® This layered
 framework supports
the design and
implementation of
control systems with
both continuous and
discrete components.
It has been used to
develop a driver-
safety system for

automobiles.

ontro

MAGNUS MORIN, SIMIN NADJM-TEHRANI, PER
OSTERLING, and ERIK SANDEWALL, Linképing University

- he last decade has
seen the development of highly complex,
often distributed, systems that can moni-
tor, support, or control dynamic systems.
The spectrum of problems associated
with these systems — which range from
industrial process-control and medical-
support systems to intelligent robots and
autonomous vehicles — has resulted in
specialized research, the results of which
are often not used in other areas. Some
research is concentrating on formal
methods for specifying and verifying
real-time aspects, for example, but it has
had little effect on architectural and im-
plementation issues.

Work in the artificial-intelligence
community on autonomous systems is
facing similar problems. Researchers
concerned with finding efficient solu-
tons to implementation problems or
symbolic representation issues have paid

litle attention to guaranteeing system-
response time, which is important in ap-
plications like expert control systems. At-
tempts have been made to incorporate
symbolic manipulation in traditional
control systems, which allows reasoning
ata higher level of abstraction and the ex-
pression of qualitative control knowl-
edge. However, attempts to couple ex-
pertsystems ad hoc have not worked well
because there is no mechanism for han-
dling reasoning about time."

The goal of the framework we pro-
pose is to support the design and imple-
mentation of control systems that
combine continuous and discrete com-
ponents — which eliminates the need to
combine expert systems in this haphaz-
ard fashion. Systems designed with this
framework can provide solutions that
combine both numeric and symbolic
computation.

ﬁ SOFTWARE

0740-7458/92/0800,/0051/$03.00 © EEE

51




COMBINING SYMBOLIC AND NUMERIC

The framework we propose is suitable
for developing systems with both soft and
hard real-time requirements. In a hard
real-time system, designers must consider
the worst-case behavior and guarantee
that the system meets its
deadline. A soft real-time

specify and validate the timing require-
ments for both the implemented tools and
the application system. In a typical control
system, data from sensors provides snap-
shots of the environment, which is essen-
dally instantaneous information. How-
ever, to detect changes and discontinuities

and monitor long-term

trends, the system must

system uses “best effort” e also take a serdes of snap-
techniques to try to meet Qur framework shots into account. It does
deadliny § this by analyzing mumeri
sible. T also uses methods captures an data,bv};lﬁdx oo reveals
e voleed dat- - oppliafonSime  famneimiie e
The basicideabehind  0BMANAS AN 0ADS the big piceare is vieal if

our framework is to cap-
ture an application’s time
demands and transform
them to time constraints
on layers. The layers
group transformations from flows of sen-
sor data to flows of actuator commands on
different levels of abstraction. At the low-
est layer are numerical models and algo-
rithms, which are used to rm basic
feedback control and build the symbolic
models used in higher layers. The middle
layer uses more abstract symbolic models
to decide which algorithms are to be exe-
cuted in the lowest layer. It also supplies
the information needed to build higher
level modelsin the top layer. The top layer
reasons about time using symbolic models
of the environment and influences the be-
havior of the middle layer over time.
Each layer is served by one implemen-
tation tool, which mainuins applicaton
data and manages the transformations
performed on that data. We have made
these tools simple, with well-known char-
acteristics, which lets us verify overall sys-
tem properties using the propertes of the
individual tools. We developed these tools
because we believe the way to validate
hard real-time constraints in complex sys-
tems is to build systems with simple and
well-understood components. We have
tested these implementation tools and
methods within the Prometheus project,
described in the box on p. 55. The main
benefit of our approach is that it considers
time aspects in a systemn that combines nu-
meric and symbolic processing. We can

them fo fime
constraints on layers.

the system is to reason
about the real world.

In our layered frame-
work, synchronous pro-
cesses monitor the envi-
ronment periodically and notify the rea-
soning processes when a discontinuity oc-
curs. Our approach differs from the lay-
ered autonomous agents developed by Al
researchers such as Rodney Brooks,?
which rely on emergent functionality. In
Brooks’ approach, autonomous agents are
built bottom up from asynchronous layers
with no use of symbolic representation.
Although the separation of functionalities
has led to efficient implementations, the
design has not been proven to scale up to
highly complex systems. Another re-
searcher, Erann Gat, has suggested a lay-
ered architecture that hosts both symbolic
and numeric computations.” However,
neither Gat nor Brooks attempts to guar-
antee time constraints.

