworld Platform, in order to facilitate
the interoperability between different scenarios.

We distinguish between actions that are performed by Zoo personnel (and
therefore by people), actions that are performed by animals, and a few
other groups. The following is a very preliminary list of such verbs, due to
be discussed with several users.

The following verbs are tentatively proposed for animal actions:

eat
drink
bark/ cackle/ ...
sleep
bathe

8

swim
point at
give birth
breastfeed
begin or end doing some of the above (including wake up, fall asleep)

The following verbs are tentatively proposed for personnel actions with an
animal as the object:

cause animal to do (some of the above)
assist animal in doing (some of the above)
move
wash
delice (= remove lice from)
wrap in sheets (for warmth)

separate (two or more animals, in case of fight)

take temperature
clean wound
remove nails/...
inoculate (= vaccinate)
chain

give name
take picture of

kill

The following are tentatively proposed verbs for actions done by personnel
to the physical premises of animals

clean up
wash floor
turn on/ turn off light
open/close door

The following are tentatively proposed verbs for personnel that they can
perform while moving around, using the basic goto or do-promenade long
actions:

put-down bag
pick-up bag
enter building
leave building
take out object from bag (e.g. umbrella)
put back object into bag
open/close umbrella
chase away insect
take on/ take off raincoat/ shoes/ etc.

The following are tentatively proposed operations done to a third party

post picture of ... on zoo website
include picture/name/description of ... in zoo brochure
send picture of ... to newspaper/ other interested party

9

put nameplate of ... at yard
remove the above

1.4 Predicates

The standard H, Hc and D predicates have already been mentioned; these
are used for characterizing the dynamic aspects of a scenario in the mi-
croworld, including for preconditions and effect rules for verbs, and for the
conditions that occur in behavior rules.

The static aspects require a number of additional predicates, and there is
also a need for certain functions for use together with H and D in the dynamic
aspects. These predicates and functions are as follows.

1.4.1 Static Predicates

[equal .x .y] for equality

[attrib-is .e .a .v] is true iff the entity .a has the value .v for the
attribute .a

1.4.2 Logic Operators for the Dynamic Aspects

(the .a of .e) constructs a feature, where .a is an attribute and .e is an
arbitrary entity.

(succ .s .a) constructs the situation that is the successor of the situation
.s after having executed the action .a

(val .s .f) obtains the value of the feature .f in the situation or timepoint
.s

(curval .f) obtains the value of the feature .f in the current timepoint

[sameval .f .g] is true iff the features .f and .g have the same value in
the current timepoint

The predicates and functions of the Common Expression Language may
also be used.

Chapter 2

Behaviors in an Intelligent
Agent

The Leonardo software system contains a facility for defining preconditions
of actions. The Zoo Microworld System extends this with a facility for
defining nontrivial responses to precondition failures. [1]

In addition the Zoo Microworld System contains a facility for defining goal-
directed agent behavior using a variety of the Belief-Desire-Intention (BDI)
behavior model which has already been described in the lecture note on
intelligent agents.

The purpose of the present chapter is to define these facilities in a general
form. Chapter 3 will then describe how the BDI facility is used for one
particular scenario, namely, the Rainy Day Scenario.

2.1 Response to Precondition Failure

Each action in the Zoo Microworld is defined in terms of its formal precondi-
tion and its performance script. The precondition specifies conditions that
must be satisfied in order for the action to be performable; the performance
script specifies how to execute an action when its formal precondition is
satisfied.

The formal precondition need not be exhaustive or, more precisely, it is
not always possible to make it exhaustive, so it may happen that the exe-
cution of the performance script fails even though the formal precondition
was satisfied. However, formal preconditions are anyway useful for rational
behavior since they can be used for planning and for prediction. One is
entitled to consider it as a default that the action succeeds if its formal
precondition is satisfied.

If an agent has the intention to perform a particular action, for example
due to a command by the user, or because it is part of a plan that the agent
has decided to perform, and if the formal precondition of that action is

1This facility will be included in forthcoming versions of the general Leonardo
system.

10

11

not satisfied, then there are two possible courses of action. One possibility
is for the agent to first make some other actions that achieve the formal
precondition, that is, they make it come true, and then to perform the
intended action. The other possibility is to retract the intention to perform
the action in question and to consider some substitute action. Doing nothing
i.e. dropping the intention altogether is one possible substitute action.

