
Reification of Action Instances in the Leonardo Calculus

Erik Sandewall
Department of Computer and Information Science

Linköping University
Linköping, Sweden

Abstract

This article describes the Leonardo Calculus, a
logicist representation for actions and change
where action instances are reified. This makes it
possible to represent relationships between actions,
such as the relation between an action and its sub-
actions in a hierarchical action structure. It also
makes it possible to represent the relation between
an action and the objects that have been created in
it, for example, the relation between the action of
building a house and the house itself, or the relation
between the action of understanding a sentence and
the parse tree that was an intermediate representa-
tion for the sentence.
Since action instances are reified, the logic must
limit the set of action instances in each model to
those that are actually warranted by known knowl-
edge, which suggests minimizing the domain of ac-
tion instances, rather than one or more predicates.
However, somewhat surprisingly, this calculus ends
up minimizing a predicate anyway.

1 Introduction
Logics of actions and change are interesting for a number
of practical purposes, including both natural-language under-
standing and cognitive robotics. In any such application area
there needs to be an interdependence between the overall de-
sign of the computational system at hand, and the ’design’ of
the logic, including both its syntax and its semantics. Usu-
ally the interdependence has been one where the logic was
designed first, and its use in an implemented system came
afterwards.

In the work reported here I wanted to proceed in the op-
posite direction, starting with the design of a clean and sim-
ple executive for cognitive robots, and then asking what are
the ramifications of that design for the choice of logic of ac-
tions and change. However, when looking at the outcome of
the implementation experiment, I had a certain sense of déjà
vu, since the structures that had naturally evolved while im-
plementing the system seemed to provide an answer to some
issues that I had previously been thinking about from a theo-
retical perspective.

The approach to logic for actions and change that is to be
described here can therefore be presented both from the point
of view of logic design, and from the point of view of the
implemented system that provided the concrete inspiration.

2 The Logicist Perspective
Several current approaches to reasoning about actions and
change choose to represent time explicitly as argument(s) of
predicates such as Holds and Do, which are used for express-
ing that a certain property holds in the world at a certain point
in time, or that a certain action or event occurs during a par-
ticular interval between two timepoints. This approach was
first introduced by Shoham [8], and has been pursued e.g.
by Shanahan et al with the ’modern event calculus’ [7], by
Sandewall in the ’Features and Fluents’ approach [5], and by
Doherty et al with ’Time and Action Logic’ (TAL) [1].

Logics in this category usually define one or more ways
of minimizing the changes of fluent values that occur during
a chronicle, that is, a history of the world as described by
the logic. In principle they should also minimize occurrences
of actions or events themselves, for example by minimizing
the extent of the Do predicate, since axioms characterizing
the effects of actions will usually be implications from the
occurrence of an action, to the occurrence of one or more
changes of value for state variables. If action occurrences
are not minimized then one will obtain unintended models
involving unmotivated action occurrences, together with the
value changes that they imply.

Minimizing both value changes and action occurrences is
tedious, however, and there is a well-known way of avoid-
ing it, namely, by considering the Do predicate, as used for a
particular action, as an abbreviation for the action effect law
for that same action. In this way the use of the Do predicate
is taken outside the logic proper, and one obtains the effect
of only accepting those action occurrences that are explicitly
stated in atomic propositions (”ground unit clauses”) using
that predicate.

However, this solution works only if the Do predicate is
only used in fairly simple propositions; it fails to work if, for
example, there are axioms of the form

Do(s,t,a) imp exists u [Do(t,u,e)]

which are obtained if causation is represented as a connec-
tion from one action/event to another action/event, and not



merely as a connection between two value changes for state
variables. In such cases it seems necessary to use the more
general solution of treating Do as an ordinary predicate, and
to minimize its extension according to some policy.

Now comes the essential point for the present article: If
we are anyway going to minimize on action occurrences,
which is what we do by minimizing Do, then we may as well
reify action occurrences and minimize that object domain.
The advantage with doing that is that it makes it possible
to state other information about action occurrences, such as
subaction-superaction relations, result relations, and so forth.
In particular, we have noticed in earlier projects that it is
sometimes important to be able to specify results that are ob-
tained from an action, in particular for cognitive actions that
occur within an agent. For example, the cognitive action of
parsing a phrase in natural language may be considered to
have a parse tree as a result.