RECONCILING DATA VIEWS

A hierarchical control system must
combine techniques from both control
and software engineering to deal with
complex, dynamic environments. Control
engineering provides numeric methods
and tools to controi feedback. Software
engineering offers programming lan-
guages and techniques for symbolic ma-
nipulation, which can be used to extend
the applicability of the control-engineer-
ing methods.

Combining these two areas is not

straightforward, however, because each
perceives ime-dependent data differently.

Control engineering naturally uses the
concept of a signal, typically a vector of
real numbers, which is a function of time.
Software engineering, on the other hand,
favors complex data structures, which in
themselves have no inherent time relation
but are modified using updates or assign-
ment statements.

To have a coherent methodology that
satisfies both views, we use the signal con-
cept as the basis for software design, but
generalize it to allow an arbitrary data
structure as a function of time. Following
Al terminology, we call the general signal
a fluent.

Fluents define the flow of data within
and between software subsystems. Each
subsystem performs transformations on
fluents, both theoretically and in the actual
implementation. There are several types
of fluents:

¢ Piecewise continuous. These fluents
have a finite number of discontinuities in
every bounded dme interval. Piecewise
continuous fluents describe quantitative
aspects in dynamic environments, for ex-
ample distances between a specific car and
surrounding vehicles, their velocities, and
their accelerations.

¢ Piecewise constant. These fluents are
the same as piecewise continuous fluents
except that there are a finite number of
value changes in every bounded time in-
terval. An example is expressing the quali-
tative distance between the driver’s carand
the car ahead as far, close, very close, ornot
existing.

¢ Regular. These fluents are piecewise
constant over intervals of equal length.
They are the result of approximating
piecewise continuous fluents by sampling
at fixed (short) intervals. Regular fluents
provide a representation of piecewise con-
tinuous fluents that is suitable for a com-
puter. An example is the sequence of dis-
tance measurements that approximate the
continuously changing distance between
WO cars.

Each fluent requires a different type of
computation. Computations that involve
regular fluents typically consist of (rapid)
cydlic transformations. These transforma-

52

SEPTEMBER 1982




tions are performed periodically, whether
or not the values have changed. Computa-
tions on slow-changing piecewise con-
stant fluents, on the other hand, should
occur only when the fluent value has
changed. That is, they should occur asyn-
chronously when triggered by an event.

ARCHITECTURE

Our framework for developing hierar-
chical control systems consists of layers
that group transformation types, the tools
to help implement the layers and validate
timing properties, and the mechanisms for
communicating among layers.

Transformation layers. Figure 1 shows
how transformation types are grouped in
blocks and how data passes between them.
The blocks are (from the bottom up)

¢ Esttmaror. Transforms piecewise
continuous fluents representing sensor
values to corresponding regular fluents
through sampling.

¢ Adapter. Converts effector output to
a form suitable for actuators.

¢ Effector. Implements the basic con-
trol algorithms.

¢ Characterizer. Classifies the current
situation and detects significant events.

¢ Selector. Determines the control al-
gorithms to be used in the effector.

¢ Verbalizer. Classifies events to obtain
higher level descriptions.

¢ Reasoner. Produces control se-
quences (plans) for the selector.

To implement this structure, we
grouped blocks with similar computa-
tional characteristics into three layers.
This three-layer architecture is an exten-
sion of the ideas adopted in the Pro-
metheus project*

¢ The process layer consists of the est-
mator, the effector, the adapter, and the
characterizer. It supports transformations
on regular fluents and therefore operates
cyclically. Piecewise continuous fluents —
because they exist mainly in the system’s
physical environment — are approxi-
mated through regular fluents. The est-
mator handles the conversion from piece-
wise continuous fluents to regular fluents;
the adapter handles the conversion from

regular fluents to piecewise continuous
fluents.

¢ Therulelayer consists of the selector
and the verbalizer and supports transfor-
mations on piecewise constant fluents. It
aids in the implementa-
tion of complex decision
algorithms through a
rule-based paradigm.