In particular, if the action in question has been selected as a step towards a
larger goal, then there may be some other way of achieving that goal. In this
case the remaining sequence of actions towards that goal can be replaced
by another such sequence, i.e. by another plan.

Preconditions are expressed as a proposition (i.e. as a logic formula) that is
associated with each verb. The violation of a precondition is typically iden-
tified as a ground literal, that is, as a predicate symbol with its arguments,
not using any variables, and possibly with a negation. Each predicate sym-
bol is associated with one or more methods that may be used for achieving
such a literal, that is, for making it come true.

The considerations whether to try to achieve a failed precondition or to
select a substitute action or plan are included in the overall behavior defi-
nition. In principle it would be possible to use the BDI behavior model for
this purpose, but this has not been realized or tested yet.

2.2 BDI Behavior Model

The BDI behavior model is described in the Compendium on Programming
Techniques for Intelligent Autonomous Agents. The BDI implementation
in the Zoo Microworld Platform follows the general BDI design that was
described there, but some additional aspects must be added in order to
make it viable, and they will be described here.

The BDI behavior model in the Platform is based on the distinction between
long and short actions. Long actions are initiated by commands from the
user, and are not obtained from the BDI model; this model is only used for
selecting short actions that can be inserted in the sequence of steps that
constitute a long action.

In the design of using a distinction between long and short actions it is
natural to introduce a facility whereby a short action may change some
aspects of the long action within which it is being executed, for example,
by changing the route of walking. Such a possibility has however not (yet)
been included in our system.

2.2.1 Desirability Rules and Opportunity Rules

The concept of a desire is fundamental in the BDI Behavior Model. Desires
can be thought of as policies: they are continously monitored while the agent
operates, and instances of these desires guide the selection of intentions and
goals. In the present variant of the model, desires are defined in terms of
the values of features: desires specify which feature values are desirable and
which are non-desirable.

12

We have defined above how feature values may be persistent or transient,
and this influences how desires relate to them. The following cases are of
interest:

• Feel good momentarily: the agent has a desire that a particular, tran-
sient feature value or transient combination of feature values shall
occur.

• Feel bad momentarily: the agent has a desire that a particular, tran-
sient feature value or transient combination of feature values shall not
occur.

• Feel good persistently: the agent has a desire to establish and main-
tain a particular, persistent feature value, or the default value of a
transient feature.

• Feel bad persistently: the agent has a desire to avoid, or to minimize
the extent of a particular, persistent feature value, or the default value
of a transient feature.

These are purely qualitative considerations. In addition there may be desires
to maximize or to minimize the values of certain numerical-valued features.

In line with these distinctions the following are the desired functionalities
in the agent’s behavior system:

• Detect transient opportunity: React to observations that suggest that
using some short action the agent will be able to achieve an instance
of Feel good momentarily.

• Detect transient problem: React to observations suggesting that with-
out additional action by the agent there will be some forthcoming
instance of Feel bad momentarily. (Notice that if the agent does not
do any prediction of the near future so that the feel bad momentarily
has already occurred, then there is nothing the agent can do about
it).

• Detect feel good persistently: React to observations that suggest that
using some short action the agent will be able to achieve an instance
of Feel good persistently.

• Retain feel good persistently: React to observations that suggest that
without additional action the current instance of feel good persistently
is going to end. (This may require prediction).

• Detect feel bad persistently: React to observations that suggest that
without additional action there will be an instance of feel bad persis-
tently. (This case also requires prediction).

• Discontinue feel bad persistently: React to observations that suggest
that using some short action the agent will be able to cause a current
instance of Feel bad persistently to end.

In addition there are quantitative counterparts of some of these:

• Maximize feel good persistently: During a ‘feel good’ period of time,
perform additional action so as to increase the value of the attributes
representing the comfort level.

13

• Minimize feel bad persistently: During a ’feel bad’ period, perform
additional action so as to decrease the value of the attributes repre-
senting the level of discomfort, even if it is not possible to reduce it
to zero.

These functionalities can in fact be implemented using one single technique
with relatively minor variations. The basic idea is to use conditions that
are evaluated repeatedly during the execution of the system, and typically
between successive steps of the current long action. This is immediately
useful for dealing with cases of feel bad persistently. In this case there is a
desirable condition that is written so that it is true if the agent “feels good”
in this respect and false if it “feels bad.” When the desirable condition is
false then some action must be taken if possible, in order to discontinue the
persistent “feel bad” condition.

