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Chapter 1

More General Views of
Actions

The preceding lecture note “Reasoning about Actions and Action Planning”
described representations and planning methods that were based on the
state-transition schema, where each action was characterized in terms of a
static precondition, a dynamic precondition, and a (dynamic) postcondition,
and where the dynamic pre- and postconditions could be characterized as
partial states. A state is then a mapping from features to values that is
intended to characterize the state of the microworld at hand at one point
in time, and a partial state is a subset of a state whereby only some of the
features are assigned values.

The state-transition schema has the advantage that it allows for several
practically useful planning methods, but it has the disadvantage of being
quite restrictive with respect to what kinds of actions can be described. The
present lecture note shall therefore describe other, and more general ways
for representing the effects of actions, and for reasoning about them.

The preceding lecture note described how planning could be done either
progressively (searching forward from the given starting state), regressively
(searching backward from the given goal state), or even middle-out (starting
by assuming one or a few main actions in the middle of the forthcoming
plan). The latter alternatives are not available in the more general cases
that we shall consider here, or only with some difficulty, so the present
note will focus on progressive planning. Progressive planning methods were
not covered in the previous note, so the present note complements it with
progressive planning methods even for the state-transition schema.

Three generalizations of the state-transition schema will be considered here:

• State Transition with Conditional and Nondeterministic Actions

• State Transition with Immediate Causation (STIC), which is similar
to the previous case except that each action is considered to have
both direct and indirect effects. The direct effects are represented like
in the basic schema. Indirect effects are the results of cause-effect
rules that apply immediately when the action has been performed.

• The Trajectory Set Schema (TSS), where a trajectory is a sequence of
partial states of length 2 or greater, and each action is characterized
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by a set of such trajectories. The combination of dynamic precondi-
tion and postcondition is considered as a trajectory of length 2. The
Trajectory Set Schema is used for representing concurrent actions and
actions with extended duration in time.

The first two cases will be treated together in Chapter 2; the case of TSS
will be treated in Chapter 3.

Consider for example the action of pressing a light-switch which has the
effect of turning on the lamp that is connected to the switch. Using the
STIC schema, this action can be represented so that the direct effect consists
of the change of mechanical configuration in the switch at hand, and the
indirect effect includes the change in the lamp. One or more causation rules
are used for relating the former effect to the latter one. Notice however
that the exact decision as to what is to be considered as a direct effect
or an indirect effect is up to the person designing the representation. For
example, the possibility for passing an electric current through the switch
changes as a result of this action, but is this considered to be a direct effect
or an indirect effect? This is up to the designer to decide.

One may wonder, therefore, what is the advantage of making the distinction
between direct and the indirect effects. Why not consider even the changes
in the lamp, such as “beginning to shine” and “becoming warm” as direct
effects? The answer for this example is that if there is only one lamp in the
microworld at hand then it does not matter, maybe, but if several lamps
are considered then the use of the STIC schema provides more modularity.
For example, turning a switch will always have the mechanical effects in the
switch itself, but the effects on one or more lamps, and on other devices that
may be connected to the switch, depends on the structure of the electrical
wiring. Therefore, instead of having a separate effect rule for each switch,
one can have a single effect rule that applies to all switches, a declarative
description of the electrical wiring, and one or a few causation rules that
describe how switches influence currents and how currents influence lamps
and other devices. Logical deduction can then be used for inferring indirect
effects in each case.

In addition, the separation of information into distinct parts makes it pos-
sible to use it for more purposes, even in the case of a single switch and a
single lamp. A description of wiring and electrical connections in a house
may be used for other ends besides figuring out what happens when a switch
is turned. Also, a diagnostic system that analyzes the reasons why a lamp
or other device does not function as expected will also need a description
of the various parts of the system at hand, their relationships and ways of
functioning.

The STIC schema is simpler than the TSS schema since it is inherently
sequential, like the basic state-transition schema. STIC assumes that one
action is performed and all its indirect effects take place, and only then can
the next action be performed. In other words, although in terms of physics
there may be a time delay before the indirect effects are obtained, this time
delay is so small compared to the duration of the actions themselves that it
can be disregarded.

Consider by contrast the following example of causation. An agent performs
the action of opening the faucet for a bathtub, whereby the immediate effect
is that water starts coming out of the faucet and going into the bathtub.
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Unless the agent closes the faucet in time, after a while the bathtub will be
full and water starts coming out on the bathroom floor. [1] If the represen-
tation of this microworld includes actions that the agent can perform while
the bathtub is filling up, such as making a phonecall, or putting bath-salt
into the water, then the causation will introduce a concurrency even if the
actual actions that are performed by the agent are entirely sequential. For
this reason it is natural to consider delayed causation together with con-
currency between actions, and the trajectory-set schema applies to each of
those as well to their combination.

Besides these major cases, there are also some relatively simple extensions
of the basic state-transition schema:

• Nondeterministic Actions, where a given prestate may result in sev-
eral alternative poststates.

