
Integration of Live Video in a System for
Natural Language Dialog with a Robot

Erik Sandewall, Hannes Lindblom and Björn Husberg
Department of Computer Science

Linköping University
Linköping, Sweden

erisa@ida.liu.se, hanli513@student.liu.se, bjorn.husberg@home.se

Abstract

For the communication with mobile
robots during their missions to loca-
tions that are inaccessible or danger-
ous for people, it is desirable to make
use of a combination of natural lan-
guage, preferably in spoken form, and a
graphical presentation of what is in the
robot’s field of sight. The present arti-
cle addresses architectural and method-
ological issues for such multimodal sys-
tems against the background of a sys-
tem of this kind that we have developed,
the WITAS Robot Dialog Environment
(RDE).

1 Goals and Issues

A major reason for having mobile robots is to let
them go to places where it is impossible, inconve-
nient, or dangerous for people to go. In this article
we consider robots that are equipped with a video
camera as a part of their perception system. For
the communication with such robots during their
missions, one would like to use a combination of
spoken natural language and visual presentation of
what is in the robot’s field of sight. In order for the
interaction to be as natural as possible, it should
be possible to show the operator the actual video
that is ’seen’ by the robot. It should also be pos-
sible for the operator as well as the robot to refer
to the moving video, both by phrases in the vocal
communication and by gestures that indicate ob-
jects or areas in the passing video image. We have

built a software system, the WITAS Robotic Dia-
log Environment (RDE) that provides major parts
of these services for the English-language dialog
with an unmanned helicopter (UAV). More specif-
ically, the system provides two-way spoken dia-
log using entire phrases in restricted English, com-
bined with display of live or previously recorded
video and the possibility for the operator to point
into the video.

In the course of designing this system we have
identified a number of specific issues that will be
important in any system of a similar kind. The
most important issues are:

• Linguistic expressions and gestures that are
used for referring to points, areas, trajectories
and moving objects in the video.

• Synchronization between actual time, time
referred to in the spoken interaction, and time
of recording of presently displayed video dur-
ing playback.

• Markup of video frames, allowing the dialog
system to relate positions on a video frame to
positions in the physical or simulated world
of the robot’s environment.

• Linguistic expressions that refer to the pass-
ing time in which the actual dialog takes
place, including the impact of the time that is
defined by the playing video, on the conduct
of dialog.

Besides these specific issues, the overriding is-
sue of system architecture is important and non-
trivial. A system of this kind is by definition very



heterogeneous and requires the combined opera-
tion of different subsystems of very different char-
acter; in terms of design it is much more than the
sum of its parts.

Therefore, although robot dialog is indeed an
interesting topic for research on dialog systems, it
can not be treated merely as an extension of other
kinds of dialog. The purpose of the present arti-
cle is to identify and discuss additional, sometimes
extralinguistic aspects that must also be taken
into account. We address general architectural is-
sues for such multimodal systems, as well as the
first three of the four specific problems mentioned
above. The article is written from the background
of our actual RDE system and the experience from
developing it. The fourth issue above is also very
important but will not be addressed in the present
article.

2 The Robotic Dialog Environment

2.1 Outline of Architecture

The WITAS RDE software system (Robotic Dia-
log Environment) consists of three subsystems that
in turn have several parts:

• An Autonomous Operator’s Assistant, AOA,
consisting of two parts: aSpeech and Graph-
ics User Interface, SGUI, and aDialog Man-
ager in a broad sense of the word.

• A Robotic Agentconsisting of aRobotic
World1 that can be either the actual UAV sys-
tem and the world it is flying in2, or a simula-
tor for this, and aVideo Serverthat provides
the channel from the UAV’s on-board video
camera to the AOA.

• A Development Infrastructurethat provides
the services that are needed for the develop-
ment, demonstration, and validation of the di-
alog system.