For example, the agent being thirsty is a persistent “feel bad” condition,
the desirable condition is written as an expression that is true if the agent is
not thirsty, and false if it is thirsty. If the desirable condition becomes false
during the simulation of an episode then the agent shall seek a corrective
action, such as drinking a glass of water.

There are two other negative functionalities, namely detect transient prob-
lem and detect feel bad persistently. These can also be handled using desir-
able conditions that are used to indicate a problem that needs to be acted
on, but in these cases the desirable conditions must be applied to a pre-
dicted future situation. If the momentary “feel bad” is already occurring
then there is no reason to do anything, since it is transient anyway, and if it
is persistent and has already started then the need is to discontinue it since
it is too late to prevent it from starting.

The case of detect transient opportunity is the simplest one of the positive
functionalities. A very general way of implementing it would be to always
(i.e. at each timepoint, or always between two successive steps of a long
action) consider all possible short sequences of short actions, to predict their
effects, and to check whether any of them lead to achieving an instance of
feel good momentarily. This is however not a realistic method, and it is
more reasonable to use opportunity conditions that indicate that a transient
opportunity is within reach. For example, there could be an opportunity
condition that evaluates to true if the agent finds itself beside an icecream
stand, and that is associated with a method for obtaining an icecream, such
as purchasing one.

Opportunity conditions are similar to desire conditions but there are two
differences. First, desire conditions trigger an action if they evaluate to false
whereas with the natural way of writing opportunity conditions they will
trigger an action when they evaluate to true. However for uniformity of
processing it is convenient to reverse the sign for opportunity conditions, so
that they evaluate to true when there is an absence of opportunity, and to
false when there is an opportunity.

Secondly, when a desire condition evaluates to false then the associated
methods are methods that will make the same condition come true again,
but the methods for opportunity conditions are designed so as to make some
other condition come true, namely, an instance of a desire. For example, the
persistent condition of being beside an icecream stand is not a goal in itself,
but it may bring to mind a method that has the enjoyable although transient

14

effect of eating an icecream bar. A general design that covers both cases is
therefore one where a behavior rule has three components: a rule condition,
a method or a set of methods, and a purpose condition that the method
is supposed to achieve. The first and the third component are equal for
desirability rules and different for opportunity rules. It remains to consider
the two other kinds of positive functionalities. The case of detect feel good
persistently can be treated in the same way as detect transient opportunity,
with or without prediction of future states. Finally, the case of retain feel
good persistently is concerned with identifying situations where an ongoing
feel-good state will be discontinued unless an action is taken. Here again
we will have a behavior rule where the first and the third condition is equal:
if this condition is false in a predicted future state then corrective action is
needed in order to make sure that it actually retains the value true.

The quantitative-oriented behavior rules for maximize feel good and mini-
mize feel bad can likewise be represented using these three components, and
also in this case the purpose condition is different from the rule condition,
since it characterizes the expected level of comfort or discomfort as a result
of applying the method.

Sometimes, but not always one can use the same method for several of the
cases described above. For example, becoming wet as a result of being out in
the rain is a continous-valued discomfort, and opening an umbrella is useful
both for avoiding becoming wet, and for not becoming more wet when one
has already become somewhat wet. As a contrary example, however, the
methods for avoiding being stung by poisonous jellyfish are different from
the methods for reducing the pain when one has already been stung.

2.2.2 Applicability Tests and Choice of Method

Both kinds of behavior rules specify a rule condition that is evaluated reg-
ularly, and one or more methods that it may be appropriate to apply if the
rule condition is violated. Usually, each method consists of both an appli-
cability condition and a sequence of actions, and the applicability condition
must be satisfied before one can consider using the method. The applica-
bility condition is similar to the preconditions of ordinary actions. If the
behavior rule contains several methods then it may be that only some of
them pass their applicability tests.

There are also other ways of defining the choice of method, for example
by merely specifying the purpose condition explicitly and leaving it as a
planning task to find a sequence of actions that will achieve the purpose
condition in a particular situation.

If several methods pass their applicability tests then the system must choose
which of them to use. Simple choice criteria include making a random
choice, or associating a goodness value with each method and picking the
method with the best goodness value among those that pass their applica-
bility tests.