• Action Failure, where in some cases an action fails to have the in-
tended effects. Cases where an action always fails for a given prestate
are best handled by a more narrow definition of its prestate, and cases
where an action may or may not fail for a given prestate is a special
case of nondeterministic actions and may be handled as such.

Nondeterminism is also an issue for the STIC and TSS schemas. The sim-
ple case of basic state transition with the addition of nondeterminism will
therefore be considered in the context of the STIC schema.

Throughout this memo we shall make the same assumption as for partial-
order planning in the previous memo, namely, that actions are atomic enti-
ties without internal structure for the purpose of the representation. There-
fore actions will be written as simple symbols in all examples, and without
surrounding square brackets. Actions which originally are represented as
an action verb followed by some arguments or parameters must therefore
be replaced by the set of all their instances for different values of those ar-
guments or parameters. It is furthermore assumed that the (resulting) set
of actions is finite.

1This assumes that the bathtub does not have an escape outlet that will protect
from overflow. Bathtubs in Europe often lack such an outlet whereas they are
common in the U.S.



Chapter 2

State Transition with
Immediate Causation

2.1 Generalized Semantics of Actions

The previous memo characterized actions using the prestate function prest
and the poststate function post whereby (prest .a) and (post .a) are
partial states when .a is an action. This is one particular choice of the
semantics of actions, that is, a choice of assumptions about the structure
and the properties of actions. This particular semantics is quite restricted
since it does not allow for concurrent actions, nondeterministic actions,
causation, and the other things that were mentioned in the previous chapter.
In order to proceed to these planning problems we must therefore first define
extensions to the semantics.

2.1.1 Semantics for Nondeterministic and Conditional
Actions

We now replace the functions prest and post by an action transition func-
tion atrans whereby (atrans .a) is a set of sequences of length two, where
each sequence consists of a possible prestate and the corresponding, result-
ing poststate. In other words, each action is defined by a set of prestate-
poststate pairs, instead of just one such pair.

In this way it is possible to represent both conditional and nondeterministic
actions. Consider for example a microworld where the current state has one
single component, such as

{[: agent-has 22]}

expressing that the agent owns 22 units of money, and where the agent
can engage in a coin-tossing action play whose effect is that this amount
of money owned is either increased or decreased by 1. Then the value of
(atrans play) will include the following twotuples, among others:

<{[: agent-has 22]} {[: agent-has 21]}>
<{[: agent-has 22]} {[: agent-has 23]}>
<{[: agent-has 23]} {[: agent-has 22]}>

4



5

<{[: agent-has 23]} {[: agent-has 24]}>

and so forth.

Notice that if (atrans .a) contains several twotuples with the same first
element then the action is nondeterministic. If this is not the case then
it is deterministic. If (atrans .a) for a deterministic action consists of
more than one twotuple then the action is conditional, i.e. it will have
different outcomes depending on the starting condition, and otherwise it is
unconditional. [1]

The definition of the function apply is consequently modified as follows. If
.a is an action and .s is a feature state, then

(Apply .a .s)

is a set of feature-states that is obtained by identifying all twotuples in
(atrans .a) whose first element is a subset of .s , replacing that subset by
the second element of the twotuple, and forming the set of all the resulting
modifications of .s. The modified function is written with a capital first
letter as a reminder that the value is a set of states, and not a single state.

Moreover, if the function Apply is used with a set of states as its second
argument, then its value is obtained by using Apply on .a and each member
of the second argument, and then taking the union of the resulting values.

For example,

(Apply play (Apply play {[: agent-has 22]} ))

has the following value, if play is defined as above:

{ {[: agent-has 20]} {[: agent-has 22]} {[: agent-has 24]} }

2.1.2 Semantics of Immediate Causation

In principle we distinguish between the direct effects of actions, which are
characterized using the function atrans, and the indirect effects that are
due to immediate causation. The combination of the direct and the indirect
effects is called the total effects. However, rather than introducing one more
function besides atrans it is sufficient, and simpler, to just introduce one
more action which will represent effects done by nature through causation.
This “action” will be called causation. Then (atrans causation) will
be a set of twotuples each of which describes the prestate and the poststate
of some spontaneous transition that takes place by itself.

There will of course be some states where no causation takes place, and
for such states (atrans causation) shall contain a twotuple whose two
elements are equal. Suppose an action is performed on a starting state s0
and its direct effects result in a state s1, and then there is a spontaneous
transition to state s2 and another spontaneous transition to state s3, and
then no more. In this case the steps from s1 to s2 and from s2 to s3 will
be represented by twotuples in (atrans causation), and with respect to
s3 there will be some partial state .ps that is a subset of s3 and such that
<.ps .ps> is a member of (atrans causation).

1This is under the assumption that the definition of (atrans a) is written in
the simplest possible way.
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Now, for an action .a and a state .s consider the following sequence:

(Apply .a .s)
(Apply causation (Apply .a .s))
(Apply causation (Apply causation (Apply .a .s)))

...