¢ The analysis layer
consists of the reasoner. It

-}
The layers, in tum,

perform reasoning, which leads to a
choice of internal reaction. Finally, it
communicates the chosen internal reac-
tion to the process layer, which transforms
it to a control algorithm.

Although the process
layer could theoretically
determine the selected al-
gorithm, this decision,
because of its asynchro-
NOUS nature, is more suit-

transforma- : rul

oo s e group transformation soly handled by the rule
stant fluents, but uses Wpes (]ccording 1o To offer suggestions,
temporal reasoning (such . the system must under-
as prediction or planning) 'evels Of ﬂbstfﬂdlon. stand a given scenario on
and a temporal database. ahigher level — involving

To understand the ra- the analysis layer —
tionale behind these divi- which requires that it

sions, consider the layers as they might
apply to a driver-support system. Using
sensory information, a driver-support sys-
tem reasons about the driver’s current ac-
tivities in a dynamic environment influ-
enced by an arbitrary number of other
drivers. The types of support might in-
clude

¢ Low-level reactions to changes in nu-
meric parameters. An example is regulating
the accelerator to keep the car at a given
distance from the car in front.

¢ Warnings. An example is to issue
warning signals to the driver when it is
unsafe to change lanes during passing.

¢ Suggestions. An example is suggest-
ing to the driver to pass only within a safe
distance from a bend or to complete the
pass within x amount of time.

To make these decisions, the support
system must build and maintain a series of
environmental models at increasing levels
of abstraction, from numeric to symbolic.

For low-level reactions, the system
needs numeric models, which require
computations involving regular fluents
performed in the process layer.

To issue warnings, the system needs a
symbolic environmental model. The
model begins construction in the process
layer, at the lower levels of abstracton.
The resulting symbolic representations of
recognized events are reported to the rule
layer, which uses them to build its environ-
mental model. It then uses that model to

have a deliberative nature. The analysis
layer must let (complex) maneuvers :be
represented as primitive concepts, and
should have an awareness about time:

For the system to recognize an activity

AR IR IO IS TS

Figure 1. The fluent transformation blocks and flu-
ent type recesved by each block.

IEEE SOFTWARE

53




that takes place over time, it must have
access to the history of some fluents’ val-
ues. Unlike the rule layer, which decides
an internal reaction to an
event without concern
for how that event relates
to other events (and
therefore does not need
an extensive value his-
tory), the analysis layer
uses eventsequences as its
primitive concepts. Oc-
casionally, event se-
quences may cause the
system to change the set
of rules that the rule layer
consults. The system may
recognize the need to switch between rule
sets, or the change may occur because the
system has learned something and recog-
nizes an opportunity to optimize the rules.

Implementation tools. At present, we have
tools that implement the process and rule
layers. We plan to develop a tool for the
analysis layer that is based on the formal
theories we are working with now.

Time constraints and internal fluent
representations vary according to the dif-
ferent actvities in different layers. The
process-laver executive supports the defi-
nition and execution of application soft-
ware in the process layer; the rule-layer
executive does the same for the rule layer.

PLX The process-layer executive makes
it easier to implement and maintain parts
of the application that transform regular
fluents in the characterizer and effector
blocks. It realizes regular fluents in a col-
lection of frames organized in a dual-state
vector. In one state, the vector contains the
current values of fluents; in the other; it
stores the next value of the fluents during
the same period. The first state is read-
only; the second, write-only. The valuesin
the read-only vector represent either sen-
sor readings or internal state. The write-
only values represent actuator outputs or a
new internal state.

In a process-layer applicaton, pro-
cesses apply transformations to the read-
only vector to compute the new values of
the write-only vector. Because the state

|
The modularity and
simplicity of our fools
makes it easy to verify
that computations wil
meet their deadlines.

vector has this dual nature, processes are
assured of accessing a well-defined state
throughout the period. Moreover, the
dual-state vector is the
only way for interprocess
communication, which
means that the order in
which communicating
processes execute is irrele-
vant.

At the end of each pe-
riod, PLX flushes output
values to the adapter, and
copies the values of the
write-only vector to the
read-only vector, thus es-
tablishing the new state.
This operation is referred to as a flip of the
state vector.