This general argument suggests that it is the domain of ac-
tion instances that ought to be minimized in such an approach.
It turns, out, however, that in a technical sense one must any-
way minimize a particular predicate, although the intuition is
still the one of minimizing a domain.

This is the essence of our contribution from the formal-
logic point of view. Let us now switch to the system-based
background for the proposal.

3 The Leonardo System
Leonardo (1) is an experimental software system where I at-
tempt to integrate facilities that otherwise appear in, and are
duplicated in operating system, programming language and
system, intelligent agent system, dialog engine, and several
other kinds of software. It has the character of a platform that
can be used as a basis for various kinds of applications. One
of the built-in facilities in the Leonardo platform is the sup-
port for the execution of plans consisting of several actions,
and in particular for distributed execution of those plans.

The general framework is that we have actions and goals,
and goals are realized using plans. Actions have the following
characteristics:

• They may have a duration in time and execute concur-
rently.

• They are hierarchical; actions can have subactions.

• Actions may succeed or fail. If a subaction fails then the
higher level action that it serves has to proceed differ-
ently in order to remedy the situation.

• Actions are performed by agents, and an agent may del-
egate an action to another agent for execution. The
delegee reports back the outcome when the actions ter-
minates.

All of this is of course standard fare from the point of view
of intelligent agent systems. Notice, however, that it is not at
all clear how to represent all of these phenomena in a logic
of actions and change, and that is the problem that is being
addressed here.

1http://www.ida.liu.se/ext/leonardo/

3.1 Representation of actions in Leonardo
Leonardo is based on a textual representation of data that
plays the same role there as S-expressions do in Lisp and that
is called LDX, for Leonardo Data eXpressions. LDX can also
be compared with semantic web notations such as RDF and
OWL. It is used for almost everything within the system, and
in particular it is the basis for the Leonardo Calculus for ac-
tions and change. We shall introduce it through an example,
namely, the information that is used and produced when the
system executes a plan consisting of three actions. This ex-
ample has been obtained from an actual run with the present
Leonardo system.

The following is a method description in Leonardo:

----------------------------------------
-- method4

[: type method]
[: plan
{[intend: t1 t2 (remex: lar-001-004

(query: whatyourbid))]
[intend: t1 t3 (query: whatbid)]
[intend: t4 t5 (query: whatprop)]}]

[: time-constraints
{[afterall: {t2 t3} t4]}]

----------------------------------------

This represents an entity called method4 that has a num-
ber of attributes, in particular the attribute for plan. Its value
is a plan, i.e. a kind of high-level procedure, for perform-
ing the action query: three times with three different argu-
ments. The time when the first two occurrences are to start
is called t1; the third occurrence starts at a time t4 which is
defined as being when the first two occurrences have ended.
The time when the first mentioned occurrence ends is called
t2, and similarly for t3. The method consists of a set of
intended actions, and set of time constraints between them.

This plan is supposed to be executed in a particular agent
(called lar-001-003 in our specific run of the plan) but
the first mentioned action is to be remote executed (therefore
remex:) in another agent called lar-001-004.

The representation that is used for expressing the plan is
general-purpose in the sense that it is used for both proce-
dures and data, as well as for information with an intermedi-
ate status such as the ’plan’ above. It is organized in terms of
entities each of which has a number of attributes. In our ex-
ample, there is an entity called method4with three attributes
type, plan, and time-constraints. All entities must
have a type attribute, and the value of this attribute deter-
mines what other attributes may be present.

Attribute values are expressions in the Leonardo data ex-
pression language (LDX), which is a textual representation
of the data structures that are used within the system. Ex-
pressions in LDX may be atomic ones (symbols, strings, or
numbers), or may be formed recursively using the operators
<...> for sequences, {...} for sets, [...] for records,
and (...) for forming composite entities. In the example,
(query: whatbid) is a composite entity that has a type
and attributes, just like the atomic entity method4. These
types of expression can be nested to any depth.



The use of triples of the form
(entity, attribute, value)

is part of a long tradition in AI and elsewhere in computer
science. In comparison with e.g. OWL (2), LDX is dis-
tinguished by allowing composite entities as the carriers of
attribute-value pairs, and by allowing several kinds of struc-
tures (sets, records, etc) in the attribute values.