An earlier version of the Dialog Manager was de-
scribed in (Sandewall et al., 2003). The subsys-

1We reserve the term ’environment’ for the software sys-
tem, and use the terms ’robot world’ and its ’surroundings’
for the place that the robot is in.

2See subsection 6.1 for additional details about the
WITAS UAV system.

tems and parts of RDE communicate by message-
passing and video-flow. In particular, the Dia-
log Manager and the SGUI communicate using
KQML-like messages that in most cases contain a
phrase in natural English, together with some pro-
tocol information. Messages from SGUI to dialog
manager may also contain several alternative in-
terpretations of a given phrase from spoken input.

The SGUI manages both an interface on the
screen of the laptop or tablet that is used by the
operator, and the audio input and output using a
headset. At present we are using the Nuance3 sys-
tem for input and a choice of several alternatives,
such as Festival4, for the spoken output. In addi-
tion, the SGUI passively displays the video that is
passed to it from the video server, while the video
server in turn is actively controlled by the dialog
manager. The SGUI also interprets the gestures
that the operator makes on still images and on the
moving video. Its interpretations of these gestures
are passed to the dialog manager.

The dialog manager receives English phrases in
textual form, and produces appropriate responses
that are sent back to the SGUI to be pronounced.
Apart from standard command and query behav-
ior it contains managing multiple threads. Several
versions of the dialog manager exist; please refer
to (Eliasson, 2005) for recent work on this topic
in our project. The dialog manager also receives
messages representing the SGUI’s interpretations
of the user’s gestures on the screen. Its interpre-
tation of these gestures in combination with the
language input results in two kinds of requests:
helicopter operation requests that are sent to the
Robotic World, and display requests that are sent
to the video server, which in turn directs the re-
quested video stream to the SGUI.

Both the robotic dialog situation per se and the
integration with the video flow have a significant
influence on the design of the dialog manager. Di-
alog with a robot results in multiple threads in the
dialog, since both events in the robot’s environ-
ment and policies requested by the operator may
lead to initiatives from the robot’s side in that dia-
log. The fact that the robot moves and acts in real
time imposes real-time constraints on the dialog.

3http://www.nuance.com/
4http://www.cstr.ed.ac.uk/projects/festival/



Finally, the existence of a video stream concur-
rently with the dialog and the possibility of refer-
ring from language to video means that the dialog
manager must be consistently time-aware.

Additional information about the WITAS RDE
can be found via the WITAS website at
http://www.ida.liu.se/ext/witas/

2.2 The Real-Time of a UAV

Any robotic dialog system must take time into ac-
count, but this does not necessarily mean that ev-
erything must happen very fast. In fact, one of the
observations when we started experimenting with
UAV dialog scenarios was that often there is plenty
of time. If it takes 20 seconds for the UAV to fly
from point A to point B, then it may not matter so
much whether a particular vocal response is made
in two seconds or in three. In the end, there are
some situations where very fast response by the di-
alog system is a high priority, and there are others
where the system must instead ’pass the time’ and
indicate to its operator that it is still there while op-
erator and dialog system are jointly waiting for the
UAV to finish a particular task. The dialog system
must be able to adapt to different real-time require-
ments and to switch gracefully to higher-priority
communication tasks when needed.

2.3 Varieties of Video Input

In principle, the scene that the robot is facing can
be presented either directly, using video obtained
from a video camera that is mounted on the robot,
or using virtual reality based on the combination
of a world model and sensors mounted on the
robot or in the environment. Our present system
uses a composite video signal which is obtained,
during actual flights, from the UAV’s video cam-
era. During simulations we use archived videos
from earlier flights with our project’s UAV. (Ani-
mated ’virtual reality’ in closed-loop simulation is
being implemented at present to serve as a devel-
opment tool).