If causation is defined in a reasonable way then there shall be some point
in the sequence where one element equals its predecessor, which means that
at that point there is no further change according to causation and all
immediate causation has already taken place. If there is such a point then
of course all following elements will also be the same, [2] so that the sequence
has converged on a specific set of stable states. These stable states are the
ones that represent the possible final outcomes of the action .a when applied
in the state .s.

It is also possible to construct a formal definition for causation whereby
there is no convergence since the state-sets in the sequence oscillate between
different possibilities. For example, suppose the state contains a feature
indicating that the agent is happy, and causation is defined so that if the
agent is happy then it immediately becomes unhappy, and vice versa, and
the set (Apply .a .s) that one starts with only contains states where the
agent is happy. Then there will be no convergence. We therefore need the
following concept:

A definition of (atrans causation) is convergent if and only if the sequence
of states

(Apply causation .S)
(Apply causation (Apply causation .S))

...

converges to a non-empty set for every choice of .S as a set of states.

In this report we shall only be interested in cases where (atrans causation)
is convergent.

The requirement that the sequence shall converge to a non-empty set guar-
antees that if the action .a is executable, so that (atrans .a) is non-empty,
then it will not be possible for causation to make it look like the action is
non-executable. Moreover, if the action is nondeterministic, so that there
are several possible immediate effects, then it is not possible for causation
to “hide away” any of those alternatives; each of them must be able to
produce one or more alternatives for total effects.

2.2 Planning Methods

2.2.1 The Need for Conditional Plans

First of all we consider the simple case where causation is defined in such
a way that

(Apply causation .s) = {.s}

2Since if x = (f x) then (f x) = (f (f x)) for any function f.
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for every state .s, which means that the direct effects of an action are also
the total effects. This is simply the basic state-transition schema, extended
with conditional actions and nondeterminism.

The effect of nondeterminism on the planning problem is that one needs
conditional plans. In the previous memo we assumed that the starting state
for the planning problem was complete, so that the values of all the fea-
tures was known, and we assumed that actions were deterministic. In this
case it was possible to use plans that just specify a sequence of actions,
without the need for conditionals. If some actions can have alternative out-
comes depending on the prestate then it is still possible to use plans that
are just a sequence of actions. This is the case of deterministic, condi-
tional actions. However, if some actions can have alternative outcomes for
the same prestate, which means that they are nondeterministic, then the
outcome can not be predicted when the plan is made, so the plan must
contain alternative branches that are chosen according to the outcome of
these nondeterministic actions.

Actually, the same is true if the starting state for the planning problem is
only partially specified, since then even actions that are just conditional on
the prestate, without being nondeterministic, may also require conditional
plans. [3]

It is natural to treat conditional actions and nondeterministic actions to-
gether since nondeterministic actions introduce the need for conditional sub-
plans, and conditional actions can be viewed as a special case of conditional
subplans.

2.2.2 Regressive Planning with Nondeterministic
Actions

Consider first the regressive planning method using the situation calculus.
Is it possible to adapt this method so that it applies for nondeterministic
actions as well?

The immediate answer is no; there is no (known) reasonable way of modify-
ing it so that it considers several nondeterministic outcomes of the actions
on an equal basis. However, there is a fairly straightforward method using
primary outcomes which is as follows. The term point of nondeterminism
will refer to a combination of an action .a and a partial state .s where
(atrans .a) specifies multiple outcomes, i.e. it contains several twotuples
of the form <.s .s′ > for different s′ . In each point of nondeterminism, se-
lect one of the outcomes as the primary one, and solve the planning problem
using only primary outcomes. Then consider all the points in the obtained
plan that rely on a primary outcome, and solve the planning problem again
from the remaining, alternative outcomes to the given goal state for the en-
tire problem. Continue doing this until all alternative outcomes have been
considered.

This method is particularly attractive if some of the alternative outcomes
are judged to be more likely than others, since in this case one will choose

3One assumes then of course that the missing state elements are known when
the execution of the plan begins. If they are not then there is a need for introducing
information-obtaining actions in the plan, which is an interesting and important
problem, but outside the scope of the present text.
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the most likely outcomes as the primary ones, so that they will be considered
first. In fact, one may organize the planning process so that it starts with
the most likely outcomes and proceeds with successively less and less likely
outcomes, and stopping the process when it is no longer reasonable to spend
more time on it.

Notice that in practice it is often not necessary to cover all the possible
outcomes of all the nondeterministic actions with a continued plan. One
may simply leave some of the cases open and arrange so that if these cases
do occur during the execution of the plan then one will stop the execution
and do new planning.

2.2.3 Progressive Planning of Conditional Plans
without Causation

Before considering possible generalization of the other planning methods
from the previous lecture note, we shall discuss progressive planning. The
techniques that are introduced for this purpose will also be needed in those
other methods.