The LDX language is used for representing both proce-
dures and data, both within the system and for the applica-
tions. In particular, it is used for the ontology that is a back-
bone in the organization of an agent(3) in Leonardo. It is
also used for representing the ’systems’ data structures that
are needed for administrating the execution of computational
processes.

3.2 Attributes of actions
The Annex displays an interactive session where this plan is
put to use, and in what follows we shall refer to the Annex for
examples.

Actions are hierarchical, so actions can have subactions,
or more precisly, each action instance can have sub-action-
instances. In our example, a query: action invokes an
ask: subaction that makes the prompt and receives the an-
swer. If the answer is malformed then query: asks the user
again until a correctly formed answer is obtained.

Each action instance has a starting time and an ending time,
and is operating between those times. When an action in-
stance or goal instance terminates, it obtains an outcome at-
tribute and an endtime attribute. The latter is the timepoint
of termination. The outcome attribute represents whether
the action succeeded or failed, using records beginning with
result: and fail:, respectively. Result records can re-
port a ’value’ that results from the action, as well as ancillary
information; fail records can report the character of, and pos-
sibly the reasons for the failure. The outcome of an action is
reported to the superaction from which the current action was
invoked, or the goal instance invoking it, or the other agent
invoking it in the case of remote execution, or a combination
of these.

Pursuit of a goal is straightforward if there is an appropriate
plan and if all the actions in the plan succeed. If some action
fails, and unless a remedy for the failure has already been
defined in the plan, then replanning or resort to the user must
follow. Replanning has not been implemented in the current
system.

3.3 Robotic actions
The example in the Annex is based on actions that prompt
the user for input and return that input as the result. Robotic
actions, on the other hand, are actions that the executive must
’visit’ at regular intervals while they are operating, in particu-
lar for receiving sensor data and for producing control infor-
mation to actuation subsystems. The Leonardo platform does
in fact contain an action executive that does this as a generic

2http://www.w3.org/TR/owl-features/
3The term used in Leonardo is an individual; individuals are

somewhat similar to ’intelligent agents’. The words agent and in-
dividual are used as synonyms here.

service, besides listening to commands from user input and
those coming from other individuals. It is therefore straight-
forward to define actions that map incoming sensor data to
outgoing actuator data in each cycle during their execution
period.

Our example here does not illustrate the support for such
robotic actions. However, the example has still been sufficient
for exemplifying all the aspects that were mentioned in the
introduction, in particular since success/failure of actions is
simulated and concurrency is represented.

4 The Leonardo Calculus
The LDX notation is the textual representation for many
kinds of information in the Leonardo system, ranging from
low-level system data to ontologies and other knowledge
structures. We have seen already how LDX is used to express,
for example, the information about the superaction-subaction
relationship, as well as their relations to the stated goals of
the individual, their success or failure, etc.

The Leonardo Calculus builds on LDX and provides a logi-
cist framework for representation and reasoning about actions
that is closely connected to how actions are treated in the
Leonardo system. This has a certain novelty value since no
presently used logic for actions and change is capable of rep-
resenting this kind of information about actions.

Notice, by the way, that the control information in the ex-
ample that was shown above and in the Annex, is represented
using structured data that are available for further processing,
whereas in a conventional programming language or other
conventional settings the same kind of information would be
intrinsic to the run-time system or executive, and hidden from
the user-programmer. This is exactly what distinguishes sys-
tems of this kind (intelligent or knowledge-based agent sys-
tems) from conventional programming languages. Further-
more, the control information is not only available, but there
is also this textual representation for it in terms of the LDX
syntax. This has laid the groundwork for making the control
information available to a logic and a reasoning system.

The reason why presently used logics do not suffice for
this task, is that the control information involves relations
between individual action instances, as well as between ac-
tion instances and other data, such as the goals they serve, or
their results. This is not expressible if actions are essentially
propositions, as in explicit-time logics (TAL, CRL, modern
event calculus, etc). It is also not expressible in the situation
calculus, and there one has the additional problem of express-
ing concurrent actions with overlapping durations in a clean
way.

