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1 Topic

The concept of abstraction is fundamental in the design of conventional
programming languages. Important constructs in languages such as C++
and Java have been chosen in order to provide data abstraction at the core
of the language. Lisp does not have that character – the language as such
does not have any similar facilities.

This does not mean that data abstraction is considered as unimportant by
Lisp users, but merely that Lisp is open to several different approaches to
it. The following are some of the views that are represented in actual Lisp
systems:

• The use of an extension of Lisp that provides object orientation, in
particular the CLOS system (CommonLisp Object System). CLOS
is defined as an IEEE standard, along with the standards definition
of CommonLisp as such. CLOS is a large and relatively complex
language, and will not be considered in this course.

• The use of macro-like facilities that can be defined by an individual
user or a small user community, providing a simple extension of the
Lisp language.

• The use of specialized languages that are embedded in Lisp, which
means that Lisp is used as a high-level implementation language for
the new language and as an execution environment for it. Special-
ized languages tend to provide not only data abstraction, but also
control abstraction, since some of the control flow may be defined in
the interpreter for the specialized language and not in the programs
written by the user.

The present lecture note addresses the general issue of data abstraction
and the second one of these three approaches, that is, the use of a simple
extension of the language based on macro expansion. The use of specialized
languages has been addressed in another lecture note.

There is also a possible argument that data abstraction is not as univer-
sally applicable in Lisp as in conventional languages, due to the use of a
standardized, textual representation of data in Lisp, viz. the S-expressions.
This argument will be addressed in the concluding discussion in this lecture
note.

2 The what and why of data abstraction

The basic idea in data abstraction is twofold: programs should be writ-
ten in a way that expresses concepts and structures in the application as
understood by the programmer, and aspects of the program that are only
motivated by implementation needs should be isolated to a section of their
own that is kept as small as possible. This recommendation is motivated
by several needs:

• Ease of working with the program during its initial development phase:
making it easy for the programmer to understand her own or his own
program, so that the number of errors is reduced, errors can be found
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as quickly as possible, and even the time of initial program design is
minimized.

• Ease of working with the program at a later time: making it easy
for the programmer to come back to the program for the purpose of
making additions or changes.

• Ease for others to work with the program. This is similar to the
previous item, but refers to persons that did not write the original
program but need to change it later on.

• Facilitate change of representation: if one wishes to retain a program
for a given application but change the way data are represented in the
program, then it is convenient if the detailed data representation have
been isolated, and on the other hand it is inconvenient if detailed data
designs are reflected in many places in the code. Simply speaking, it
is better if one does not have to change so many places in the code.

• Provide the basis for checking against errors: many trivial program-
ming errors can be caught by automatic means if the program is
written in a disciplined way using data abstraction.

All of these are important considerations. However, the present author
would like to caution against fundamentalist positions where these are taken
as absolute truths that one is not even allowed to question. Working with
data abstraction imposes a certain overhead when the initial program is
written. This investment in time is well spent if the program is going to
be used for a long time, and by several developers, but there are also cases
where one uses “throw-away” programs that are only used for a short time,
so that the maintainability arguments bear less weight. Being able to change
data representation is fine, but many revisions of program structure concern
control flow and not merely the layout of data, and then it may turn out
that the initially chosen data abstraction does not help at all. Everyone
should understand the concepts of data abstraction, but like anything else
they have to be applied with common sense.

The fact that data abstraction serves several goals at once also means that
when you compare different approaches to the topic, you consider which of
those goals apply in a particular context. For example, an approach that
helps with ease of working with a program but does not help with automatic
checking against errors, may still be useful in some situations and much less
useful in others.

3 A concrete example: the state update
functions in Ethel

The present lecture notes concern data abstraction in Lisp. We shall use a
concrete example, namely, the definitions of state update functions in the
Ethel demo application, which has been introduced in another lecture note.
The Ethel base system contains several alternative definitions of the state
update function for the action verb let-board, including a definition that
does not use any data abstraction at all and that looks as follows:
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(defun update-state1 ()
(setq *t (+ 1 *t))
(dolist (a *oa)

;; example: a is (action 5 (start-boarding lh-12))
;; where lh-12 is airplane; 5 was the starting time

(case (car (caddr a))
(let-board

(let ((x (assoc (cadr e) *ap)))
(case (caadr x)

(at-airport
(rplaca (cdr x)

(list ’boarding (cadadr x) 1) ))
(boarding

(let ((j (cddr (cadr x))))
(cond ((equal (car j) 3)

(remaction e)
(rplaca (cdr x)

(list ’ready-to-fly
(cadadr x) )))

(t (rplaca j (+ 1 (car j)))) )))
(t nil) ))))

;; Additional action verbs are implemented by adding more
;; branches here for the outer case-expression

(t (princ "Unknown action")(terpri))
))

(logstate)
)

This definition is written almost entirely in terms of elementary Lisp func-
tions: car, cdr and their compositions, rplaca, list, equal, setq, and the
control operators (cond, case, let). The only additional functions are the
association-list lookup function, assoc, and the function remaction that is
part of Ethel’s action management system.

