
CASL Single Lecture Notes

Cognitive Autonomous Systems Laboratory

Department of Computer and Information Science
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1 Introduction

In lecture 1 of this sequence of lectures, we showed computational methods
for planning based on a simple definition of actions as pairs of partial states.
Then in lecture 2 we described the beginnings of an approach where more
expressive and flexible views of actions could be accomodated by viewing
available information as restrictions on possible robotic histories. One starts
from the domain of all kinds of robotic histories for a given set of fluents,
and restricts it in two ways. Each given piece of information, such as the
effect laws for actions, is only compatible with some of those robotic his-
tories and rejects the others. Secondly, the use of preference relations on
robotic histories makes it possible to further reduce the number of accepted
histories.

In lecture 3, then, we showed how formal logic can be viewed in two ways:
in terms of proofs, and in terms of models. The model-oriented approach is
basically the same as the restriction-oriented view of the information about
robotic histories. In addition, the two views of formal logic can be proven
to be equivalent for the case of first-order predicate logic (and therefore for
propositional logic which is a special case).

The natural strategy, then, is to take the restriction-oriented view of actions
and robotic histories, express it in terms of logic, apply the preference-
relation idea to the models in logic, and thereby obtain a mechanism for
drawing conclusions from information about actions and change in various
applications. The present lecture centers around that strategy.

2 FOL for actions with explicit time

This section will introduce what is with minor variations the standard no-
tation when phenomena of actions and change is expressed in first-order
predicate calculus with explicit time. Another approach, the situation cal-
culus, will be described in the next lecture.

2.1 An example

We begin with an example, namely a variant of the Yale shooting scenario
from lecture 2, but now expressed in logic. To begin with we modify the
example by assuming that ’load’ takes place from time 0 to time 1, and ’fire’
from time 1 to time 2, in order to avoid the need for imposing the preference
relation on models. Each axiom will be preceded by a number that is later
used for reference when conclusions are made.

1 H(0,alive)
2 -H(0,loaded)
3 D(t,t+1,load) -> H(t+1,loaded)
4 D(t,t+1,fire) & H(t,loaded) ->

-H(t+1,loaded) & -H(t+1,alive)
5 D(0,1,load)
6 D(1,2,fire)

Axioms 1 and 2 describe the initial state, axioms 3 and 4 express the action
laws, and axioms 5 and 6 specify when the actions are performed.
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In order to draw conclusions, in particular to draw the conclusion that the
turkey is dead at time 2, we use the resolution method. To that end we
rewrite all axioms in clause form. Axiom 4 has to be split into two separate
clauses. We obtain:

1 H(0,alive)
2 -H(0,loaded)
3 -D(t,t+1,load) v H(t+1,loaded)
4a -D(t,t+1,fire) v -H(t,loaded) v -H(t+1,loaded)
4b -D(t,t+1,fire) v -H(t,loaded) v -H(t+1,alive)
5 D(0,1,load)
6 D(1,2,fire)

From these axioms we can start drawing conclusions as follows. Each con-
clusion is obtained by resolving two previous clauses, and their numbers are
indicated in a third column to the right. Sometimes it is also necessary to
perform unification on those clauses, that is, to impose instantiation on one
or both of them so that a particular literal matches, and to simplify the
resulting term.

7 H(1,loaded) 5,3
8 -H(1,loaded) v -H(2,loaded) 4a,6
9 -H(1,loaded) v -H(2,alive) 4b,6

10 -H(2,alive) 7,9

Line 8 is unnecessary but was included here to show an additional possible
conclusion. Line 7 is obtained by instantiating clause 3 with t=0, obtaining

-D(0,0+1,load) v H(0+1,loaded)

and simplifying 0+1 to 1. Technically speaking this is an extension to uni-
fication as such, but it is a natural and unproblematic extension.

2.2 The formal language

In general terms, the following formalism is used. We use the following
types:

timepoints, represented as integers > 0
fluents, which are ’loaded’ and ’alive’ in this example
events, which are the actions ’load’ and ’fire’ in this example

We use a predicate H of two arguments, where the first argument is a time-
point and the second argument is a fluent. Fluents are supposed to have the
value T or F at each timepoint. (In applications where fluents can have more
than two values, one uses instead an H predicate with three arguments, and
introduces additional types for each range of fluent values). The proposition
H(t,f) expresses that the fluent f has the value T at time t.

In addition, we use a predicate D of three arguments, where the first two
arguments are timepoints and the third argument is an event, including in
partiuclar an action. The proposition D(t,u,a) expresses that the action
a starts at time t and ends at time u. It can only be true if u is strictly
greater than t.

The use of multiple types for the terms in predicate logic is a complication
from a formal point of view, but we shall not delve into that for the present
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course. From an operational point of view it does not introduce any prob-
lems (in the particular case of the predicates and types being used here, at
least).