One of PLXs main tasks is to perform
flips (maintain the dual-state vector), read
estimator outputs, and write to the
adapter. Another task is to supervise pro-
cess execution and detect if time con-
straints are violated during runtime.

PLX also supports the dual-state
vector’s decomposition into several sub-
vectors, each of which is flipped at the end
of its corresponding period, forcing trans-
formations to be executed at different

_rates. Each cycle’s period must be a multi-

ple of all shorter periods in the process
layer. In this way, we guarantee that the
(complete) state vector will be in a well-
defined state periodically.

PLX is implemented in C and runs
under Unix and the real-time operating
system pSOS*. It uses preemptive, prior-
ity-driven scheduling that is rate mono-
tonic. Tasks with shorter periods have a
higher priority. PLCL, the process-layer-
configuration language, defines the com-
ponents of the dual-state vector and aids in
configuring user-supplied library modules
to implement fluent transformations.

RIX. The rule-layer executive has two
major tasks. It defines and maintains the
slots — set of symbolic state variables —
and rules that determine the behavior of
the rule layer, and it performs the forward
chaining of rules.

In this layer, fluents are represented as
the ime-dependent values of a set of slots.

The state is treated as a fluent, and the
fluent value at any dme is the collection of
all slot values. The state is uniquely deter-
mined by the inital slot values and a se-
quence of time-stamped assignments —
each assignment prescribing how the
value of a particular slot should be
changed. Such assignments are the build-
ing blocks for defining rules. A rule speci-
fies dependencies between slots: if the
value of a particular slot is changed in a
certain way, then the value of another slot
should be changed as well.

Internally, each value assignment may
trigger consequences, which are new as-
signments. This forward chaining may
continue in several steps undl the new
state is reached. Again, processes must be
able to unambiguously refer to the state at
any time, so each slot in the rule-layer ex-
ecutive is a data structure that contains the
new and old slot values as well as the time
for the update. In a sense, we have adopted
an object-oriented view of the rule: base
because we assodiate a set of rules with
each slot. This makes the system more
flexible and easier to maintain.

We have implemented two versions of
RLX. The Common Lisp version runs
under Unix as a development environ-
ment; the C version runs under pSOS*
and is used for real-dme execution. In
both versions, rules and slots are automat-
ically derived from definitions in a com-

mon language.

Interlayer comsmunication. A piecewise con-
stant fluent, the communication fluent,
models the information flow between the |
process, rule, and analysis layers. The
communication fluent relates the output
fluent from the sending layer to the input
fluent of the receiving layer.

The. communicadon fluent is imple-
mented as a message-passing system. Each
time there is a discontinuity in the fluent of
the sending layer, the message-passing
system prepares a message to besent to the
receiving layer. Each message specifies a
change in the value of the receiving layer’s
fluent. Messages from the process layer
are also time stamped, which forces the
receiving layer to treatupdates in the same
period as concurrent. The value of the at-

54

SEPTEMBER 1992




tached time stamp is determined by the
number of flips performed on the fastest
subvector.

SATISFYING REAL-TIME DEMANDS

Our framework captures application
time demands and transforms them to
time constraints on different layers and on
the entire application system. The modu-
larity and simplicity of our implementa-
tion tools makes it easy to verify that com-
putations will meet their deadlines.

Time and cocks. The estimator, the
adapter, and PLX use a real-time clock to
synchronize sampling and periodic com-
putations that involve sampled data. The
shortest sampling period, corresponding
to the period of the fastest subvector, pro-
vides a clock that affects activities in the
entire system. Each tick of the clock corre-

sponds to a flip in PLX. and the application’s time demands. We | to T.
The dlockin the process layerisused to | have devised a specification language that

label consecutive states, manage flip inter- | lets designers formally specify these two

vals for subvectors, and time-stamp as- | elements.’

signments sent to the higher layers.

The rule layer is oblivious of ime. The
time stamps associated with its input flu-
ents are used merely to partially order rec-
ognized events.