A more refined way of making the choice is to predict the result of perform-
ing each method separately, and then evaluating the outcomes so as to pick
the one with the preferred result. This can be done by assigning a numerical
merit to each of them, using a combination of merit components that cap-
ture different preferences by the agent. The system’s body of ‘desires’ shall

15

be used as a basis for assigning the merit numbers, and for quantitatively
expressed desires the contribution to the overall score may be obtained from
the level of comfort or discomfort in the attributes that are used.

Since both transient and persistent feature-values must be accounted for,
it is necessary to evaluate the successive states in a predicted sequence of
future states, and not merely the last one of them.

Another possibility is to use a comparison predicate that will indicate which
of two alternatives one shall prefer, using other methods than assigning a
numerical score to each of them. A comparison predicate may for example
be defined using a decision tree.

2.2.3 Follow-up of Behavior Rules

Once a method has been selected and applied, including the “method” of
doing nothing as one of the alternatives, it is also important to perform
follow-up, that is, to check whether the expected outcome has in fact been
obtained. This follow-up operation uses the third component of the behavior
rule. For simple desirability rules the follow-up consists of verifying that the
intended feel-good effect has been achieved; for opportunity rules it consists
of verifying whether the target opportunity did in fact materialize.

The outcome of the follow-up can be used for both short-term and long-term
purposes by the system. The short-term use is to control whether to try
again or to resign. If the desired feel-good condition is not achieved then the
system may decide to try again using the same method, or using another
method, but it may also decide that it is not worth trying and that it will
simply accept this particular not-feel-good situation until it encounters an
opportunity for discontinuing it, that is, a method for discontinue feel bad
persistently whose applicability condition is satisfied.

The potential long-term use of follow-up is to modify the entire structure
of behavior rules and method evaluation rules. Techniques for doing this
belong to the area of case-based reasoning and are beyond the scope of the
present note.

2.2.4 Revised Top-Level BDI Loop

The standard definition of the generic BDI Main Cycle is as follows:

initialize-state
repeat

options := option-generator(event-queue)
selected-options := deliberate(options)
update-intentions(selected-options)
execute()
get-new-external-events()
drop-unsuccessful-attitudes()
drop-impossible-attitudes()

end repeat

This definition is realized as follows in the case of the Zoo Microworld System
(ZMS).

16

The BDI operation initialize-state is performed by the ZMS operation
startlab. Since ZMS uses the BDI machinery for deciding which short
actions, if any, are to be done between successive steps in a long action such
as goto , the repeat loop in the BDI definition is implemented as a ZMS
function decide-short-actions that is invoked in the definition of goto
and any other long action. Before the invocation of decide-short-actions
the long action shall perform one step in its own operation, including the
side-effects of that step. For example, the definition of goto in the Rainy
Day Scenario will move the Warden from one roadpoint to the next accord-
ing to the chosen itinerary; it will also change the location of anything that
the Warden is carrying to the Warden’s new location, and it will update
the Warden’s level of wetness according to whether it is raining, whether
the Warden is carrying an umbrella, and other relevant circumstances.

Deciding on Short Actions

After having thus updated the state of the world, the long action invokes
the function decide-short-actions that performs exactly once the body
of the loop shown above. It executes the following steps in sequence.

1. Make a loop over the list of available behavior rules and evaluate their
rule conditions. If the condition is false then this returns an instance of the
condition that falsifies it. If this is the case then add the pair of the iden-
tifier for the behavior rule and the falsifying instance to the set options.
Moreover, if the condition is true (that is, the desire is satisfied) then add
the identifier for the behavior rule to the set autoachieved-options (for
use in a later step).

2. Make a loop over the set options . For each option, if the option is a
member of the set *resigned-intentions* then do nothing. Otherwise,
make an inner loop over the set of known methods for the behavior rule in
the option and evaluate the method’s applicability condition. If this condi-
tion is satisfied then add the method to the set methods-here that becomes
the result of the inner loop. If this set is empty at the end of the inner loop
then add the falsifying instance to the set *resigned-intentions* - this
has the effect that this falsifying instance will be ignored in subsequent
invocations of decide-short-actions, i.e. the agent has given up on it.

If the set methods-here is not empty, on the other hand, then invoke the
function evaluate-methods on it. This function shall return one of the
methods which is then selected for further use, or the symbol nil if it is
considered that none of the methods is appropriate. If the returned value
is not nil then add the triple consisting of the identifier for the behavior
rule, the falsifying instance, and the identifier of the method to the set
selected-options.

3. For each member of the set autoachieved-options that is updated in
step 1, if this member is represented in the set *resigned-intentions*
then remove it from there. The set autoachieved-options is initialized to
the empty set at the beginning of each invocation of decide-short-actions.