The basic method for progressive planning is very simple, especially in the
case of deterministic actions: you start with the given starting state for the
planning problem; you generate the tree of possible sequences of actions;
for every action sequence you identify the state(s) that may be result of
performing that sequence; and you continue doing this until you have found
a plan that achieves the goal.

The more general case that admits nondeterministic actions may be ad-
dressed using primary outcomes, in the way that was described in the pre-
vious subsection. However, it may also be addressed more directly by grad-
ual extension of conditional plans. At this point we need to introduce a
notation for such conditional plans.

Let start be a given starting state; it may be a partial or a complete state
of the microworld at hand. An evaluated partial plan (epp) is an expression
which is formed as either of the following kinds of KR expressions:

[soares a1 a2 ... an R]
[if c at af]

where each ai is either an action or an evaluated partial plan, recursively, at
and af are soares- expressions, R is a set of states representing the possible
outcomes of the sequence of actions preceding it, and c is a conditional
expression that can be evaluated in states and that obtains the value true
or false there.

Within the framework of KR expressions it is also possible to write soares-
expressions using the general-purpose operator soact that has been intro-
duced before for “sequence of actions,” with the addition of a parameter
res for “result states,” as follows:

[soact a1 a2 ... an :res R]

However we use the separate operator soares in this lecture note.

The intended meaning of such an evaluated partial plan is the obvious one:
soares- expressions are executed by doing the actions in it in sequence,
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and if- expressions are executed by evaluating the conditional expression
in the current state and then executing at if the value is true and af if
the value is false. Just as planning in the deterministic case consists of
keeping track of a number of alternative action sequences and extending one
or the other of them in each step, so planning in the nondeterministic case
consists of keeping track of a number of alternative evaluated-partial-plans
and extending one or the other of them in each step, until one arrives at
the point where one of these alternative epp’s is such that it will achieve
the given goal in all its branches, i.e. regardless of which path is taken in
any of the if- expressions.

Two things have to be made clear then: (1) how can one extend an evaluated
partial plan, and (2) how can one determine its outcomes. The inclusion of
the R component at the end of a soares- expression is a help for the latter
purpose.

First of all, if an epp consists of one single soares- expression, so that all
the ai in that expression are actions and not subplans, then the R in

[soares a1 a2 ... an R]

must always be

(Apply an (Apply an-1 (Apply ... (Apply a1 s0) ... )))

It follows that the empty plan, containing no actions at all, can be written
as

[soares {start}]

and that the plan shown above can be extended by adding the action an+1
obtaining

[soares a1 a2 ... an an+1 (Apply an+1 R)]

provided that the prestate of the action an+1 is satisfied in all the states in
the set R. Therefore, if there is no need for conditionals, one can simply let
each of the alternative plans have this form, and the planning process con-
sists of gradually extending these sequences with several alternative choices
of action in each step (thereby obtaining a tree search) until one finds a
sequence where all members of the set R satisfy the given goal state. This is
essentially the same as for the case without conditionals although expressed
in terms of the soares operator.

However, if no plan can be obtained in this way then one must try obtaining
a conditional plan. Consider the following simple example. The state of the
world is characterized using two features, hungry and has-money, each of
which may have the value true or false. The goal state is a partial state
saying that hungry shall be false whereas have-money is not a goal. One
considers an evaluated partial plan

[soares a1 a2 ... an R]

where R consists of two states, hungry is true in both, and has-money is
true in one and false in another. Moreover one disposes of two actions,
buy-food which is applicable if one has money, and beg-food that is a last
resort which is only considered appropriate if one does not have any money.

The natural way of extending the evaluated partial plan in this case will be
so as to obtain
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[soares a1 a2 ... an
[if [Hc has-money true]

[soares buy-food {{[: hungry false][: have-money true]}
{[: hungry false][: have-money false]} }]

[soares beg-food {{[: hungry false][: have-money false]}} ]]]

The details of how to proceed from having bought or begged food to actually
having eaten it to satisfaction are not represented. The above also assumes
that after having bought food one may or may not still have money, and
that after begging for food one will still be without money. The predicate
Hc was used in previous lecture notes and is true if the feature in its first
argument has the value in its second argument, in the state at hand when
the condition is evaluated. (End of example). The general rule is therefore
as follows. Consider the evaluated partial plan

[soares a1 a2 ... an R]

and a proposition c that is true for some of the states in R and false for
some other states. (If it is true in all those states, or false in all of them,
then there is no point in introducing that particular condition). Let Rt be
the set of the former and Rf is the set of the latter, so that R is the union of
Rt and Rf. Let at be an action whose prestate is satisfied in all members
of Rt and let af be an action whose prestate is satisfied in all members of
Rf. Then construct the following expression

[if c [soares at (Apply at Rt)][soares af (Apply af Rf)]]

and extend the epp at hand so as to become

[soares a1 a2 ... an
[if c [soares at (Apply at Rt)][soares af (Apply af Rf)]]
RR ]

where RR = (Apply at Rt) ∪ (Apply af Rf). It is fairly easy to see that
this is a correct extension. The execution of the actions a1 to an will result
in any of the states in the set R. The extended plan with the if- expression
will proceed with either at or af, so RR is clearly the set of all possible
states that may be the end result of the extended plan. Therefore it is
correct to place it as the final element in the soares- expression.