The real or synthesized video is recorded from
a video camera that may sometimes be directed
straight down during flights, but which may often
be directed at an angle against the vertical. The
coordinate transformation between a video frame
and the map is therefore non-trivial and varies with

time.
One particular facility in our system has turned

out to be very important, namely the use ofplay-
back. Video that is received from the UAV is di-
rected to the video server that is able to both for-
ward it to the dialog system, and to accumulate it
to its archive. Correspondingly, the dialog system
is able to request both current video and playback
from a particular time from the video server. This
facility is important for several applications, but
it has also been very helpful in the development
work since it provides a natural way of integrat-
ing previously recorded video into simulation ses-
sions.

3 Requirements and Methodology

3.1 System Aspects

The ultimate test of a system for dialog with a
UAV is of course to carry out those dialogs during
actual flights. However, this does not mean that its
development can and should be performed through
a large number of tests during actual flights; do-
ing so would be very costly and inconvenient, in
particular because of the safety arrangements that
must surround test flights. It does not even mean
that the validation and evaluation of the dialog
system design should be done only through test
flights. Many aspects of the system design are bet-
ter verified in laboratory settings. In other words,
the ability to conduct dialog during actual UAV
flights is a necessary but not a sufficient require-
ment on the entire dialog system.

For both the development and the validation of
the system it is useful to identify a few distinct
and, as it turns out, fairly independent subtasks:

1. Solving the equipment problems that arise
when computer-based dialog is to be per-
formed at the airfield, working outdoors: tak-
ing into account the audio disturbances from
the helicopter noise and the wind, as well
as the difficulties of using a laptop or tablet
in full daylight; handling wireless transmis-
sions between the UAV itself, the UAV base
station, and a nomadic operator; arranging
for the operator to carry the necessary com-
puter equipment in backpack style for easy
walking, arranging for spectators to be able



to hear and see the multimedia dialog, and
others more.

2. Implementing the software for interfacing the
dialog system to the UAV control system, so
that the dialog system can receive sensor in-
formation from the UAV on the appropriate
level and also send commands to the UAV.

3. Implementing a simulator that interfaces to
the dialog system in the same way and across
the same interface as the actual UAV does.

4. Implementing the interactive video subsys-
tem in such a way that it can be run both with
video that arrives in the course of the session
(closed loop) and with previously recorded
video that has been archived on the video
server.

5. Implementing a dialog system that is able to
operate in a laboratory setting, using simula-
tors, video servers, etc.

6. Integrating the above into a system that con-
vincingly demonstrates well functioning dia-
log during actual flights.

Implementations of all these tasks were com-
pleted and integrated in time so that the dialog sys-
tem could be demonstrated as a part of the main
WITAS demo in October, 2003 in the presence of
an international evaluation committee. However,
this was done using an early version of the dialog
system and a very early version of the video sys-
tem that did not provide for gesture input. Consid-
erable additional development has been done since
the main demo but exclusively in a laboratory set-
ting.

3.2 How Often Should we Fly?

The degree of interdependence or independence
between the tasks mentioned above is an important
question with respect to the development method-
ology. Concretely speaking: given that we have
verified in late 2003 that our early dialog system
worked together with the flying helicopter, and
given that we have continued to develop and ex-
tend the system using a simulated robotic agent,
how often do we need to test the dialog system in

actual test flights in order to convince ourselves,
and our colleagues, that the entire system is viable
and that the proposed design is to be considered as
valid?

The artificial intelligence community is tradi-
tionally skeptical towards simulations, and many
ground-robot projects work with a tight testing
loop. It is frequently argued that simulations do
not (or can not) capture the full variability of what
may happen in real-world situations, which sug-
gests that test runs are needed continuously during
the development work.