4.1 The Formal Language
We use first-order predicate calculus as the host language, and
configure it to our needs through the introduction of suitable
predicates and functions which will be defined below. For the
concrete syntax, terms are represented as LDX entities, and
atomic propositions are represented as LDX records. This
means that terms are written using round parentheses, and
atomic propositions are written using square brackets; in both
cases the function symbol or predicate symbol is written pre-
fixed and inside the brackets, like in Lisp.



Logical connectives are written as infixes in the obvious
ways, using the symbols and, or, imp, etc. We use standard
keyboard characters in order to stay close to the implemen-
tation. An expression of the form A and B imp C and
D is interpreted as (A and B) imp (C and D), where
and, imp (for implies) and the other connectives are as usual.

Atomic terms consisting of one or two characters are taken
to be variables. Universal and existential quantifiers are used
as usual, and free variables in formulas are Implicitly consid-
ered as Universally Quantified (IUQ). In fact, all the examples
of the calculus in this article can be expressed using IUQ and
without explicit use of quantifiers.

4.2 The Types and their Constructors
We assume the use of the following main types: timepoints,
objects, features, values, assignments, actions, and action in-
stances. The timepoint domain is constructed using the ini-
tial timepoint and a successor function, and for convenience
the non-negative integers are chosen as timepoints. However,
there is no assumption of metric property in it. The object
domain is a finite set and it is assumed that each object is
denoted by exactly one constant symbol. Values can be e.g.
strings or numbers. Assignments can only be formed using
the function v that maps a feature and a value to an assign-
ment. Similarly, action instances can only be formed using
the function b that map a timepoint and an action to an action
instance, intended as the instance of the action that starts at
the timepoint. Features and actions are obtained as the values
of application specific functions of zero, one or more argu-
ments.

Functions whose values are in the ’value’ domain have
their standard interpretations, for example for arithmetic
functions. All other functions are considered as Herbrand
functions, i.e. two terms are equal iff they are formed using
the same function and their arguments are pairwise equal.

4.3 The Predicates
The main primary predicates are as follows (one more to be
added below). All of these have a timepoint as their first ar-
gument:

• H specifies that an assignment holds at the given time-
point. This is like the traditional Holds predicate. A
feature can have at most one value at any one time.

• N specifies that there is no value at the given time for a
given feature.

• F specifies that an assignment holds from the given time-
point and onwards.

• W specifies that at timepoints before (i.e. strictly less
than) the one given in the first argument, no value is as-
signed for a given feature.

Here are some examples of the use of these predicates:

[H 14 (v (price house4) 2200)]
[N 14 (price house4)]
[F 14 (v (nationality john) swedish)]
[W 14 (nationality john)]

The first example says that the price of house4 is 2200
units at time 14. The second example says that it does not
have any value at time 14. The third one says that the nation-
ality of john is swedish at all times greater than or equal
to 14, and the fourth one that the nationality of john does not
have any value at any time strictly less than 14. Either it was
not assigned, or John did not even exist.

The fifth and final predicate is called E and is used for
characterizing the existence of things, in a broad sense of
things including both (physical) objects, features, and action
instances. The E can therefore be read both as exists and as
event. It has an action instance as its single argument, as in
the following example:

[E (b 16 (moveto object4 place6))]

which says that the action (moveto object4 place6)
has a particular action instance that begins at time 16. It
is possible of course to reason in general about the action
(moveto object4 place6)which can have several in-
stances if it is done several times with different starting
time. It is also possible to form terms (b t (moveto
object4 place6)) for arbitrary t, but it is only when
an instance of that action actually starts at time t that the E
predicate is satisfied.

The use of functions v and b is a bit inconvenient, and the
following abbreviations may therefore be useful when writing
out concrete scenario descriptions:

[V t f x] for [H t (v f x)]
[S t f x] for [F t (v f x)]
[B t a] for [E (b t a)]

The recommended mnemonics are: H for Holds, F for
From, N for Notdefined, W for wait, V for Value, S for Since,
E for Exists or Effectively.

4.4 The Feature-Valued Functions
Some useful functions have an action instance as the argu-
ment and a feature as a value. In particular, the function
endtime has as value a feature representing the ending-time
of an action instance, and can be used as in this example:

[S 18 (endtime
(b 16 (moveto object4 place6)))

18]

which says that the action-instance that started at time 16 and
where object4 is moved to place6, has 18 as its ending-
time, and the attribution of its ending-time applies from time
18 and onwards to infinity.