This way of writing the definition obviously violates the criteria that were
mentioned above. The composite car/cdr expressions are difficult to read,
in particular if you are not used to them. If one should change one’s mind
about how actions, action expressions, and the locations of persons and
airplanes are to be represented, then one has to change those access ex-
pressions in many places. Consider, therefore, what are the possibilities of
improving the situation within the general framework and philosophy of the
Lisp language and system?

The use of a rule language. One possibility has been presented in the
Ethel memo: introduce a rule language for situation-effect rules, implement
an interpreter for that language, and write the state update functions for
each action verb in terms of those rules, instead of directly as executable
program code. This method is very effective when it works, but there are
two objections to it: (1) it may be too restrictive with respect to what state
changes can actually be expressed, and (2) at least as implemented in the
Ethel memo, it assumes that actions and states are written in a particular
way. If one should wish to change that representation, then again one has
a problem of rewriting a lot of action rules.
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The answer to the first objection will be that one has to use that technique
judiciously, and be wise about when it is applicable and when it is not.
The answer to the second objection may be that it is up to the system
designer to design the rules so that they are sufficiently flexible with respect
to possible future changes of representation, that this is no different from
what is required from the designer of a data abstraction of a conventional
kind, and that a change of representation for the expressions that are part
of the rules can (maybe) be handled by a small program that rewrites the
rules automatically.

The use of auxiliary functions Another possibility was illustrated in
’version 2’ of the state update function in the Ethel memo, namely, the use of
simple auxiliary functions whose names and usage capture the meanings in
the application, and whose definitions can easily be changed. The following
is a typical example from that version of the program:

(defun action-expression-of (a)(caddr a))
;; Extracts the action expression in the action given as argument
;; the single argument
;; Example: a is (action 5 (let-board lh-12))
;; and the value is (let-board lh-12)

(defun verb-of (ax)(car ax))
;; Extracts the action verb in an action expression given as
;; argument

This approach achieves one of the goals mentioned above, namely, it makes
it easier to understand the meaning of a limited section of program code
when reading it. Compare the following segments from version 1 and version
2 of the program, respectively:

(case
(car (caddr a))
(let-board

(let ((x (assoc (cadr (caddr a)) *ap)))

against

(let ((ax (action-expression-of a)))
(case (verb-of ax)
(let-board

(let* ((x (assoc (arg1-of ax) *ap))

The second version is an improvement over the first one, in terms of read-
ability, but it is still a bit primitive. It forces the programmer and the
reader to use a number of small, special-purpose functions, and the support
for change of representation is somewhat limited. The real importance of
being able to write verb-of instead of car can be questioned. The experi-
enced Lisp user, who is well accustomed to the idea that the first element of
a list often contains an operator and the rest of the list contains arguments
for that operator, may anyway interpret car as “obtain the operator lead-
ing the expression” and may not need additional mnemonics to understand
that.

Let us then proceed to the main topic of the present lecture note, which is
the use of a data-abstraction notation that is implemented using a macro
facility.
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4 Choice of notation

We shall approach this problem by first designing a notation that is both
in the spirit of data abstraction, and in line with the general structure of
Lisp. Then in the next section we show how it can be implemented with
very little effort.

The following is an example of the notation as applied to the example above.
We first declare the structure of the kinds of data structures that are in-
volved in the example, as follows:

(declare-struc ’(
(action

(action (= start)(= actexpr)))
(action-expression

((= verb)(? arg1)(? arg2)(? arg3))
(let-board (= plane)) )

(position-expression
((= position-type)(= arg1)(? arg2))
(at-airport (= locn))
(boarding (= locn)(= tick))
(ready-to-fly (= locn)) )

))

The idea is as follows. The declaration specifies the structure of three data
types, called action, action-expression, and position-expression, re-
spectively. An object of type action is a list of three elements, where the
first element must be the symbol action and the second and the third ele-
ments are variable and are given the names start and actexpr, respectively.
The list beginning with an equality sign indicates an obligatory component.