This argument does not automatically carry
over to the case of a UAV robot, however. To begin
with, every flight experiment is fairly complex and
requires considerable preparation due to the com-
plexity of the equipment and the obligatory safety
measures, so that the overhead of working with
very frequent tests would be forbidding. Secondly,
the world of flying objects is very structured any-
way. The possibility of “a lot of unexpected things
happening” is just not permitted; civil aviation au-
thorities would certainly not allow these devices
for general use if that were the state of the cur-
rent technology. The UAV per se must be strictly
designed and strictly modelled and its conformity
to the model must be validated stringently. Under
these conditions it is natural that the development
of a dialog system can largely proceed in the labo-
ratory setting, using a simulation system that cor-
rectly models the possible and anticipated behav-
iors of a correct UAV, including its possible fault
conditions. The verification that the dialog equip-
ment is functional in the outdoor setting at the air-
field must also be done, or course, but to a large
extent it can be factored out as a separate issue.

3.3 Obtaining Information from Sensors for
the Dialog

We have now argued that the ability of the dia-
log system to give commands to the UAV during
actual flights does not need to be tested so often,
and that most of the time it can be safely replaced
by simulations, provided that consistency of inter-
faces and other elementary software discipline is
applied. Unfortunately, the same does not apply
for the information from sensors, and in particular
for the interpretation of video input. In principle,



the dialog system should rely on the capability of
the on-board UAV system to interpret the video
signal in combination with other sensor data, pro-
viding it with the information about the Robotic
World that it needs for the dialog.

In practice, however, the ability of the on-board
WITAS system to provide this information is fairly
restricted. If the dialog is restricted to those topics
that are possible with the actual sensor-provided
information, then it will be quite limited. Con-
versely, it has been easy to extend the dialog sys-
tem so that the dialog can also cover many topics
for which the required sensor information is just
not available.

This situation can be met in a number of differ-
ent ways. One possible reaction may be to post-
pone the work on the dialog system for a number
of years, until the sensor information has become
available. This is the only possibility if one insists
that only those results that have been demonstrated
in actual flights are of interest. However, apply-
ing the principle of concurrent engineering, it is
arguably better to proceed with the development
of the dialog technology while using prerecorded
video (realistic, but sacrificing the closed control
loop) with manual interpretation, as well as a sim-
ulator for the Robotic World (closed control loop,
but virtual reality instead of real video) as substi-
tutes for testing during actual flights. It is not too
difficult after all to define a plausible interface for
the connection between the dialog system and the
forthcoming video interpretation system, and both
sides may of course participate in specifying the
interface between them.

4 World and Video

4.1 Ontology of the UAV Domain

The surroundings of our UAV is defined to be road
traffic phenomena on the ground. Other aerial
vehicles besides the UAV itself are not consid-
ered, and the ontology for ground phenomena is
based on roads, vehicles that move along those
roads, road crossings, buildings, persons, and a
few other major types. The vehicle and building
types are subdivided into subtypes, and they may
have named parts such as the roof of a building.
Objects of these types as well as their parts may

be characterized with elementary properties, such
as color and building material. There are the obvi-
ous actions for the UAV: take off, land, fly to point
X (described as e.g. a building, a street intersec-
tion, or a person), follow vehicle A, fly along road
R, and so on. Similarly for the observed ground
vehicles there are actions such as ”arrive at point
X”, ”overtake vehicle B”, and so forth.

This ontology and repertoire of phrases was
first developed for vocal-only communication. As
graphic interaction was added, we decided to be-
gin with the following four types of gestures:

• Indicate a particular point in the image, for
example for a fly-to command

• Indicate a particular area in the image, for ex-
ample for a command to survey the area or to
not fly over it

• Indicate a particular trajectory in the image,
for example a segment of a road that the UAV
is to fly along, or patrol back and forth

• Indicate a particular vehicle or other moving
object that is part of a query or command to
the UAV, for example that the UAV should
catch up with it.

There are more usages of these gestures than
one may notice at first. For example, the trajec-
tory gesture is also useful for specifying the likely
current or past position of a particular ground ve-
hicle that one wishes to designate.