4. At this point it would be appropriate for the procedure to check that
the elements in selected-options are consistent and can function well

17

together. However, at present the implementation does not do this, and the
set selected-options proceeds directly to the next step.

5. For each element in selected-options, execute the script that is associ-
ated with the identifier for the method, together with the variable bindings
that are obtained from the falsifying instance of the condition in the be-
havior rule. After each script execution, evaluate the purpose condition of
the behavior rule. (Please recall that for desirability rules this is the same
as the rule condition, and for opportunity rules it is a separate condition).
If the purpose condition is satisfied then the use of the rule was successful,
otherwise not. Report this to the user of the system using the command-line
dialogue. Also, if the condition was not satisfied in the case of a desirability
rule, then add the falsifying instance to the set *resigned-intentions*

It is clear how these steps correspond to the steps in the idealized top-level
loop. Notice that the BDI step get-new-external-events() does not have
any counterpart since the ZMS does not make any distinction between the
simulated world and the agent’s knowledge of the world. Therefore, the
update of the world state that is done by the long action is immediately
available to the procedure defined here.

Evaluation and Selection of Methods

The function evaluate-methods does the following. For the given set of
methods, it first of all adds the null method consisting of doing nothing at
all. It then identifies a sequence of short actions consisting of the next few
intended steps in the long action within which the function is being called.
For each of the methods, it constructs a sequence of actions consisting of the
action sequence of the method itself, followed by the identified forthcoming
long-action steps. The effects of performing this sequence of actions are cal-
culated by constructing the successive situations (using the succ function)
and deducing the feature values that apply to each of them.

The merit value is calculated for each of these situation sequences, and
the method (including the empty method) has obtains the highest score is
selected for use; the identifier for that method is returned.

Several methods are possible for calculating the feature values in constructed
future situations. The present implementation uses a simple (incomplete)
resolution theorem prover together with effect laws for each of the verbs.
Indirect effects are calculated using the same procedure as is used by the
long verbs.

The merit value for a situation sequence is calculated as the sum of contri-
butions from a number of specific merit components, each of which is related
to some of the desirability rules.

2.2.5 Urgency Levels

The implementation defines a level of urgency for each behavior rule. Rules
with medium urgency are used for identifying short actions at successive
steps of a long action, and this is the only level that is in active use at
present. The level of low urgency is intended to be used for behavior rules
that allow the system to decide autonomously about its next long action.

18

Likewise, the level of high urgency is intended for stimulus-response rules
where the failure of the rule condition results in immediate execution of a
method without first considering alternative methods or the effects of the
designated method.

Chapter 3

The Rainy Day Scenario

The general design in the previous chapter can be better understood by
also considering a concrete example. We shall do so using the Rainy Day
Scenario which has been the first use of BDI facility in the Zoo Microworld
Platform.

3.1 Actions and Laws of Change

This Rainy Day Scenario uses the road network model of the Zoo that was
described above. The sole agent in this scenario is a warden which is rep-
resented by the entity TheWarden and which may move from one roadpoint
to an adjacent one in one timestep. A sequence of such moves constitutes
a promenade, which is a long action and which can be requested from the
command loop using the verb goto.

3.1.1 Simple Short Actions

A few short verbs are introduced in order to obtain a basis for behavior
rules in the BDI machinery. They refer to actions that are performed by the
Warden, and are defined in terms of appropriate features for each verb. For
example, there is the pickup-coin action which is possible if the Warden
is at a location, i.e. at a roadpoint where there is a coin on the ground.
The effect of performing the action is that there is no longer a coin on the
ground there, and the Warden has a transient positive value for a “feel-
good” feature.

The presence of a coin on the ground at a particular roadpoint p is repre-
sented by the attribute has-on-ground whose value is a set that may or
may not contain the entity coin. The transient attribute for the Warden
is called just-received and it may have the value coin or none, or some
other alternative values that are obtained from other short actions.

Two things should be noted in this example. First, the behavior rule that
suggests that the Warden may use the pickup-coin action in order to feel
good is triggered by the Warden passing by a particular roadpoint. Both
for this example and in general, the way to prepare for an episode in this
scenario is to equip the road network with entities in suitable locations, such

19

20

as the coin on the ground in this example. After the road network has been
suitably equipped one can initiate a goto action where the agent passes by
anticipated locations and takes appropriate action at some of them. On
the other hand there is no command for command-line use that will cause
specific changes to be made at specific timepoints in a forthcoming episode.