When a conditional subplan has been introduced then one has several
soares- expressions that can be extended, namely either on the top level
or on the lower levels.

The rule for extending the evaluated partial plan with an if- expression
can therefore be written in a more concise way, as follows. The epp

[soares a1 a2 ... an R]

may always be extended so as to become

[soares a1 a2 ... an [if c [soares Rt][soares Rf]] R]

where Rt and Rf are the two non-empty, complementary subsets of R that
were defined above. This rule, together with the rule for adding an action
at the end of a soares- expression on any level, can together provide the
extension shown before.

The rule for modifying the R component of the evaluated partial plan be-
comes a bit more complex when the plan contains conditional sub-expressions.



11

It is as follows:

• If an action is added in the top-level soares- expression, then modify
the R component as described above.

• If an if- expression containing no actions is added then the R com-
ponent on the top level does not change, as described just above.

• If an action is added at the end of a soares- expression in a con-
ditional one or more levels down, and if this conditional is the last
element before the R component in the surrounding soares- expres-
sion, then that R component must be reset to become the union of the
R components ending the two branches in the conditional. (Example
below).

• If an action is added at the end of a soares- expression in a condi-
tional one or more levels down, and if this conditional is not the last
element before the R component in the surrounding soares- expres-
sion, then that R component must be recalculated by first taking the
union set of the lower-level sets as described in the previous item, and
then modifying it by applying again the successive actions following
the conditional expression.

• If an action is added at the end of a soares- expression more than
one level down, then in addition to the changes that are specified in
the previous two items, one must also modify the R component in all
soares- expressions on higher levels above the given one, proceeding
upwards and recalculating the R on each level so that it is obtained
from the R components on the level immediately below it.

As an example for the case in the third item, suppose one has

[soares a1 a2 ... an [if c [soares Rt][soares Rf]] R]

and it is extended to become

[soares a1 a2 ... an [if c [soares Rt][soares ak Rf’]] R’]

then the primed components must be calculated as Rf’ = (Apply ak Rf)
and R’ = Rt ∪ Rf’. Also, as for the fourth item, if one has

[soares a1 a2 ... am
[if c [soares Rt][soares Rf]] an-1 an R]

and one extends it to

[soares a1 a2 ... am
[if c [soares Rt][soares ak Rf’]] an-1 an R’]

then Rf’ must be like in the previous example, and R’ must be

(Apply an (Apply an-1 (union Rt Rf’)))

where union is set union, i.e. ∪.

If an evaluated partial plan for a given planning problem has been started
as

[soares {start}]
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and it has been obtained by then extending the plan step by step using the
above rule for recomputing the R component, then it is clear that in each step
the top-level R component is a set that contains exactly those states that
may be the result of executing the plan in question. Therefore, the criterium
for whether a plan achieves the given goal, which has been specified as a
partial state containing the required feature-value assignments, is simply
that the goal must be a subset of each of the members of R.

This is essentially all; the rest is “only” the search process. The system
has to consider alternative, evaluated partial plans, decide which of them
to select for further extension, and to keep doing this until it has found an
epp where all members of the final R set of the top-level expression include
the given goal state.

In practice this method will only be feasible if one has quite small problems
involving short plans, or if one can use so-called heuristic information that
can effectively guide the search process. This heuristic information may
consist of rules that indicate which actions and branches to try, or which
ones not to try. It may also consist of numerical-valued functions that es-
timate the remaining “distance” to the goal or the probability of reaching
it eventually. Such an estimate can be used for always expanding the most
promising-looking branches in the search tree. The principles and the sys-
tematic methods for doing this must be left out from the present lecture
notes.

2.2.4 Regressive and Progressive Planning for
Nondeterministic Actions and Immediate
Causation

We now proceed to the case where there is the additional possibility of
immediate causation, so that the total effects of an action consist of the
direct effects, as stated by the function atrans for the action in question,
followed by the indirect effects which are stated by (atrans causation).
The use of regressive planning may or may not be possible, depending on the
structure of causation. If causation is deterministic then one can simply
define a function that is similar to Apply but which takes both direct and
indirect effects into account, and if the direct effects are nondeterministic
one can use the method of primary outcomes that was described above.
Even in the case where causation is nondeterministic it is in principle
possible to identify one of its alternative outcomes as the primary one, for
each of its points of nondeterminism. The practical feasibility of this has to
be assessed for each application separately, but it is not a method that will
work in all cases.

