
Actions as a Basic Software Concept
in the Leonardo Computation System

Erik Sandewall
Department of Computer and Information Science

Linköping University
Linköping, Sweden

erisa@ida.liu.se

Abstract

The work reported here is performed in a broader
context where we propose to change the over-
all software architecture (operating systems, pro-
gramming languages, etc etc) in order to eliminate
the considerable redundancy of concepts and con-
structs that contemporary software technology ex-
hibits. This requires, among other things, a realign-
ment so that some constructs that used to be placed
on higher levels of software now become incorpo-
rated in a kernel on a much lower level.
In this framework, we propose in particular to use
the construct of anaction already in the kernel,
whereby it becomes available for many applica-
tions as a conceptual and computational resource
and in a uniform fashion. The article describes and
discusses the ramifications of this approach, includ-
ing how it relates to the current state of the art in
logics of actions and change, as well as the non-
monotonic character of one of its computational
constructs.
The article has been written for the purpose of a
workshop, so its contribution is in the range of ideas
and as a discussion-starter. It does not pretend to
report finished results.

1 Actions as a Basic Software Concept
Actions, in the sense of a process that changes its environ-
ment in a describable, and often goal-directed way, occur in
several kinds of software systems. They are important con-
structs in ’intelligent agents’ and they also occur in some
simulation systems, for example. However, in all of these
cases the actions occur in a relatively high layer of the overall
software architecture of the computer. Lower layers include
the operating system, the programming language and its envi-
ronment, communication systems such as CORBA or OAA,
possibly combined with database systems, and so on.

In this article we propose to change things around so that
actions are introduced in a much lower level of the overall
software architecture, in a way whereby they become avail-
able for many applications as a conceptual and computational
resource and in a uniform fashion. This proposal is part of

a broader idea concerning software reform in order to inte-
grate the traditional concepts of operating system, program-
ming language, database system, document formatting sys-
tem, and several others. The reason for doing this is that the
traditional overall structure of software contains a lot of con-
ceptual redundancy: similar, but not equal conventions and
constructions are introduced in different parts of the overall
system. It ought to be possible to design the system in such a
way that this redundance is eliminated.

We are in the process of designing an experimental lan-
guage and system, calledLeonardo , for the purpose of in-
vestigating the feasibility of such a reform. One important as-
pect ofLeonardo is that actions occur already in the system
kernel. In fact, the proposed reorganization tends to change
things around in more than one way, so that things that used
to be thought of as ’high level’ now become incorporated in
the kernel, which is a natural consequence of the desire to
remove conceptual redundancy.

The present article will first give a quick overview of the
present version ofLeonardo , with particular consideration
of its action facilities, and then proceed to a discussion of
how this relates and may relate to research about actions and
change. Since this article is intended for a workshop, it com-
bines presentation of some results achieved with a discussion
of design issues that are still somewhat open, and of possi-
bilities for future development in the cross-section between
programming systems on one hand and logics of actions and
change on the other.

The name of ’Leonardo’ was chosen after Leonardo da
Vinci, and since we believe in the need for a renaissance
in software technology - a renaissance where many existing
dogmas are rejected and where we return to some of the con-
cepts that were invented long ago but have been forgotten
meanwhile.

2 Functional Aspects ofLeonardo

The Leonardo representation language can be thought of
both as a programming language and as a knowledge rep-
resentation language, and in fact it should also be used for
the purpose that is commonly served by the ’shell’ command
language for the operating system. We believe that a single
language kernel should be used for these purposes and sev-
eral others, albeit with variations that adapt it to interpretive



or compiling environments. The basic design considerations
are:

• to stay as close as possible to the notation of set the-
ory and other discrete mathematics, while using the 8-bit
standard ASCII character set,

• to favor powerful, orthogonal concepts and constructs,

• to view the entire Internet as the logical ’memory’ (re-
source for storage and retrieval of data) of the language.

This language has a functional aspect and an action/agent
aspect. The present section contains an outline of the func-
tional aspect.