The analysis layer treats time stamps
from recognized events as both a sequencing
mechanism and a mechanism for reasoning
about the time between
events. Consequently, it
must be aware of the
global time between two
ticks.

i constraints is knowing sampling rate required
tion. . ication i " for sampling a signa
the process laper, we can 118 [VEIS’ WOISFCOSe it los of infora-

determine at compile 1nn i tdon — dictates that the
time whether the oonf;)u- execufion fimes. specification’s upper
tations to be performed in bound s Ton the shortest
each cycle will meet their deadlines. Veri- cycle for the application program.-De-
fication has the following steps: signers merely check if PLX can perform

1. Specify characterizaton routines

2. Verify that the specification meets an

B
A-large part of
verifying time

application’s ime demands. We plan to
identify verification procedures for the
specification language and develop tools
to check if the specification meets these
demands.

3. Translate the specification: to the
language used in the process layer.-

4. Check that PLX
will perform computa-
tions in each cycle within
the given time. The Sam-
pling Theorem ~— which
determines. the smallest

its computations in time less than or equal

A large part of time-constraint verifi-
cation is knowing the worst-case execu-
tion time of the process, rule, and analy-
sis layers.

PROMETHEUS: THE ULTIMATE BACKSEAT DRIVER e i
byPrometheuspamupamSm"*

Prometheus is a large Eiiro- -
pean cooperative proyectﬁn'de- Tonno, Iraly, September 199}’. . tedt
veloping automotive informa- Y it
tion technology. It started in
1987 at the initiative of automo--
bile manufacturersin Ger-
many, France, Great Brmm,
Ttaly, and Swedenandalsoin-
volves electronic suppliers; uni~
versities, research i institutes,
and government agencies..

The overriding goals of syscem. . modes;
Prometheus are to enhance the - nmprovxdeaﬁamcwotkﬁom . comi
safety, convenience,and econ-  software that receives input-. SSI= .
omy of automobile drivingand = from sensors, ather cars; and.- bl&d:rectmtavenuontoavmd
to reduce its environmental im-  the roadside informationsys--  a collision.In a longer perspec--
pact. Work includes the devel--  tem (which might provide. - tiveyall these services will prob--
opment of route-guidance - traffic information for amet~  ablybebased ona modelof the:
Systems, car-to-car communica-  ropolitan area, for example) - trafficsituation surrounding the :
tion, codriver computer sys= anduse thatinputtobuildz:  driver’scan-The codriver system:.
tems, and new sensortechnolo- - and continuously revisea-.. - mapaboincindeamodel of the=
gies. Implemented systemsand ~ model of the surrounding traf-- driver’s prmthxowledgeabmt
prototypes were demonstrated - fic:Work onthe software-ar=- L

the'sitmation and of thedinten=-

IEEE SOFTWARE



Process loyer. We have determined the
PLX overhead — the extra CPU cycles
needed to synchronize tasks, manage

sequence of events in the environment, an
application-bound, hard deadline isalsoin
the analysis layer. However, the analysis

memory, and communi- layer may carry out com-
cate between layers.5 This putations with asoft char-
overhead is a function of N acter, as well. For exam-
ot pacn ey Wehave fested our P may oot e
from the PLCL decip- fromework and fools  usealeaming s mecunian
tion. The computed over- to optimize the rule sets
head, together with the ~ ON O NUMDGTOf  in the rule ayer. This ac-

upper bounds on the
WOrst-case execution time
of the library modules,
forms the basis for analyz-
ing the worst-case execu-
tion time of the process-layer application.

Rule layer. Given a set of slots and rules in
the rule layer, designers can make a similar
check to determine the maximum re-
sponse time from firing rules. Because
rules are organized around specific slots,
each slot has a finite number of rules at-
tached to it, and the range of each slot’s
values is finite. Thus, we can determine
(statically) the maximum number of in-
ferences after each slot value changes at
runtime.

Al Mok’ has studied the real-time as-
pects of rule-based components. We have
adopted and extended this work by empir-
ically analyzing the behavior of the rule
layer as part of one integrated prototype.
During this work, we discovered the need
for a tool that would automatically verify
maximum inference duration.

The rule layer should react to a given
assignment sent from the process layer
within the amount of time allowed by the
application for that reacton. We derive
the maximum (allowed) response time for
the rule layer by subtracting the dme
needed by the process layer for characteriza-
tion and conwrol and two (worst-case) inter-
layer communication delays from the total
response time imposed by the application.
We must verify that the remaining time is
sufficient for rule-layer computations.