The use of progressive planning is very straightforward, on the other hand.
The method of gradual extension of a set of evaluated partial plans can be
applied just like for the case without causation, and the only change is that
each time an epp is extended with one more action, one must consider not
only the direct effects of that action, but also the possible causation chains
leading up to stable states.
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2.2.5 Island Planning for Nondeterministic Actions

It is possible to generalize partial-order planning so that it works for nonde-
terministic actions with or without immediate causation, but the description
of this generalized planning process is a bit complicated and we shall not
address it here. Let us however briefly describe a simpler case of middle-out
planning for deterministic actions with or without causation. Please recall
that the method of partial-order planning can be used for both progressive,
regressive, and middle-out planning; what we shall describe now is a limited
case of middle-out planning, called island planning.

The basic assumption now is that you have a planning problem where at
least some of the actions are nondeterministic, and in in addition you can
make an assumption on heuristic grounds that one or a few specific actions
are likely to occur in the final plan, but probably inside the plan and not
at its beginning or its end. This assumption about main actions may, for
example, be based on a comparison between the starting state and the goal
state in order to identify the differences, together with some rules which
say that differences in certain features suggest the use of particular main
actions.

Step 1: If there is more than one main action then make an assumption
about the order in which they will occur in the final plan. The result of this
is that we have decomposed the original planning problem into two or more
planning problems that will hopefully be easier to solve, namely, from start
to the preconditions of the first main action, from the outcome of the first
main action to the preconditions of the second main action, and so forth,
and then from the outcome of the last main action to the goal state.

Step 2: Consider the subproblem of finding a plan from the starting state
to the first main action. Do a limited regressive planning in order to find
out whether there are some actions that are likely to be used at the end
of that subplan, namely, deterministic actions that achieve some of the
preconditions that are required by the main action and that are not present
in the starting state.

Step 3: Make progressive planning from the starting state to the first main
action. Look primarily for a plan that leads up to some of the actions that
were introduced in Step 2, but allow also for plans that go directly to the
preconditions of the first main action. This is because it may happen that
some action at the beginning of the subplan happen to achieve what the
actions from Step 2 also do.

Step 4: When a plan from the starting state to and including the first main
action has been found, then identify the result state of that plan, and use
it as the starting state for a plan that goes to the second main action, or to
the goal state if there was only one main action.

Following steps: Repeat steps 2 and 3 until a plan reaching the goal state
has been found.

Backup step: If Step 3 fails in one of the cycles, then back up to an earlier
cycle and find another plan there. If Step 2 fails in a cycle, in the sense that
no relevant action is found, then proceed anyway since Step 3 can still be
done in order to find a plan directly to the preconditions of the next main
action.
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This middle-out planning method shall be thought of as a kind of framework
that can be adapted to various applications in various ways. For example,
if the application is such that it will generate two or more alternative main
actions, but only one of them is expected to be used, then it may be a good
idea to first address the planning subproblem from each of them to the goal
state in order to find out which of them is more likely to be relevant, and
only then do the planning problem from the starting state to the selected
main action.

2.3 Logic for Characterizing Causation and
Nondeterministic Actions

The previous lecture note was based on the state-transition schema and
described how the effects of actions can be described in two different ways,
if that schema is used: with the prest and post functions which map
actions to partial states, and with effect laws using the predicates D and H.
These representations are exchangeable, so that it is possible to convert one
of them into the other.

We have also seen how some planning methods rely on the use of effect laws,
in particular for regressive planning using the situation calculus, and other
planning methods are easily expressed using the prest and post functions.
The difference is one of convenience rather than possibility, since it would
also be possible to express e.g. partial-order planning in terms of effect laws,
but this way of expressing it is more complicated.

The relationship between these two representations can be formally char-
acterized as follows. Consider a simple plan consisting of a sequence of
actions, and a starting state for that plan. Assign timepoints 0, 1, 2, 3 etc
to the points where one action ends and the next action starts in the plan.
Rewrite each step in the plan using the D predicate, so for example

[soares buy-food eat-food R]

is rewritten as

[D 0 1 buy-food]
[D 1 2 eat-food]

Then construct the states that result from the execution of the successive
actions for a given starting state, associate these with the timepoints from
0 and up, and define the predicate H so that it can be evaluated in those
states. Then, if the translation from the prest and post functions to the
effect axioms has been done correctly, it must be the case that the value of
any of the effect laws must always be true, for any choice of values for the
variables that occur in it.

A definition of how one shall calculate the values (including truth-values)
for formulas in a particular notation is called a semantics for that notation.
Therefore the prest and post functions are the essential part of the state-
transition semantics for plans (expressed using the D predicate) and for
effect rules.

In the more general case of State Transition with Immediate Causation
(STIC) which also allows for conditional and nondeterministic actions, it is
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natural to use the same two perspectives. The atrans function provides the
essential part of the semantics, and we have described partial-order planning
in terms of that function.

There are also planning methods for the STIC schema that are based on
the use of formulas for plans and effect rules, rather than using the atrans
function directly. These techniques are not as well developed as for the
basic state-transition schema, but they are an active area of research. In
this report we shall only consider the first part of the problem, that is, how
shall one represent action effect laws as logic formulas if the actions involve
conditional effects, nondeterminism and immediate causation. The second
part of the problem, which is how to organize the search for a plan will not
be covered.