Gesture input is made using the touch screen
of a tablet, or using a mouse on a conventional
screen5. The gesture part of the SGUI interprets
the movements of the pen or the mouse, and at-
tempts to classify the input according to these four
cases. The gesture type and the position and size
parameters characterizing it are sent to the Dialog
Manager. The gesture input is sometimes ambigu-
ous, however, and it is then necessary to combine
it with the spoken input in order to make the cor-
rect analysis. In such cases the SGUI sends the
list of the alternatives to the Dialog Manager and
allows it to make the choice.

5We acquired touch-screen tablets for this purpose but
found that for development purposes it was more convenient
to work with a mouse and an ordinary screen.



4.2 Synchronization issues

Consider a particular time when the user indi-
cates an item in the live video and utters an ac-
companying phrase. The time of speech and the
time of the gesture are used to connect those two
speech acts, and they are therefore recorded inde-
pendently. Their contents and timestamps must be
stored, since there are situations where the later
dialog makes reference back to one or the other
of them. Furthermore, if the video is in playback
mode so that the interaction refers to an earlier
time then additional timepoints are involved.

The gesture only specifies points and figures in
the coordinate system of frames in the video; it
must be translated into the corresponding coordi-
nates in the physical world, from which one can
also derive what object is being referenced, for
example a building, or a vehicle. It is therefore
important that the time of display of a particular
frame can be related to the exacttime of recording
of that frame. For this purpose, our video server
puts a timestamp into every frame that arrives to it
from the video source6. This timestamp is in the
video frame itself, so that timestamped video can
be archived and forwarded using standard video
formats, and it is insensitive to the video encod-
ing methods. When the SGUI interprets the input
gestures of the user, it identifies both the gesture
itself and the timestamps of the successive frames
where the gesture was made.

4.3 Markup of Video Frames

Besides accounting for time, the system must also
account for the coordinate transformation between
the surfaces of the successive video frames on one
hand and the Robotic World on the other. Dur-
ing actual UAV flights this information must come
from the video interpretation and other sensor data
interpretation that is done in the UAV itself. For
archived videos from previous UAV flights it is
possible to add it more or less manually, and for
simulations with adjoining visualization these pa-
rameters can be generated as a by-product of the
visualizer.

6Other approaches have been studied, in particular using
the Microsoft ”media time”, but they were found not to give
enough accuracy.

To be precise, there are two tasks that our sys-
tem expects the data analysis in the UAV to per-
form: relating each frame to the proper coordi-
nates in the physical world, and identifying the
positions of moving objects, such as road vehi-
cles, in the successive video frames. In fact, all
objects in the world that one may wish to refer
to in the user-system interactions except stationary
objects that are known to the system’s geographi-
cal model, must be recognized and reported by the
data analysis system.

The information about each video frame con-
stitutes amarkupfor that frame. In on-line mode
the markup will be generated continuously by the
data analysis system or the simulator; in playback
mode it is possible to compute and archive the
markup beforehand so that it is available when
needed. In our case we worked almost exclu-
sively with playback and archived markup, except
for one occasion where a demonstration of on-line
use was made. During that demo we used persons
as ”image analyzers” that produced the markup in
real time by looking at the video and tracking ref-
erence points on their screens.

The markup sequence is parallel with the video
frame sequence in the sense that each frame has
its own markup. However, it is not necessary
to send a continuous flow of markup information
from the video server to the SGUI, since most of
the time it would not be used. Instead, when the
SGUI receives a gesture into the video being dis-
played, it identifies the timestamps of the frames
being pointed into, and requests the accompany-
ing markup of those frames from the video server.

4.4 Preliminary Gesture Interpretation

The structure of the message flow and the re-
sponsibilities of the respective software modules
should now be clear. One specific practical point
deserves to be mentioned, concerning the disam-
biguation of the input gestures. Each gesture
is assumed to be in one of the four types men-
tioned above, and the exact choice of gesture
type is sometimes dependent on the accompany-
ing phrase. For example, a gesture showing three-
quarters of a circle may either designate an area
or a trajectory. In principle, it should therefore be
necessary to first send incoming phrases through



language processing in the dialog manager before
the gesture can be interpreted.