Secondly, the reward in this example is represented as a transient feature
value. It may be objected that when the Warden has picked up the coin
then he will keep it until something happens with it, and he will have an
advantage of that all the time. However, given that there are no mechanisms
whereby the agent may lose the coin, there is not going to be any need for
rules of the form retain feel good persistently in this respect, so the effect
may just as well be represented as transient.

The use of the just-received feature suggests an opportunity rule of the
type detect transient opportunity. A second short verb in this scenario is
buy-icecream which is possible when the agent is in a location where there
is a building of type icecream-parlor . It is represented similarly using a
transient feature and an opportunity rule for detect transient opportunity.

3.1.2 Rain-Related Short Actions

Besides these simple short actions, there is also a group of actions that are
introduced in order to have somewhat more complex developments, and that
contribute to a desirability rule that works for both detect and discontiue feel
bad persistently. These actions are based on the notion that the warden can
get wet, namely, if it is raining, or if he passes by a roadpoint where a grass
sprinkler is running. Raining is a persistent feature of the Nature object,
so it may start and stop raining at specific timepoints. The startrain and
stoprain actions are requested in the command-line dialog and can not be
controlled or even predicted by the Warden. Notice that these actions can
only be executed between promenades, and not within them, since they can
only be invoked from the command-line dialog.

The sprinklers also do not turn on or turn off during a promenade, so at
some roadpoints there is a sprinkler and it runs all the time.

While performing his moves the Warden may or may not carry a particular
bag, called TheBag. There are actions whereby he puts the bag on the
ground beside him, or picks it up. If he has picked up the bag then it comes
with him as he moves to a new roadpoint, but if it is on the ground then it
stays there.

One more artifact is included in the scenario, namely an umbrella that may
be either in the bag, or held in the warden’s hand. If the warden gets in
the way of a sprinkler or of rain then he will get wet, except if he has taken
out his umbrella. The warden does not like to get wet, so he may choose to
take out his umbrella when rain occurs or he gets in the way of sprinkling.

However, to complicate matters, in order to take out the umbrella from
the bag, he must first put down the bag on the ground, then take out the
umbrella, and then pick up the bag again if he wishes to continue carrying it.
While performing these operations he will get increasingly wet. Therefore,
if he is already in the way of a sprinkler, it is best to continue walking
through it and not stop to take out the umbrella. If it is raining then the
reverse is true, unless the agent is already soaked.

21

Another way for the warden to avoid getting wet or to dry up is to go inside
a building. However, then he must be at, or go to a roadpoint where there
is a building. Well inside a building he may wait a while so as to become
dry again.

Being wet is not a binary condition, therefore; the warden’s wetness is
defined on a scale from 0 to 10, where 0 means entirely dry. Each time unit
where the warden is exposed to rain or sprinkling his wetness increases by 2;
every time unit where it is not raining or he is inside a building the wetness
decreases by 1, all within the interval from 0 to 10. For these purposes, a
time unit is when the warden moves from one roadpoint to the next. The
actions where the agent puts down the bag, picks up the bag, gets out
the umbrella, or puts it back count as half a time unit for the purpose of
getting more wet, i.e. wetness increases with 1 if it increases, but it does
not decrease in any case. Moreover there is a ’wait’ action where nothing
happens except that the warden’s wetness changes according to the rules
(increases by 2 or decreases by 1).

The obvious condition that the Warden does not want to get wet is repre-
sented formally by a desire of having wetness level 0.

3.2 Implementation of Behaviors

In this section we shall describe the formal definitions that are used in order
to implement the motivational structure described above. The purpose of
this section is not to be like a software documentation, but merely to give
the reader an idea of the size, complexity and character of the definitions
that are needed.