2.1 Expressions
The basic data thing inLeonardo is called anexpression.
We say ’data thing’ since objects are another kind of thing.
There aredata expressionsand text expressionswhich have
different syntax, but each of them can be embedded inside
the other, recursively, in some positions requiring an escape
character. The following data expression:

[automobile: :brand Volvo :year 2005
:type sedan]

is a record, presumably denoting a description of a particu-
lar car, for example as a database query. The following text
expression:

<[style: :bold t :font ariel]
boldface text in ariel font>

presumably denotes five words that are typeset in boldface
ariel font. The first subexpression of the text expression is a
record (hence, a data expression) specifying the formatting.
Argument lists that appear in records, forms, and a few other
constructs may have a few initial, untagged elements in pre-
scribed order, followed by optional, tagged elements in arbi-
trary order (like in CommonLisp).

Leonardo allows several other kinds of data expressions
besides those that were exemplified above. There are expres-
sions for sets, sequences, mappings, texts, and a few more.
We try to keep the notation as close to traditional set-theory
notation as possible. The syntax for text expressions allows
for basic markup. Sets can be specified both by enumera-
tion of their members, by a characterizing property (“the set
of all x such that ...”), and by standard operations on sets.
Functions are viewed as mappings which are a kind of sets;
recursive functions are characterized as set-valued solutions
of equations in the obvious way.

We refer to sets, sequences, mappings, texts, etc as differ-
entsortsthat are represented by data expressions, and to the
variety of records that are denoted by the initial symbol in the
record expression, as being differenttypes. TheLeonardo
representation language specifies the syntax for each of the
sorts, but types can be checked dynamically. Structure speci-
fications for types are optional, and are not part of the system
kernel.

2.2 Unification of Ontology and Computation
Leonardo expressions are intended to be used both as
a representation language (corresponding to frames, XML,

or semantic-web languages such as OWL) and as a pro-
gramming language for defining computational processes. It
is therefore adapted to ontology-oriented (i.e. data-model-
based) programming, where one first defines the ontology for
the application at hand and represents it formally, and then
the elements of the ontology are used as carriers for the def-
initions of data types, procedures, and other expressions that
are needed for defining and performing the computation.

From the perspective of programming languages, the
Leonardo representation language is oriented towards
functional programming, and it is set-theory-oriented in the
same sense as e.g. Prolog is logic-oriented. From the per-
spective of representation languages, we believe that the pos-
sibility to define functions in the usual mathematical sense
(mapping from arguments to values) is an important feature
in any representation language, which adds to the good rea-
sons for integrating the notations used for knowledge repre-
sentation and for programming.

Besides the ontology aspect and the procedural aspect,
there is also a document processing aspect in theLeonardo
representation language. We consider documentation to be a
fundamental part of any software system, and therefore doc-
umentation should be integrated as well as possible with the
other aspects of the software. This is why ’text’, including
structured and marked-up text is also defined as expressions
in theLeonardo representation language.

2.3 Locations and References
Expressions can be manipulated directly by computational
processes in aLeonardo system, but they can also bede-
posited in locations. Locations are important for actions,
which are our next topic, since computational actions often
operate on the contents of locations. For example, the action
of running a document through latex is considered as operat-
ing on a location containing both the source (.tex) and target
(.pdf) version of the document, as well as other, related files.

From the programming-language perspective, on the other
hand, locations are used both like ’variables’ in conventional
programming languages, and like filenames in a conventional
programming system, and like URL:s. In fact, the entire In-
ternet ’address space’ (thinking of a URL as an address in
the universal computer) constitutes most of thelocation space
from Leonardo ’s point of view.

Each location is used for a particular sort, but record lo-
cations do not make any assumption about the type of their
contents, in line with the interpretive character of the kernel
Leonardo system as a whole.

A referenceis a formula that specifies a location and that is
used, in the language, for denoting the expression that is cur-
rently deposited in that location. For example, the following
reference

[?filerec: "C:/leo/doc/" section2 vfr]

denotes a record that is stored in the location
C:/leo/doc/section2.vfr according to the de-
position method (”format”) specified by the namefilerec .
(This is not an actually existing deposition method, it is given
by way of example). Similarly, the following reference:

[?textfile "C:/leo/doc/" section2 txt]



denotes a text intxt format that is currently deposited in
the locationC:/leo/doc/section2.txt ; the operator
textfile specifies how it is accessed. Record references
and text references are distinguished by the fact that the de-
position method of the former ends with a colon character.

In these examples the path to the file in question was rep-
resented as a string. Other methods thanfilerec and
textfile would be used if the path is to be represented
as a sequence instead.