On the other hand, some interactive situations
may require very rapid response. We have there-
fore adopted the following shortcut. The main part
of the SGUI anyway receives input sentences in
written form from the speech analyzer. The pars-
ing of these sentences takes place in the dialog
manager. However, in many cases the accom-
panying sentences are very simple, such as ”fly
here”. Therefore, the SGUI is equipped with a list
of standard phrases that it recognizes immediately
by itself, and if a gesture is accompanied by such
a standard phrase then its type can be decided at
once.

Furthermore, the SGUI is defined to make such
speech-gesture combination even in cases where
the interpretation of the speech remains uncertain.
It then sends the available information about the
speech input, its assumptions about that speech in-
put, and its resulting interpretation of the gesture
to the dialog manager. If the latter should decide
that the SGUI’s interpretation of the speech was
incorrect then it sends a message back to the SGUI
asking it for a new interpretation of the gesture
based on the alternative classification.

It might be argued that this solution is an arti-
fact of a too strong separation between the SGUI
part and the Dialog Manager part of the system,
and that a more ”agent-oriented” architecture with
many processes that send messages back and forth
would have been a better way of handling the
problem. We do not share that opinion: the present
implementation does not have any particular dis-
advantage, and the separation of SGUI and Dialog
Management as two distinct blocks has a perfor-
mance advantage since it allows the SGUI to be
implemented with strict consideration of real-time
constraints while the Dialog Manager can give pri-
ority to the symbolic side of the computation.

5 Actual-Time Considerations

One of the interesting issues for this system is that
several aspects of time must be taken into account
in an effective way. We have already mentioned
the connection between time of display and time
of recording of the video, which is administrated
by the SGUI using the timestamps. In addition,

there are a number of computational and trans-
mission delays that must be properly accounted
for. The time where a spoken input phrase is
concluded is not necessarily the same as the time
when the pointing gesture is concluded. The times
when those two speech acts have been interpreted
in their respective computations need not coincide
either. These aspects have been taken into con-
sideration throughout our system, for example by
keeping track of exact time of speech.

At present our system does not combine speech
and gestures for output to the user, but only for in-
put from the user. Output is speech only, or text
only if the speech facility is disabled. When we
proceed to two-way speech and gesture combina-
tions it will be even more important to have full
control of actual time, and for the system to choose
its speech acts within the limitations of available
time.

6 Related Work

6.1 The WITAS Projects

WITAS, the Wallenberg Laboratory for Informa-
tion Technology and Autonomous Systems, is en-
gaged in goal-directed basic research in the area
of intelligent autonomous vehicles and other au-
tonomous systems. Its main project focuses on
the development of an airborne computer system
that is able to make rational decisions about the
continued operation of the aircraft, based on vari-
ous sources of knowledge including pre-stored ge-
ographical knowledge, knowledge obtained from
vision sensors, and knowledge communicated to it
by data link.

The major part of the project addresses the UAV
Technologies and is described e.g. in (Doherty et
al., 2000; Doherty, 2004). The other part of the
project concerns robotic dialog, in particular be-
tween a human operator and a UAV. Dialog ac-
tivities in WITAS were organized as a project at
Stanford during 2000-2002 and as a new project
in Linköping since 2002. The work reported here
is from the WITAS-Link̈oping Dialog Project.

6.2 Other Dialog Systems

The present article has addressed multimodal di-
alog with a robot using spoken language and



live video. Many earlier projects have addressed
robotic dialog without the graphic modality or
with still-image graphics without the live video as-
pect.

The KANTRA system by Lueth, Laengle, et
al (Lueth et al., 1994) was a relatively early sys-
tem providing natural-language communication
for commanding a mobile ground robot. The re-
port does not mention any use of graphics in this
system.