3.2.1 Attributes

Attributes are persistent unless otherwise noted. The following attributes
are used for TheWarden

location Indicates the location of the warden as a
composite entity, e.g. (crossing: 2 3)

howmuch-wet Number indicating the wetness of the warden
on a scale from 0 to 10

open-umbrella Indicates whether the warden has opened up
his umbrella, value yes or no

carries-bag Indicates whether the warden carries the
designated bag, value TheBag or no

is-inside indicates whether the warden is inside
a building, value yes or no

just-received As described above, value coin or no.
This is a transient attribute whose stable
value is nil

just-enjoyed Value icecream if TheWarden just had one.
Transient attribute, value icecream or no

The following attributes are used for Nature

raining Value yes or no

22

The following attributes are used for TheBag

onground Value yes or no, indicates whether the bag
is standing on the ground or being carried

The following attributes are used for roadpoints

has-building There is a building at the roadpoint. The
value is the type of building, e.g.
icecream-parlor, and otherwise nil

has-sprinkler There is a lawn sprinkler at the roadpoint.
Value yes or no

has-on-ground The value is a set of entities which may
include e.g. the entity coin. The empty
set may be represented as nil

3.2.2 Verbs

The following short verbs are defined in the Rainy Day Scenario and for use
by the Warden.

buy-icecream the Warden buys an icecream which leads to
transient gratification. It can only be
done if there is an icecream parlor at the
Warden’s current location

pickup-coin the Warden picks up a coin that is on the
ground in the Warden’s current location

pickup-bag the Warden picks up the Bag that must then
be standing on the ground at the same location
as the Warden

putdown-bag the Warden puts the Bag on the ground
takeout the Warden takes out the umbrella from the bag

that must be standing on the ground
putback the Warden puts back the umbrella into the bag

that must be standing on the ground
go-in the Warden enters a building that is at the

same roadpoint as where he is located
go-out the Warden leaves a building where he is at

the present time
wait the Warden does nothing during one timestep
wait-until-dry the Warden stays inside a building until his

wetness has been reduced to 0

3.2.3 Desires and Methods

The following are a few examples of how behavior rules and methods are
written. First, a trivially simple example of a an opportunity-rule say-
ing that if the Warden is at a location where there is a building of type
icecream-parlor then he will consider buying an ice-cream.

-- opporule-1

[: type opportunity-rule]

23

[: has-methods <get-icecream>]

@Rulecond
[-Hc (the has-building of (get TheWarden location)) icecream-parlor]

@Purpose
[true]

-- get-icecream

[: type behavior-method]

@Requires
[true]

@Has-script
[buy-icecream]

The Rulecond property contains the rule condition. At a step during a
promenade where it is false, the system will take this as an option, in the
sense of the BDI behavior model, and consider each of the methods in
the sequence (or set) that is the value of the has-methods attribute as
a way of dealing with this option. In this simple example there is only
one such method. For each method it will check whether the expression
in the method’s Requires property is true. If it is then it will consider
this method as a candidate for the dealing with the option. In this case
there is only one method that passes this test, so there is no need to choose
between methods. The method’s script is simply to perform the action
[buy-icecream] which is therefore performed. After performing it, the
agent evaluates the expression in the rule’s Purpose property in order to
check whether the intended purpose of performing the method has been met.
The value of the Purpose expression is not used for anything in particular in
the present system, but in a future development it may be used for revising
the agent’s behavior rules and the priorities of these rules.

We proceed to a slightly more complex example, namely, the definition of
the desirability rule for not getting wet and its associated methods.

-- desirule-1

[: type desirability-rule]
[: has-urgency medium]
[: has-methods <open-umbrella dry-in-building>]

@Rulecond
[Hc (the howmuch-wet of TheWarden) 0]

-- open-umbrella

[: type behavior-method]

24

@Requires
(and [Hc (the open-umbrella of TheWarden) no]

[Hc (the carries-bag of TheWarden) TheBag])

@Has-script
[soact [putdown-bag][takeout][pickup-bag]]

-- dry-in-building

[: type behavior-method]

@Requires
(and [Hc (the is-inside of TheWarden) no]

[-attrib-is (get TheWarden location) has-building nil])

@Has-script
[soact [go-in][wait-until-dry][go-out]]

In these definitions there is a desirability rule, called desirule-1 which
represents the desire for the warden not to get wet. It is specified by a logical
expression for the desire, in the Rulecond property, and this behavior rule
refers to two possible methods. Each method is specified by a Requires
formula and the Has-script formula like in the previous example.

This is basically what is needed in order to define such desires and methods
for achieving the instantiated goals. The following other things are also
needed:

• Definitions of the verbs that are used for performing actions and
achieving goals.

• Definitions for the machinery for instantiating desires and adminis-
trating the resulting goals. This is in the entityfile motivsys and
requires around 420 lines of code in the present lab materials, which
means it can be done quite compactly.

• Definitions for how to do prediction of the results of proposed scripts.
This uses the implementation of a simplified resolution theorem-prover.