These examples suggest that files in contemporary operat-
ing systems, such as Linux or Windows can be used as loca-
tions. This is certainly possible but not the only possibility;
other basic storage facilities such as object-oriented ones may
be more appropriate in the future.Leonardo ’s representa-
tion for references allows for several possibilities.

Reference expressions can be nested, like other expres-
sions, so one can for example write

[?textfile
[?textfile "C:/leo/" curdir txt]
section2 txt]

whereby the system, when using this expression, will use the
contents of the fileC:/leo/curdir.txt as a directory
name which is combined with the filenamesection2.txt
to obtain a file whose contents are in turn obtained as a string.

References may be passed as arguments to functions or
other computational entities. In this sense they are analogous
to pointers in conventional programming languages. At some
point the reference has to beresolved, for example by obtain-
ing the contents of a textual location as an actual text. This is
often done as a single operation like if, in a conventional pro-
gramming language, a text file is read into working memory
at one stroke and becomes a string.

3 Action and Change Aspects ofLeonardo

3.1 Action Expressions, Agents, and Actions
We turn now to the topic of action and change. There are three
related concepts inLeonardo , namelyaction expressions,
agents, andactions. The following is an example of an action
expression:

[fly-to! :agent witas-4
:destination [geo-coord: 425 862]]

saying that the agentwitas-4 , which is an unmanned he-
licopter, shall fly to the point located at geographical coordi-
nates (425, 862). The following action expression:

[add-to-account!
:agent [?account-agent@ mybank]
:account 634422
:amount [money: ECU 4900]]

says that the agent[?account-agent@ mybank] 1

should find some way of adding 4900 ECU to the current bal-
ance of account number 634422, by whatever means it can
find of raising the money.

1This is a reference formula as introduced in subsection 2.3
where the @ character specifies an agent.

Each action expression must have an explicit or defaulted
:agent field specifying what agent is responsible for per-
forming the action. There is a variety of ways of specifying
the agent, as these two examples have indicated. If an action
expression is presented to its agent and that agent accepts
to execute it, thenan actionarises, that is, a computational
process that is usually a lightweight one and that proceeds
through a sequence ofsteps. The action has a local state dur-
ing and after its execution. The local state is always a record,
and one part of the definition of an action specifies the next-
state function that is applied in each step of its execution.

3.2 The Top Level of aLeonardo System
The top level of conventional interpretive languages, such as
Lisp, is a read-eval-print loop. The top level ofLeonardo
system is instead an executive for actions, somewhat similar
to an object-oriented simulator. It maintains a set ofpend-
ing action expressionsand a set ofworking actions. Pending
action expressions refer to actions that have been requested
to the system but that have not yet started to execute, for ex-
ample because not all their preconditions are satisfied, or be-
cause of concurrency constraints. Working actions are actions
that have started to execute but which have not yet arrived to
a quiescent state.

In its normal main cycle,Leonardo first allows the user
to enter an action expression and adds it to the pending set.
After that, it checks for each member of the pending set
whether its preconditions are satisfied, including concurrency
restrictions, and if so a new action is initiated as specified by
that action expression and added to the working action set.
Finally, the executive visits the working actions and performs
the update in each of them, according to the specifications that
are given by the agent of the action in question. Actions that
have reached a quiescent state are moved from the working
set to an archive of past actions.

This general formulation of the top-level loop can be
adapted, specialized, or extended in various ways. A conven-
tional read-eval-loop can be implemented using an ’eval’ verb
whose actions always finish in one step. Backgrund tasks
such as fetching information from remote websites can be set
up as actions with extended duration. Simulators of, and su-
pervisors of physical robotic equipment, as well as servers
can also easily be represented in the same structure. Actions
are of course allowed to invoke sub-actions, the process of
the main action being conditional on the process of its sub-
actions. The subactions need not use the same agent as the
invoking action; this is our counterpart of message-passing
between agents.

3.3 Specifications of Actions
Actions in Leonardo are characterized using Cognitive
Robotics Logic (CRL)[5] which is a reified temporal logic[9],
based on ’Features and Fluents’[4] and closely related to Do-
herty’s Time and Action Logic[1] (TAL), and having many
points in common with modern event calculus as presented
by Shanahan[8].