Analysis loyer. We envisage a similar re-
quirement on the analysis laver. When
reasoning is to guide the choice of existing
rule sets in the rule layer in response to a

applications, mostly in
fraffic safety.

tivity is not subject to
hard deadlines, and effi-
cient computations are
adequate. In this case, a
rule set should be sug-
gested only if its maximum inference du-
ration does not exceed the available reac-
tion time in the rule layer.

TWO APPLICATIONS

We have tested our framework and
tools on a number of applications, mostly
in traffic safety. In two applications — an
elevator-control system and a driver-sup-
port system — we evaluated

¢ how to integrate components with
different functionality running on distrib-
uted machines,

¢ the performance of the communica-
tion package, and

¢ how our mechanisms to specify and
validate time constraints were working.

Elevator-conirol system. In this applica-
tion, the system conwrols the behavior of a
miniature elevator located in our labora-
tory. The (physical) level of the elevator is
continuously measured by a height sensor
connected to the process layer. A control
panel and the motor are also connected to
the process layer.

Our main reason for implementing
this system was to get experience from in-
tegrating the process and rule layers. Even
though this example is simple, it involves
all the fluent transformaton types. It also
provides a simple example of a multilayer
path: The characterizer receives the cur-
rent level from the estimator; if the level
has become equal to the desired level, a
message is sent to the selector. The selec-
tor then realizes that the elevator should

go into stop mode, and sends a message to
the effector, whose control algorithm is

The results of this application showed
us that we could combine the process and
rule layers as intended with an adequane

response time. -

Driver-support system. In this application,
the system supports a driver during pass-
ing and lane merging. 'Ihesyslrmwams
the driver when predefined safety criteria
are not being met in an environment con-
taining an arbitrary number of other cars.
This application is also implemented by
modules in both the process and rule layers.

The characterizer performs transfor-
mations on quantitative sensor informa-
tion about each car (such as giving the dis-
tance to the driver’s car) and arrives at
more abstract models of the environment.
The system represents cars of interest by
deictic reference — in this case, symbolic
locations relative to the driver’s car-Thus,
the system refers to “firstcar in the leftlane
ahead of driver’s car” instead of “the red
Volvo with license number X.”

The system recognizes the properties
and trends of individual cars by monitor-
ing a collection of quantitative values
against thresholds with some hysteresis
(the system uses two thresholds, -one for
rising and one for falling signals, to be
more robust against noise). An example is
computing — for each surrounding car —
a distance factor as a function of the speed,
acceleration, and position of the driver’s
car and the other car. The distance factor
is then converted to a qualitative closeness
value like “too close.”

The system uses the properties of
groups of cars to recognize significant
events, such as a blocked left lane. On the
basis of these events and the rules in the
selector, the system updates the rule-layer
model and, if appropriate, selects a warn-
ing and sends it to the effector. The se-
lected warning is then output to the driver
through a text panel or voice channel.

This application illustrates how the
rule layer is used naturally to handle com-
plex decisions on the basis of recognized
events. The shortest cycle in the process
layer for this applicaton is 10 ms.

56

SEPTEMBER 1982




Because we do not yet have access to raw
sensory information about all surrounding
cars, we have had to rely on sensor data pro-
duced by a simulation module. However, we
believe that system performance for this ap-
plication will not differ gready when we have
actual data. We have received real sensor
data about one car derived from physical
sensors and a camera mounted on the car.
PLX easily coped with the computations in-
volving regular fluents for the output of this
one car. We are confident that adding more
cars would not affect system performance
because the simulated data we have fed to the
system would be the same type as the real
sensor data with cars.

Furthermore, traffic researchers study-
ing the frequency of conflicts in waffic and
normal reaction times have found that the
elapsed time from a conflict’s first appear-
ance to the avoidance of an accident is often
onlya fewseconds. Thus, we can expect to
resolve at least certain types of conflicts
if the system makes the appropriate de-
cisions within a half to one second.

The architecture we have described is
-suitable for integrating symbolic and
numeric computations in a range of appli-
cations. The implementation tools sup-
port the types of computations necessary
in the process and rule layers.