2.3.1 Actions with Conditional Effects

Please recall the following example of an effect rule from the previous lecture
note:

(imp (and [existsroad .fr .to]
[D .s .t [moveto .o .fr .to]]
[H .s (the position of .r) .fr] )

[H .t (the position of .r) .to] )

This shows how the dynamic precondition of the action occurs in a literal
using the H predicate in the antecedent, that is, the first argument of imp,
and the postcondition occurs in the consequent i.e. the second argument of
imp. It is easy to generalize this way of writing the rule to the case where
the action has conditional effects, most easily by having one rule for each
of the possible cases and where each of the rules follows the same pattern
as the above.

Consider for example the case of a toggling light-switch, which is such that
if you press it when the light is on then it will go off, and vice versa. Let
light be the feature representing whether a particular lamp is on, with the
value on or off. This action can be characterized using the following two
effect rules:

(imp (and [D .s .t toggle][H .s light on])
[H .t light off] )

(imp (and [D .s .t toggle][H .s light off])
[H .t light on] )

2.3.2 The Use of the Occlusion Predicate

The previous note mentioned the use of the occlusion predicate and we
must return to it here. The problem is the following. Although it is quite
possible to use action effect rules of the kind that were just shown, there is a
particular disadvantage with this that arises because of the frame problem,
namely, that it forces one to introduce a considerable number of direct or
reverse frame axioms. (See Section 4 of the previous memo for the details).
Therefore, a better solution is to write effect rules that specify which features
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may change their value as the effect of the action, which will be as follows
using the same example.

(imp (and [D .s .t toggle][H .s light on])
(and [X .s .t light]

[H .t light off] ))

(imp (and [D .s .t toggle][H .s light off])
(and [X .s .t light]

[H .t light on] ))

An equivalent formulation containing both cases is as follows and it may
actually be more readable:

(imp [D .s .t toggle]
(and [X .s .t light]

(imp [H .s light on][H .t light off])
(imp [H .s light off][H .t light on]) ))

A particularly simple case is for the action toss-coin which is as follows,
assuming that the action affects the feature upside with the value heads
or tails:

(imp [D .s .t toss-coin][X .s .t upside])

The point is that here it is only known that the value of upside may be
either one of the possible values after the action has been performed, and
that is what the X predicate expresses.

The previous lecture note described how the occlusion predicate X can be
used together with the PMON axiom which says that if a feature is not
occluded over a certain interval, then its value will not change there. There
are actually also other ways of using the information about occlusion, other
than PMON, but these are mostly useful in the context of the Trajectory
Set Schema in the next chapter.

2.3.3 Immediate Causation Rules in Logic

Please recall that immediate causation is modelled using a causality tran-
sition from state to state, and that it is the stable state after potentially a
number of such transitions that is of interest for representing the indirect
effects of actions. This semantics was defined above in terms of an artificial
action causation and the use of the Apply function.

From a practical point of view it is tempting to write causation laws as
logic formulas. For example, if the toggling light-switch is modelled in such
a way that the physical change in the switch is separated from the state
of the lamp, using the features (state myswitch) and (light mylamp)
respectively, for one particular switch and lamp, then one would express
the direct effects of the action toggle as follows:

(imp [D .s .t [toggle .sw]]
(and [X .s .t (state .sw)]

(imp [H .s (state .sw) on][H .t (state .sw) off])
(imp [H .s (state .sw) off][H .t (state .sw) on]) ))

and the effect on the lamp can be expressed as follows:
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(imp (and [H .s (state .sw) on][controls .sw .lmp])
[H .s (light .lmp) on])

(imp (and [H .s (state .sw) off][controls .sw .lmp])
[H .s (light .lmp) off])

provided the following has also been stated:

[controls myswitch mylamp]

This example assumes a predicate controls specifying that the switch in the
first argument entirely controls the device in the second argument. (If the
lamp or other device is controlled by several switches that can be used inde-
pendently then another predicate and a more complex rule will be needed).
In all cases that use static preconditions, such as this one, it is convenient
to use logic for expressing effect rules and causation rules. If rules are ex-
pressed directly in terms of the atrans predicate, on the other hand, then
there is the problem that this only applies to the dynamic preconditions,
and one has to introduce additional notation in order to allow for the static
preconditions and the predicates that they require.

There are a few problems, however. One problem is with respect to the oc-
clusion predicate that was discussed above. Given that we have the PMON
axiom that says that if a feature is not occluded then it can not change,
it seems that we must arrange for the feature (light mylamp) to also be
occluded when (state myswitch) is occluded. There are three good ways
of doing that. One possibility is to add axioms such as

(imp (and [controls .sw .lmp][X .s .t (state .sw)])
[X .s .t (light .lmp)] )

Such axioms are called occlusion causation rules.