The behavior and the effect of actions is defined by a com-
bination of the action-verb and the agent performing the ac-
tion. The external behaviors of actions are normally ex-



pressed in CRL and are specified in terms of preconditions,
postconditions, and conditions characterizing concurrency re-
strictions and other aspects of intermediate states.

Theinternalbehaviors of actions specify the details of their
execution in terms of updates of its current state at successive
(but not necessarily contiguous) timepoints. Each action has a
current state, starting with the timepoint when it was initiated;
this current state must always be a record. In addition, each
agent has its current state, which is also a record. The next-
state transformation defining one step in the execution of an
action has access to both of these records and is able to update
them both, modulo constraints that can arise by interference
between concurrent actions. It can be expressed in a variety
of ways:

• As a computational procedure

• As a finite-state or hybrid automaton

• By a combination of discrete state transitions and partial
evaluations of state-expressions (details below)

• As a sequence or other temporal structure of subactions

In all these cases the behavior may refer either to compu-
tations that are performed within the computer at hand, or to
actions performed by a robot under the active control of that
computer, or to actions that are performed independently of
the computer but are observed by it.

Definition using partial evaluation offers a structured but
expressive way of characterizing ’hybrid’ actions that com-
bine gradual change of state with occasional qualitative
changes. The current state of the action is expressed as a
record, like for all actions inLeonardo . This record is an
expression that may contain unevaluated forms. In each cy-
cle, the system traverses that record, replacing variables by
their values, when available, and evaluting forms (functions
with arguments) when possible. Individual symbols are left
as they are, and records, sequences, and sets are merely tra-
versed, i.e. their components are evaluated but the structure
of the record (etc) is retained. In particular, an expression not
containing any variables or forms always evaluates to itself.
After that, a set of qualitative state transitions is compared to
the state at hand, and any applicable transition is performed.

3.4 Prediction and Planning
The design ofLeonardo does not attempt to make it into
an A.I. system from the start. Instead, the idea is to design
a kernel that can be used as a platform for many common
programming tasks, and one that is more powerful than what
conventional software technology can offer. For this reason,
the kernelLeonardo system does not contain full-fledged
facilities for prediction and planning, but it does contain han-
dles where such facilities can be plugged in effectively, in
those applications where they are considered appropriate and
useful.

We described above how the top level of theLeonardo
system maintains a set of pending action expressions, and
how in each cycle it selects those for which the preconditions
are satisfied. The treatment of those action expressions for
which the preconditions arenot satisfied is a natural handle.
The kernel system does not do anything about them and just

leaves them in the pending set, but it is possible to define other
handlers for precondition failures. Planning and plan execu-
tion capability can therefore be implemented by a routine that
applies to precondition-failing action-expressions, selects a
plan, and adds the plan to the set of pending actions, while
considering the plan as a composite action.

3.5 Additional Topics
The full Leonardo design includes a number of additional
aspects that are not covered here since they are less central
for the question of the relationship to logics of action and
change. Those additional aspects include, for example what
to do if there is no applicable transition rule or invocation
rule, and what to do if there are several concurrent action re-
quests for the same agent. They also include questions of
names, symbols, and namespace, questions of persistent ob-
jects and the use of locations, and of version management for
the properties of objects. For the low-level part of robotic ap-
plications, there are questions of shared record fields or trans-
fer of data streams, for use in the connections between sen-
sors, controllers, and actuators on several abstraction levels.
Forthcoming additional reports addressing these topics will
be posted on our website (references at the end of this paper).

4 TheLeonardo Timeline
Since actions are specified using Cognitive Robotics Logic
(CRL) in Leonardo systems, each action that is performed
there is characterized by twotimepoints, namely its starting
timepoint and its ending timepoint. The system also admin-
istratesfeatureswhere, as usual,Holds(t,f,v) expresses
that the featuref has the valuev at timepointt , and actions
can be characterized as depending on, and affecting the val-
ues of features.

4.1 Timepoints during Computation Sessions
Each computational session defines a sequence of timepoints
that are numbered from 0 and up, and that are related to physi-
cal time as follows. Physical time is assumed to be metric and
can be measured e.g. in milliseconds. The physical timeline
is divided into two kinds of intervals that alternate, namely
timepoints and action-periods. The ending-time of a time-
point is the starting-time of the succeeding action-period, and
vice versa, and each timepoint and each action-period is an
interval on the physical timeline.