The ’do’ predicate in traditional logics in the Features and
Fluents or event-calculus traditions can then be considered as
an abbreviation, as follows:

[D s t a] for [S t (endtime (b s a)) t]

5 Leonardo Calculus Expressivity
The following are some examples of how the Leonardo Cal-
culus is used for commonly occurring representation needs
when reasoning about actions. Notice that [= x y] is our
way of writing x = y.



Representing Preconditions
The condition that the feature f1 has the value v1 is a suffi-
cient condition for the applicability of the action a, i.e. if the
action a is invoked at time t and the precondition holds at
that time, then an action instance for a at t will start to exist:

[H t (invoke a)] and [V t f1 v1]
imp [B t a]

Representing Termination Conditions
If the action a executes since time s and the feature f2 has
the value v2 at time t, then the action terminates at that time:

[= ai (b s a)] and [W t (endtime ai)]
and [V t f2 v2]
imp [S t (endtime ai) t]

The second precondition is needed so that the action is only
inferred to terminate the first time that the termination condi-
tion applies, and not at succeeding timepoints where the ter-
mination condition itself continues to apply.

Creation of objects
The following is an example with an action where agent2
creates a new object of type house:

[= ai (b s (create agent2 house))]
and [E ai]
and [S t (endtime ai) t]
imp [B t (result ai)]
and ([V t (result ai) x]

imp [B t (type x) house])

Notice that it would not be correct to use (endtime ai)
as the first argument in the two occurrences of the B predi-
cate. The expression (endtime ai) stands for a feature,
i.e. something that can be assigned a value, and not for that
value itself.

For the same reason, it seems to be necessary to introduce
the variable x on the last line, for the object that is the value
of the feature (result ai). (However the full details of
this requires going into nonobvious aspects of the semantics).
This way of writing is admittedly a bit clumsy, and it may
be necessary to find a more convenient notation, for example
using an additional abbreviation.

Causality between actions and natural events
Assume for the moment that actions (performed by an agent
controlling the physical parameters of some object) and natu-
ral events (not performed by an agent in that sense) are repre-
sented in the same way, as described above, and consider the
case where the occurrence of an action a always causes the
immediate occurence of a natural event e that begins at the
time when the action ends. This can be expressed as follows:

[E a] and [S t (endtime a) t] imp [B t e]

6 Model-Theoretic Aspects
The Leonardo calculus is a first-order calculus from the syn-
tactic point of view, but it has the peculiarity that it consid-
ers some things to ’exist’ for limited periods of time only.
This leads to a choice between two ways of structuring the
semantics: either the ’exist’ in this sense is identified with

the existence concept in the logic, as used by the existential
quantifier, or else one uses a conventional semantics where
the domains are (4) defined irrespective of time, and where
the ’existence’ for limited periods is represented as a predi-
cate. In the former case, the operator E that was introduced
above is not a predicate in the true sense but another kind of
operator; in the latter case it is an ordinary predicate.

We prefer the latter one of these choices. As a result we
obtain two levels of semantics, in the same way as e.g. in
’Features and Fluents’. The classical models for a given set
of propositions in the Leonardo Calculus are defined in the
standard way using what has been said above e.g. about the
Herbrand property of most of the functions. The intended
models for a set of propositions are a subset of the classical
models, and they can be constructed using a kind of simula-
tion of a chronicle in the world being described.

For example, if the given axioms contain an action-level
causal rule of the form that was shown above (rewritten):

[E a] and [D s t a] imp [B t e]

(where a and e must actually be subexpressions) then every
simulation containing an action instance of the form a must
let it be immediately followed by an event of the form e, in
order to be a member of the intended set of models for the
given axioms. The definitions of the construction process for
intended models are essentially trivial.

Finally, we arrive at the question of how to characterize the
set of intended models, and in particular whether this is best
done in the classical way using a set of additional axioms, or
whether a nonmonotonic approach is appropriate. I find the
latter case more plausible and am using it as my working hy-
pothesis unless and until a classical treatment is found. In this
approach, it is clear that the predicate E has to be minimized
according to some reasonable preference relation, in order to
suppress models containing unintended actions. The feature-
oriented predicates H, N, F, and W, on the other hand, do not
offer any particular new difficulties. A priori it seems that the
use of chronological minimization is the most plausible for
the E predicate.