The following are the important points that can be seen in this simple
example and that we wish to illustrate with it:

• The simple desire-driven and goal-directed behavior can be imple-
mented using a very moderate amount of code, combined with a
straightforward use of standard first-order logic and of the formal-
ism for reasoning about actions.

• The behavior that results from the definitions in the example is quite
simple, but considerably more sophisticated behavior can be imple-
mented by adding more ’knowledge’ in the form of logic formulas, and
without the need for a lot of additional programming.

Chapter 4

Operating Instructions

The following are the commands that are needed for experimenting with
the Zoo Microworld System (ZMS) and the Rainy Day Scenario (RDS).

At present this is organized as lab5b in the software for the course TDDC65,
“Artificial Intelligence and Lisp.” This is likely to change in the near future
so that this example becomes a free-standing application where several of the
lab assignments for the course have been included and integrated. However
the following refers to the presently available organization of the system.

4.1 Startup

The following commands are used for starting the ZMS/RDS in the Leonardo
system.

loadk indivmap-kb
loadk indiv-kb Only needed if lab results are to be

uploaded
loadk servdefs-kb
loadk lab5b-kb
startlab lab5b

The startlab command can be executed repeatedly; it starts a new episode
each time it is called. The steim command (from earlier labs) shall not be
used for this purpose.

4.2 Road Network

Entities for roadpoints are formed as in the following examples:

(crossing: 3 3) The roadpoint (3, 3)
(pathpos: 3 3) The roadpoint (3+, 3)
(trailpos: 3 3) The roadpoint (3, 3+)

In all cases each of the arguments must be between 1 and 5.

25

26

4.3 Commands

Commands are specified with typical examples of arguments.

4.3.1 Configuration and Administration of Episodes

initpos 3 4

Sets the Warden’s location to (crossing: 3 4)

neto (crossing: 3 4)

Calculates and displays the route that the Warden will use if given the goto
command with the same argument, but does not actually move the Warden.

ephas

Shows the current state and the past history of the current episode.

put (crossing: 2 3) has-on-ground coin

This is an example of how the general-purpose put command can be used
for assigning an attribute value to an entity, in this case, a roadpoint. The
following attributes are used for roadpoints, with their possible values:

has-on-ground coin, no
has-building icecream-parlor, no
has-sprinkler t, nil

Notice that a coin on the ground will be removed if it is picked up, but
an icecream parlor at a location will not go away if the Warden buys an
icecream there.

rembu

Removes buildings and sprinklers at all roadpoints.

4.3.2 Long Actions

The following is the main command for requesting a promenade by the
Warden, with an example of the argument.

goto (crossing: 4 5)

This has the effect of calculating a sequence of steps for going from the
Warden’s present location to the indicated destination, while checking in
each step for appropriate short actions that may be performed in-between
according to the Warden’s desire structure.

Notice that if one is interested in going repeatedly to the same location
during a session, for example for having the Warden going back and forth
between two roadpoints, then it is convenient to make assignments of road-
points to session variables and use them like in the following example.

ssv .c (crossing: 4 5)
goto .c

27

4.3.3 Stepwise Operation of Short Actions

It is possible to request short actions directly from the command-line dialog,
without having them embedded in a long action. The respective verbs are
given directly as commands.

mp dir

Move the agent to the location indicated by the direction dir which may
be either of the symbols N, S, E, W, north, south, east, west.

4.3.4 Prediction

The following commands are used for generating and viewing a successor
situation or a sequence of successor situations at a given timepoint in an
episode.

nxseq <.a1 .a2ak>

Creates the suite of successor situations

(succ .t .a1)
(succ (succ .t .a1) .a2)

...

where .t is the current time in the current episode, derives the changes
of feature values from the current time to that situation, and displays the
changed feature values in these. For example:

nxseq <[putdown-bag][takeout][pickup-bag]>

Finally,

val .s .f

Displays the value of the feature .f in the situation .s which may be either
an integer (e.g. for the current timepoint) or a situation formed using the
function succ.

4.4 Miscellaneous

When the entityfile motivsys is loaded it resets the global variable for
the list of behavior rules to the empty list. This list obtains its members
when entityfiles containing behavior rules are loaded, in particular the file
motivdefs in the distribution of the RDS. Therefore, if motivsys is reloaded
during a session then one must take care to also reload motivdefs and any
other file containing behavior rules.