Consider in particular the case where theLeonardo sys-
tem operates a read-invoke-print loop, as described in sub-
section 3.2. One may then consider the physical time period
where the user first thinks for a while, and then types in an
action expression, as a timepoint in theLeonardo sense.
For simple, single-cycle actions the following action-period
will be the period when the action gets executed, and the next
timepoint will be the physical period where the next action
expression is decided and typed in.

If actions extend over several cycles, then each action-
period can contain timeslots for several of the actions that go
on at that time. However, the ’starting time’ of an action from
the point of view of the system will be the last timepoint (in
our specific sense of that word) before the first action-period



where the action got to execute, and similarly the ’ending
time’ of the action will be the first timepoint after the last
action-period where the action operated.

The aforesaid applies to computational actions within the
computer at hand. For robotic actions and other actions that
are performed outside that computer, actions can of course
usually be performed with true concurrency, and the duration
of an action will be defined in terms of when and how it was
controlled or observed.

Other ways of using the timeline are also possible and
useful. For example, in a natural-language dialog system it
may be appropriate to consider each input of a spoken phrase
into the system, as well as each output phrase that is pro-
duced by the system as an action in itself. In this case,
Leonardo timepoints should characterize the starting-time
and the ending-time of each input and output, instead of ’con-
taining’ such inputs. Break-ins and other situations where the
user and the system perform concurrent speech acts or other
communication acts can then be represented in a natural man-
ner.

4.2 Computational Ramification

Since timepoints inLeonardo are defined in terms of the
physical timeline, it is not necessary to let all timepoints and
all action-periods have similar size; it is perfectly possible to
let them be different even by orders of magnitude.

Consider for example the following situation. The system
has decided to perform action A as a prerequisite for perform-
ing action B, where both A and B are physical actions by a
robot which require nontrivial time. The stated effects of ac-
tion A do not exactly match the preconditions for action B,
and a few steps of logical deduction are required to infer that
B can now be performed. Furthermore, these steps of logical
deduction also check that some other conditions still apply
and have not been invalidated while A was being performed.

The step from the immediate effects of A to the precondi-
tions needed by B may be considered as ramifications, and
in line with the usual treatment of ramifications in NRAC it
would be natural to do those deductions within the last action-
period of A, so that they are available in the timepoint that is
the ending-time for A. However, there is also another possi-
bility, namely considering those deductions as additional ac-
tions that take placeafter the action A has ended, albeit ac-
tions that execute very rapidly. The resulting timeline will
then contain some timepoints that are wide apart, in particu-
lar the timepoints characterizing many physical actions, but
it will also contain clusters of timepoints that physically oc-
cur in rapid succession, namely, timepoints that separate the
inference actions.

The latter approach entails some advantages, such as the
possibility of treating more or less complex inference activi-
ties as actions that can be subject to planning and other cogni-
tive activities. It also introduces some problems, in particular
the need to distinguish between cognitive (computation) time
on one hand, and real-world time on the other. Anyway, it is
an approach that makes computational sense, and that raises
some interesting problems for the corresponding logical sys-
tem.

5 Discussion
We proceed now to discussing the potential relevance of
research on nonmonotonic reasoning, actions and change
(NRAC)2 for Leonardo systems, and vice versa.

5.1 The Relevance of Leonardo Systems for NRAC
The major reason whyLeonardo may be relevant for rea-
soning about actions and change is by demanding extensions
to the logic while at the same time being precise about what
is required for the extension. TheLeonardo design allows
for concurrent actions, subactions, delayed effects, and others
more. It also contains an explicit notion of an agent, and ways
of specifying whether an agent is able and willing to perform
an action requested from it. The list can be continued. These
are phenomena that ought to be represented in logics of ac-
tions and change, but which are incompletely understood at
present.

For these reasons, aLeonardo system may be seen as
a precisely defined model environment for a logic of actions
and change, that is, as an underlying semantics for it in the
sense that was introduced in ’Features and Fluents’[4]. In
that book I defined an underlying semantics and used it for as-
sessing the range of applicability of about a dozen nonmono-
tonic entailment methods for such logics. This underlying se-
mantics was a kind of simulation, expressed in set-theoretic
concepts, that represents the actions of an agent in the world
being modelled. However, the underlying semantics of ’Fea-
tures and Fluents’ does not model the sensor/actuator level in
any meaningful sense. (I intended to include a chapter with
those contents, but was not able to complete it in a way that
I was happy with at the time the book was being written). I
hope at present that theLeonardo language can be used for
defining a more expressive and realistic underlying seman-
tics.