The other possibility is to observe that the light of the lamp is fully deter-
mined by the state of the switch, according to the effect rule above, and
therefore to stipulate that the value of (light .lmp) is always occluded,
technically speaking, if .lmp is controlled by a switch:

(imp [controls .sw .lmp][X .s .t (light .lmp)])

This works because the light-status of the lamp is always determined, for
each timepoint separately, using the causation axioms above. Features that
are handled in this way are called dependent features.

The third possibility is to introduce a predicate is-dependent on features,
with axioms such as

(imp [controls .sw .lmp][is-dependent (light .lmp)])

and to modify the PMON axioms so that it becomes as follows:

(imp (and [H .s .f .v]
[H (succ .s .a) .f .w]
[/= .v .w] )

(or [is-dependent .f][X .s (succ .s .a) .f]) )

Which of these three methods shall be used – occlusion causation rules,
perennial occlusion, or the is-dependent predicate – must depend on the
specific characteristics of the application and it is hard to give a general
guideline.
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2.3.4 Blinking and Back-and-Forth Causation

There is also a second problem with the use of logic formulas for expressing
causation rules, as compared with the direct use of (atrans causation)
as a set of twotuples.

Consider again the example with the light-switch and the lamp where the
entire chain from switch to lamp, including the lamp turning on is considered
as direct effects. Add a causation rule where, if the lamp is faulty in a
particular way, it will begin to shine as the direct-effect rule specifies, but
it will immediately overheat, the coil in it will melt, and the lamp will stop
shining “instantly.” This can be called a blinking causation relation. It
can be represented using (atrans causation) without any problem, but
the representation using a causation axiom that was shown in the previous
subsection does not work, since in this case the effect rule for the action
will state that the light will be on at the ending-time of the action, and the
causation rule will state that the light will be off at the same timepoint.

The particular case where the direct effects and the indirect effects are
incompatible can in fact be resolved by introducing extra timepoints, so
that there is one timepoint for the end of the direct effects and a subsequent
timepoint where the indirect effects have converged. However, this still does
not work in all cases, since there may be incompatible effects within the
causation chain. This can be called back-and-forth causation.

The following is an example of this. Suppose you have two features A and B
whose values can be T or F, and a causation transformation that is defined
as follows (with the obvious shorthand notation):

A:T, B:T -> A:F, B:F
A:F, B:F -> A:T, B:F
A:T, B:F -> A:F, B:T
A:F, B:T -> A:F, B:T

It is seen that [A:F, B:T] is the only stable state, so that an action whose
direct effect is any of these states will anyway have that stable state as its
total effect. However, the style of writing a causation rule in logic that was
used above will not work in this case, since it is expressed so that the state
of the microworld before and after one step in the causation transformation
are referred to as being at the same timepoint. In the present example
this will not work, and if one is going to characterize the values of these
features in terms of timepoints then it has to be separate timepoints for the
successive steps in the causation transformation.

Back-and-forth causation does not seem to be very common, fortunately,
so the representation as logic formulas from the previous subsection can
usually be used. with or without insertion of extra timepoints. However,
this all means that when causation rules in an application are expressed in
terms of logic then one must be observant on the structure of the causation
transformation.

2.3.5 Endstate Description of Causation

Causation rules of the kind that were described above are written so that
they characterize individual steps in the causation chain, and this is also
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why they run into difficulties for blinking and back-and-forth causation.
There is also another way of specifying extended causation chains, namely,
using axioms that specify some of the changes that are obtained from the
entire causation chain, but not all of them, but combined with stable state
axioms that specify conditions that are true in all stable states.

The idea is as follows. In many practical cases one can see that there are
a number of intermediate steps in causation chains, but they are so many
and so complex that it is not realistic to document all of them. However,
one does have a way of describing stable states which arise after all the
causation steps have taken place. Therefore, one way of characterizing the
indirect effects of an action is to specify some of the indirect effects, which
in themselves will indicate a state that is not a stable state, and then adopt
the stable state that is the “nearest” one to the obtained state according
to some available metric. The commonly used metric is to find the stable
state that differs from the obtained one in as few features as possible, so this
method is commonly referred to as a method of minimization of change.

In the case of the burned-out lightbulb, for example, one could simply have
a stable state axiom saying that a lightbulb having the particular fault that
causes it to overheat will always be non-shining in stable states. The action
that turns on the lamp will therefore have a direct effect that is not a stable
state, and the nearest stable state, in terms of the set of features that have
to be changed, is the state where the lamp in non-shining whereas all other
features are unaffected.

The method of minimal change is often motivated on informal grounds in
the literature, or based on the observation that it works as intended in a
number of examples. However, a systematic study indicates that it does not
work correctly in all cases, so it has to be used with a certain care. Just like
when one works directly in terms of the causation transformation (atrans
causation) it is necessary to be observant on the structure of causation in
the application at hand.



Chapter 3

The Trajectory Set
Schema

(To follow).
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