The declarations for the types action-expression and position-expression
are more complicated, reflecting the fact that these kinds of expressions have
subtypes that are characterized by their first element. For example, an ob-
ject of type position-expression must be a list, where the first element
can be either at-airport, boarding, or ready-to-fly, and the structure
of the rest of the list depends on what the first element is.

Besides the alternatives for each of the possible choices of the first element in
the list, there is also one alternative that is used for naming the first element.
If one considers an object of type position-expression in general, where
the choice of first element is not known, then the first element will be called
position-type, the second element is also obligatory and is called arg1,
and the third element is conditional (in the sense that it may or may not
occur) and is called arg2 if it occurs. The question-mark indicates that it
is conditional.

The declaration for action-expression is analagous. For both position-
expressions and action-expressions it is of course intended that more cases
shall be added, but the cases shown here are sufficient for the re-representation
of the state update function given initially.

Given these declarations, we rewrite the state update function for let-board
as follows:

(expd ’(defun update-state5 ()
(setq *t (+ 1 *t))
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(dolist (a *oa)
;; example: a is (action 5 (let-board lh-12))
;; where lh-12 is airplane; 5 was the starting time

(with ((a action))
;; this binds start and actexpr

(with ((actexpr action-expression))
;; this binds verb, arg1, ...

(withcase verb actexpr
;; this selects the case and binds e.g.
;; as (let-board plane) in each case
(let-board

(let ((planepos (assoc-val plane *ap)))
(with ((planepos position-expression))
;; example of value: (at-airport stockholm)
;; this binds (position-type arg1 arg2 ...)

(withcase position-type planepos
;; this withcase binds e.g. (at-airport locn)
;; or (boarding locn tick), etc

(at-airport
(smash planepos (list ’boarding locn 1)) )

(boarding
(cond ((equal tick 3)

(remaction actexpr)
(smash planepos

(list ’ready-to-fly
locn )))

(t (setz tick (+ 1 tick))) ))
(t nil) ))) )

;; Additional action verbs are implemented by adding more
;; branches here for the case-expression

(t nil) ))))

(logstate) ))

Notice that the new notation here is not part of CommonLisp; it is shown as
an example of what the programmer can easily do himself. Three operators
are introduced: with, withcase, and setz. In addition the entire definition
is wrapped by the function typemod.

The operator with is the most significant one, and it works as follows: an
expression

(with ((object typename)) expression)

means that the value of object shall be a list that is interpreted as an object
of type typename, so that the names for elements of the list according to the
declarattions are bound to the actually occurring elements. For example,
if the value of ax is the list (action 163 (let-board lh-12)) then the
value of

(with ((ax action)) (list (cadr actexpr) start))

will be

(lh-12 163)
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because following the declarations, start is bound to 163 and actexpr is
bound to (let-board lh-12).

Moreover, using the general idea of implicit progn, an expression of the
form

(with ((object typename)) expr1 expr2 ... exprn)

is evaluated by evaluating expr1, ... exprn in succession with the bindings
obtained from ((typename object)), and returning the value of exprn as
the value of the entire with-expression.

The operator withcase is a combination of with and case and works as
follows. For the expression

(withcase position-type planepos
(at-airport expr-1)
(boarding expr-2)
(t nil) ))))

the program will behave according to the schema

(case position-type
(at-airport expr-1)
(boarding expr-2)
(t nil) ))))

but in the evaluation of one of the branches expr-i it binds as variables
the field names of the appropriate variant of the structure definition for the
type to which the second “argument” of withcase belongs. In the example,
if expr-1 is to be evaluated, one uses the following case of the definition for
position-expression

(at-airport (= locn))

so that locn is bound to the second element of the list that is the value of
planepos. Similarly, if expr-2 is to be evaluated one uses

(boarding (= locn)(= tick))

and binds both locn and tick.

Looking over the entire definition one can see that the binding of variables
using the with and withcase operators is used recursively. For example,
the expression

(with ((action a)) ...)

binds actexpr which occurs in the subsequent withcase expression, and so
on further down into the entire definition.

5 Implementation

The implementation of the operators mentioned above has been made and
used for the example shown here and a few others. A description of the
implementation and its restrictions will be added here; for the time being
the comments in the program are the only source of detailed information.