The possibility ofnonmonotonic partial evaluationis an
interesting one. We described above how the update of the
current state of an action is viewed as partial evaluation of
its local state record. This partial evaluation is robust with
respect to lack of information: it will then keep the unevalu-
ated variable or form, and try again in the next cycle. How-
ever, it would make sense to also allow operators under which
the partial evaluator is allowed to replace a form by a default
value even though the information required for standard eval-
uation is missing. This facility ought to be of interest both
for characterizing defaults due to timeout, and defaults on the
level of logical reasoning.

5.2 The Relevance of NRAC for Leonardo Systems
The other question is as follows: if theLeonardo proposal
is used in the design of a software system that in turn is used
as a platform for various applications, will it then be possible
to use existing logics of actions and change to characterize
that system or its applications, or even to help in building
them?

One feature ofLeonardo is particularly important from
this point of view, namely the system support for distinct

2Here the acronym NRAC is used for theresearch areaand does
not specifically refer to the NRAC as a workshop series.



timepoints whose ontology is consistent with a logic of ac-
tions and change. In this way the current state of each action
is easily accessible, describable, and available for inference.

To the extent that a logic of actions and change can be made
to apply to aLeonardo system, several uses of it come to
mind:

• Use of the logic for specifying the execution of actions
in effective form, so that it can be used to define the
behavior of agents;

• Use of the logic for characterizing actions for the pur-
pose of planning, and possibly for diagnosis, for exam-
ple by specifying pre- and postconditions for those ac-
tions;

• Use of the logic for specifying aspects of goal-directed
or social behavior, for example, when to inform another
agent about some facts (and when not to do it), how to
handle the failure of an action, and so forth.

The last item is a particularly interesting one since it opens
up the possibility of generic services that can apply across
several domains. In this context it should be an advan-
tage to work with a general-purpose notation, as offered by
Leonardo , rather than a specific notation that has been de-
veloped for a particular application. The simplicity of the
Leonardo notation, which is due to it staying close to the
notation of set theory, will then also be an advantage in com-
parison with XML and other notations that originate in the
semantic web initiative and that have a much more elaborate
structure.

6 Related Work

The key idea inLeonardo that is particularly relevant for
the present workshop, is preparing for a synthesis between
logics of actions and change, and a high-level programming
language. From the language point of view, almost all the
constructs in the proposedLeonardo language are in them-
selves well-known. It is not our intention to invent new and
very original constructs for the language, but instead to com-
pose selected, well-known concepts in a new way for the pur-
pose of obtaining a basic software architecture that is pow-
erful and exhibits as little conceptual redundancy as possible.
This is necessary as a prerequisite to the ’meeting’ with logics
of actions and change, or in fact, with any kind of logic.

This view must however be combined with the actions-and-
change point of view where the idea of integrating a logic
of actions and change with a programming language is rel-
atively unique, probably the major exception being the use
of Prolog for the event calculus, by Shanahan[7] and oth-
ers. Leonardo differs from these in a number of ways:
use of several sorts including records; more general use of
set theory notation for defining functions; use of expressions
for marked-up text and for web-level references, and so on.
The Golog[3] language also represents a step from the situa-
tion calculus, as a logic of actions and change, towards a pro-
grammable system, but it seems to be even more remote from
the expressiveness of a programming language than what one
finds in Prolog.

On the programming-language arena, the most strongly
’related works’ are the following. First of all, the Lisp lan-
guage and system, and in particular the Interlisp system[10]
and the software systems of the various Lisp machines that
were designed in the 1980’s. Interlisp pioneered the idea of
a programming environment which has then been inherited
by other languages and communities, and the Lisp machines
showed that it was possible to integrate operating system and
programming language in a strong way.

The Smalltalk language and system3 has integrated con-
cepts from Lisp and Simula4, and seems to be the strongest
follower of the Interlisp design philosophy today. The Perl
language5 shows in a modern setting how the facilities that
are needed on the command level of the operating system
can be extended into becoming a serious altough still special-
purpose programming language.