We have outined the functional char-
acteristics and time constraints of the anal-

" ysis layer, and we are working with time

formalisms to be used for eventually spec-
ifying software in that layer.

We also plan to develop tools imple-
menting applications in the analysis layer
— including 2 mechanism that will let it
use the static analysis methods at lower
layers for arriving at runtime decisions.

Several applications that require rea-
soning in dynamic environments have
been developed using this framework. In
addition to our work on tools for the anal-
ysis layer, we plan to devise verification
and static-analysis tools for the process
and rule layers that give designers assur-
ance at compile time that the application’s

time demands will be met. ¢-

ACKNOWLEDGMENTS

by the Center for Industrial Information Technology.

REFERENCES

Kaufmann, San Mateo, Calif., 1991, pp. 569-595.

pp. 809-815.

Sy’"ﬂ- Us d Us bere

279-292.

1 <ol
<3

Press, Los Alamitos, Calif,, 1992, pp. 267-274.

Linképing University, Sweden, 1991.

We are graeetul to Jacek Malec for contributions to the work described here and for comments on earlier
drafts of this article. This work was supported by the Prometheus project within the IT4 research program, and

1. H. Verbruggen and K. Astrém, “Artificial Intelligence and Feedback Control,” Proc. IEAC Warkshop on Arti-
ficial Intelligence n Real~Time Control, Pergamon Press, Oxford, 1989, pp. 1-11.
2. R. Brooks, “Intelligent Without Reason,” Proc. Int'l Joint Conf. Artificial Intelligence: Volume 1, Morgan-

3. E. Gat, “Integrating Planning and Reacting in 2 Heterogeneous Asynchronous Architecture for Control-
ling Real-World Mobile Robots,” Proc. Conf. on Artificial Intzlligence, MI'T Press, Menlo Park, Calif,, 1992,

4. J. Hultman. A. Nyberg, and M. Svensson, “A Software Architecture for Autonomous Systems,” Proc. Int’l
ible Teckmology, University of New Hampshire, Durham, 1989, pp.

5. S. Nadjm-Tehrani and P. Ostedhg, “Characterization of Environment Conditions with Metric Temporal
Feature Logic,” Proc. IEEE Int’l Conf. Al, Simsulation and Planning in High-Autonomy Systems, IEEE CS

6. M. Morin. “Performance Aspects of the Process Layer Executive,” Tech. Report LAIC-IDA-91-TR13,

7. A. Mok. “Formal Analysis of Real-Time Equational Rule-based Systems,” Proc. IEEE Real-Ttme Systems
Symp., IEEE CS Press, Los Alamitos, Calif., pp. 308-318.

Address questions about this article to Morin at Linképing University, Dept. of Computer and Information Sci-
ence, S-581 83 Linképing, Sweden: Internet peros@ida.liu.se; Bitmet peros@seliuida.

Magnus Morin is a PhD
candidate in computer and
information science at
Linképing University in
Sweden. His research inter-
ests include architectures
and languages for real-time
software and operating sys-
tems.

Morin holds an MSc in
electrical engineering from LinkSping University.

Simin Nadjm-Tehraniis a
PhD candidate in computer
and information science at
Linképing University in
Sweden. Her research inter-
ests include logic program-
ming and the use of tempo-
ral logic in specifying and
 verifying safety-critical sys-
tems.

Nadjm-Tehrani holds a BSc in computer science
and accounting from Manchester University, England,
and a Licentiate in computer science from Linkoping
University.

Per Osterling isa PhD
candidate in computer and
information science at
Linkiping University in
Sweden. His research inter-
ests include the modeling
of dynamic environments
and the use of temporal
logic in specifying and veri-
fying real-time systems.

Osmdmg holds a BSc in computer science from
Linképing University.

Erik Sandewall is a profes-
sor of computer science at
Linképing University in
Sweden. His primary re-
search interests are knowl-
edge representation for
time and action, and non~
monotonic reasoning. He
was the European coordina-
tor for Prometheus’s ProArt

A&f’% [ 4

for several vears.

Sandewall holds a PhD in computer science from
Uppsala University, Sweden. He is a fellow of the
AAAL

IEEE SOFTWARE

57




	
	
	
	
	
	
	