Multimodal dialog systems that combine spo-
ken language with still images include in partic-
ular the SmartKom (Reithinger et al., 2003; Her-
zog et al., ) and MATCH (Johnston et al., 2002)
systems. These systems do not address robotic
dialog since their task is to provide information
for a mobile operator. The WITAS-Stanford di-
alog system of Lemon, Peters, et al (Lemon et
al., 2002) is still one of the few published exam-
ples of a multimodal robotic dialog system, but its
graphic capability is limited to specifying a point
in a fixed, maplike aerial photograph. It therefore
does not consider the problems of dealing with
moving video and the resulting real-time and other
issues.

Acknowledgements

The Video Server part of the RDE was designed
and implemented by Björn Husberg, replacing an
earlier video-archive system with fewer facilities.
The extended SGUI that provides support for the
Video Server, allows the user to point into the
live video, and performs the necessary coordi-
nate transformations etc. was designed and im-
plemented by Hannes Lindblom as a M.Sc. thesis
project. Erik Sandewall directs the WITAS Dialog
Project including the work described here.

The entire WITAS RDE is the result of joint
work with major contributions by Malin Alśen,
Peter Andersson, Karolina Eliasson, Susanna
Monemar and Tobias Nurmiranta as well as addi-
tional M.Sc. students, besides the present authors.

The support of the Wallenberg Foundation for
the research reported here is gratefully acknowl-
edged.

References

Patrick Doherty, Gosta Granlund, Kris Kuchcinski,
Erik Sandewall, Klas Nordberg, Erik Skarman, and
Johan Wiklund. 2000. The witas unmanned aerial
vehicle project. InProc. 14th European Conference
on Artificial Intelligence, pages 747–755.

Patrick Doherty. 2004. Advanced research with au-
tonomous unmanned aerial vehicles. InProc. 9th
International Conference on Knowledge Represen-
tation and Reasoning.

Karolina Eliasson. 2005. Integrating a discourse
model with a learning case-based reasoning system.
In Proceedings of DIALOR-05.

G. Herzog, H. Kirchmann, S. Merten, A. Ndiaye, and
P. Poller. MULTIPLATFORM testbed: An inte-
gration platform for multimodal dialog systems. In
H. Cunningham and J. Patrick, editors,Proceedings
of the HLT-NAACL 2003 Workshop on Software En-
gineering and Architecture of Language Technology
Systems (SEALTS).

Michael Johnston, Srinivas Bangalore, Gunaranjan
Vasireddy, Amanda Stent, Patrick Ehlen, Mar-
ily Walker, Steve Whittaker, and Preetam Maloor.
2002. MATCH: An architecture for multimodal dia-
log systems. InProc. 40th Annual Meeting of the
Association for Computational Linguistics, pages
376–383.

Oliver Lemon, Alexander Gruenstein, and Stanley Pe-
ters. 2002. Collaborative activities and multi-
tasking in dialogue systems.Traitement Automa-
tique des Langues (TAL), 43(2):131 – 154. Special
Issue on Dialogue.

T.C. Lueth, Th. Laengle, G. Herzog, E. Stopp, and
U. Rembold. 1994. KANTRA human-machine
interaction for intelligent robots using natural lan-
guage. InProceedings of the 3rd IEEE Interna-
tional Workshop on Robot and Human Communica-
tion, RO-MAN’94, pages 106–111.

Norbert Reithinger, Gerd Herzog, and Alassane Ndi-
aye. 2003. Situated multimodal interaction in
SmartKom. Computers and Graphics, 27(6):899–
903.

Erik Sandewall, Patrick Doherty, Oliver Lemon, and
Stanley Peters. 2003. Real-time dialogues with
the WITAS unmanned aerial vehicle. In Andreas
Günter, editor,Annual German Conference on AI,
pages 52–63.