The first use of set theory for programming was to my
knowledge the SETL language[6]. The style of defining func-
tions by cases inLeonardo , including for the definition of
recursive functions, is similar to the style in the Erlang6 lan-
guage which in turn obtained it from Prolog7.

The definition of the top-level loop implements concur-
rency in a way where the current state of each concurrent
action is open to inspection and can be referenced. By com-
parison, management of concurrency using ’detach’ and ’re-
sume’ operators during an evaluation process requires com-
plex stack management methods that are (intentionally) hid-
den from the program. The same applies for the use of contin-
uations. The approach used byLeonardo may be perceived
as more restrictive, but it is closer to the representation of cur-
rent state in logics of actions and change, which is a distinct
advantage from our point of view.

On another note, a number of agent systems and languages
contain concepts and constructs that have been taken up in
Leonardo . Among many, particular mention of RAPS[2]
whose influence onLeonardo is evident.

7 Design History and Implementation
The core constructs inLeonardo have been implemented in
CommonLisp, including functions for reading, printing, and
evaluatingLeonardo expressions, and for defining and ex-
ecuting actions. Several other facilities inLeonardo are
similar to constructs that already exist in the DOSAR robotic
dialog system that has been developed as part of the WITAS
project8, and we expect to be able to migrate them rapidly to
the emergingLeonardo system. A description of DOSAR
can be found on the website of the CASL research group9.
Forthcoming additional articles aboutLeonardo will also
be posted there.

The concepts that have been synthesized intoLeonardo
have been present in our own work during a long time and

3http://www.smalltalk.org/main/
4http://www.isima.fr/asu/
5http://www.perl.org
6http://www.erlang.org/
7http://pauillac.inria.fr/ ∼diaz/gnu-prolog/
8http://www.ida.liu.se/ext/witas/
9http://www.ida.liu.se/ext/casl/



have evolved gradually. Many aspects of the language design,
including the proposed design of agents, have also been in-
fluenced by the experience of building the robotic dialog sys-
tem and its auxiliary robot simulator, as a part of the WITAS
project. This applies in particular for the view of the top-level
executive of the system which bears some resemblance with
the robot simulator that was implemented as a tool for the
development of the dialog system.

The long-term research background for the present work is
documented on the CAISOR website10.

Acknowledgements
We gratefully acknowledge the following support. The
WITAS project has been sponsored in full by a grant from
the Knut and Alice Wallenberg Foundation. The concluding
step of work leading to the present article was done while
the author was visiting the Contraintes research group in the
INRIA Research Center at Rocquencourt (Paris), France.

References
[1] Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and

Jonas Kvarnstr̈om. Temporal action logics language.
specification and tutorial.Electronic Transactions on
Artificial Intelligence, 2:273–306, 1998.

[2] R. James Firby. Task networks for controlling contin-
uous processes. InProceedings of the Second Interna-
tional Conference on AI Planning Systems, pages 62–
69, 1994.

[3] Hector J. Levesque, Raymond Reiter, Yves Lesérance,
Fangzhen Lin, and Richard B. Scherl. Golog: A logic
programming language for dynamic domains.Jour-
nal of Logic Programming, 31(1-3):59–84, April-June
1997.

[4] Erik Sandewall.Features and Fluents. The Representa-
tion of Knowledge about Dynamical Systems. Volume I.
Oxford University Press, 1994.

[5] Erik Sandewall. Cognitive robotics logic and its
metatheory: Features and fluents revisited.Elec-
tronic Transactions on Artificial Intelligence, 2:307–
329, 1998.

[6] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and
E. Schonberg.Programming with Sets: An Introduction
to SETL. Springer-Verlag, 1986.

[7] Murray Shanahan.Solving the Frame Problem. MIT
Press, 1997.

[8] Murray Shanahan. A logical account of the common
sense informatic situation for a mobile robot.Electronic
Transactions on Artificial Intelligence, 2:69–104, 1998.

[9] Yoav Shoham. Reified temporal logics: Semantical and
ontological considerations. InEuropean Conference on
Artificial Intelligence, pages 390–397, 1986.

[10] Warren Teitelman. Toward a programming laboratory.
In International Joint Conference on Artificial Intelli-
gence, pages 1–8, 1969.

10http://www.ida.liu.se/ext/caisor/