The representation of the change of value for features, ei-
ther due to the effects of actions, or due to direct causation
between fluent changes, can it seems be represented using oc-
clusion in the same way as for standard explicit-time logics,
as analyzed in ’Features and Fluents’.

7 Related Work
None of the current, logicist approaches to reasoning about
actions and change uses reification of action instances, as far
as we are aware, and in that sense the approach proposed
here is new. Traditional approaches to ’semantic nets’, for
example for representing natural-language information have
often represented action instances as ’nodes’ in their concep-
tual graphs [3], which may be thought of as a kind of reifica-
tion. The problems of formal and systematic approaches to
reasoning were addressed e.g. in Sandewall [4] and by Schu-
bert [6], but rarely arrived to the point where one could reason
effectively about actions, plans, and their effects.

4Notice that we have several domains.



One aspect of the proposed Leonardo calculus is that the
ending-time of an action is considered to be one of its at-
tributes. The action instance is uniquely characterized by
the action and the starting-time; this differs from standard
explicit-time approaches where the proposition representing
an action instance involves the starting-time, the ending-time,
and the action. The new way of looking at this is actually
well in line with the theoretical analysis of nonmonotonic en-
tailment rules that was done in ’Features and Fluents’, since
the proper treatment of the ending-time was complicated in
the treatment in several of the entailment rules there. It was
intuitively clear, already there, that the ending-time of an ac-
tion instance should be viewed as an attribute of the action
instance, and not as an intrinsic part of it.

Hayes’ early work on frames [2] addressed the use of sets
of attribute-value pairs for the representation of knowledge,
and defined the directions for the use of concept languages
and for the contemporary development of representation lan-
guages for the sematnic web, in particular through OWL. The
LDX representation language that is used in Leonardo be-
longs to the same tradition, but adds the use of several addi-
tional kinds of structures.

8 Software Architecture Aspects of the
Leonardo System

This article has emphasized a proposal for a non-standard ap-
proach to reasoning about actions and change, which is moti-
vated both from a principled point of view and as the outcome
of a particular explorative programming project. Another as-
pect of the same work, although not discussed in the present
article, is that it provides an approach to the design of realistic
software systems that are closely tied to the use of a partic-
ular logic or calculus. The Leonardo system as such is an
experiment with a new way of organizing the basic software
in the computer – operating system, programming language
system, etc – in a better structured way than before. There are
many aspects to that work, but one of them is that this new
architecture integrates some of the characteristic features of
intelligent autonomous agents into the system core. As this
article has shown, not only the software practices of intelli-
gent agents, but also a formal calculus for actions and change
has been placed in that central position of the software sys-
tem.

9 Annex
The following is a commented log of an interactive session
with Leonardo. It is the log of an actual run of the system
which has been post-edited so as to omit some parts of the
entity descriptions in order to avoid irrelevant details. Addi-
tional line breaks have been inserted in order to fit into the
two-column format.

There are two open command-line windows on the com-
puter screen or screens, one for each of the two Leonardo
individuals lar-001-003 and lar-001-004 which may
be located on the same computer or on two different ones.

The interactions on lar-001-003 go as follows, after
the obvious startup of the system:

066-> adg (achieve: demo example A)

067-> selmeth method4

Each interaction is numbered; user input consists of a com-
mand often followed by an argument. The adg command
requests the system to adopt a particular goal which is char-
acterized by the command’s argument. In the full system
this should lead to a process for obtaining a plan, either by
planning from first principles or by retrieving a plan from
an archive. In our demo we have shortcut this by the sec-
ond command, selmeth, which simply instructs the most
recently introduced goal which plan to use. The plan starts
to execute when the user enters the command seg, for ’start
execute goal’:

068-> seg
> (adogoal: 66 (achieve: a b c))

069=>
----> What is your bid? 16200

070-> Continuing:
AI (b: 68 (query: whatbid)) completes:
Succeed, result: 16200

071-> Continuing:
Received outcome f action started at: 68

072=>
----> What is your proposal? 13000
073-> Continuing:
AI (b: 71 (query: whatprop)) ready:
Succeed, result: 13000
Completed goal:

(achieve: a b c) adopted at: 66

The following is what happens. When the user types in
seg, the action (query: whatbid) starts to execute in
the individual at hand, which has the effect of displaying the
prompt What is your bid in the individual’s user dia-
log. At the same time, the first action in the plan starts to
execute remotely, in the other individual, where it displays
the prompt What else do you want to say? on its
screen. The wordings of the prompts is obtained because the
arguments of query: are separately defined entities that
have the wording as an attribute. The following is the defi-
nition of the entity whatbid:

----------------------------------------
-- whatbid

[: type output-phrase]
[: englishphrase "What is your bid?"]
[: swedishphrase "Vad r Ditt bud?"]
----------------------------------------

The user for the first individual answers the prompt with
the value 16200, which counts as interaction 069, and the
system confirms completion of that action in interaction 070.
The first individual also receives the value from completion
of the action in the other individual, in interaction 071. The



top level executive listens to input both from the user and in
channels from other agents/individuals.

The completion of the first two actions allows
lar-001-003 to start performing the third action in
the plan, leading to interaction 072, after which the goal is
reported as completed in interaction 073.

The information about what actions were performed, for
what reason, and with what results, is represented as LDX
data structures and is therefore available for inspection and
for further processing. The command log, for ’list old
goals’, displays the current information about the goal used
above, as follows:

076-> log
(adogoal: 66 (achieve: a b c))
Plan name: method4
Plan: {[intend: t1 t2

(remex: internal-ch-02
(query: whatelse))

:done t]
[intend: t1 t3

(query: whatbid) :done t]
[intend: t4 t5

(query: whatprop) :done t]}

This is like above, except that each of the actions has been
marked as completed. The format of the logs is a slightly sug-
ared variant of LDX. The command loa, for ’list old actions’
displays the actions that were performed in the first individ-
ual, as follows:
075-> loa

(b: 68 (query: whatbid))
Towards goal

(adogoal: 66 (achieve: a b c))
State [result: 16200]
Subactions

<(b: 69 (ask: whatbid))>
Outcome [result: 16200]
Endtime 71

(b: 68 (remex: lar-001-004
(query: whatelse)))

Towards goal
(adogoal: 66 (achieve: a b c))

State [requested:]
Subactions <>
Outcome [result: 12900]
Endtime 72

(b: 69 (ask: whatbid))
Subaction-of

(b: 68 (query: whatbid))
Outcome [result: 16200]
Endtime 70

(b: 71 (query: whatprop))
Towards goal

(adogoal: 66 (achieve: a b c))
State [result: 13000]
Subactions

<(b: 72 (ask: whatprop))>
Outcome [result: 13000]
Endtime 74

(b: 72 (ask: whatprop))
Subaction-of

(b: 71 (query: whatprop))
Outcome [result: 13000]
Endtime 73

The functions adogoal: and b: are further examples of
functions that form composite entities. The function b: takes
two arguments, namely a timepoint and an action, and forms
an entity for the action instance that is/was invoked at the
time given in the first argument. The function adogoal:
is similar but it forms a goal instance from a timepoint and
a goal, representing the particular goal instance that results
when the goal is adopted at a particular timepoint.

References
[1] Patrick Doherty. Reasoning about actions and change us-

ing occlusion. In European Conference on Artificial In-
telligence, pages 401–405, 1994.

[2] Patrick Hayes. The logic of frames. In D. Metzing, editor,
Frame Conceptions and Text Understanding, pages 46–
61. De Gruyter, 1979.

[3] Ross Quillian. Semantic memory. In Marvin Minsky,
editor, Semantic Information Processing, pages 227–270.
MIT Press, 1968.

[4] Erik Sandewall. A set-oriented property-structure repre-
sentation for binary relations, SPB. In Machine Intelli-
gence 5. Edinburgh University Press, 1970.

[5] Erik Sandewall. Features and Fluents. The Representa-
tion of Knowledge about Dynamical Systems. Volume I.
Oxford University Press, 1994.

[6] Lenhart K. Schubert. Extending the expressive power of
semantic networks. In Proceedings of the Fourth IJCAI,
pages 158–164, 1975.

[7] Murray Shanahan. Prediction is deduction but explana-
tion is abduction. In International Joint Conference on
Artificial Intelligence, pages 1055–1060, 1989.

[8] Yoav Shoham. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. PhD
thesis, Yale University, 1986.


