The Knowledge Engineering Review, Vol 7:2, 1992, 147-155

Knowledge-based systems, Lisp, and very high
level implementation languages*

ERIC SANDEWALL

Department of Computer and Information Science, Linkdping University, Linkoping, Sweden

Abstract

Itis usually agreed that programming languages for implementing (other) programming languages,
or ‘implementation languages’, should be simple low-level languages which are close to the
machine code and to the operating system. In this paper it is argued that a very high level
implementation language is a good idea, of particular importance for knowledge-based systems,
and that Lisp (as a language and as a system) is very well suited to be a very high level
implementation language. The significance of special-purpose programming languages is also
discussed, and the requirements that they have for a very high level implementation language are
considered.

1 The niche for a very high level implementation language

Programming languages become successful by establishing and dominating a particular language
niche, such as number-crunching for Fortran or data-crunching for Cobol. Indeed, it may be
argued that new programming languages can only establish themselves if they fill a new niche, and
that it is extremely difficult to displace an established language in an existing niche.

Lisp is usually understood to occupy the niche of ‘a programming language for artificial
intelligence’, or possibly for formula manipulation. It was also a favourite implementation
language for the first generation of commerical expert systems, but has gradually lost ground to
other languages such as C. In this paper I argue (1) the general significance of Very High Level
Implementation Languages, (VHLIL) from a software engineering perspective; (2) that the
software technology of knowledge-based systems depends on the availability of good VHLIL; and
(3) that it is appropriate to view Lisp as the foremost VHLIL language.

Since VHLIL is not generally recognized as a language type, the topic of the paper not only
focuses on knowledge-based systems as such; I also want to argue the case for Very High Level
Implementation Languages as such, and to argue that Lisp is well suited to play a rdle there. The
topic is large, and to keep the paper manageable I base it on references to earlier work in my own
research community (i.e., my present and previous affiliations), where Lisp has mostly been used
as a VHLIL. Since the references are to specific cases which exemplify the principles proposed
here, I will not make any attempt to be fair by referring to examples from elsewhere. The reader
can hopefully add similar examples from his or her own experience.

The utility of VHLIL is derived from the utility of special purpose programming languages. By a
special purpose programming language (SPPL) I mean a programming language which is designed
to be able to characterize a limited application area, or a specialized function in software. The
development and use of SPPL has been a standard methodology in AI research for many years:
ATN parser systems, frame data bases, rule-based systems such as Emycin, and reason mainten-
ance systems are only some of the examples that come to mind. This tradition was continued for
application domains when expert systems and knowledge-based systems evolved.

*This research was supported by the Swedish Board of Technical Development and the T4 research program.



E. SANDEWALL 148

However there are many other examples of SPPLs in the practical world besides knowledge-
based systems. Many ‘fourth-generation’ software tools such as spreadsheet systems and database
query languages implement and support specialized programming languages. Forms management
and other dialogue management systems offer another example of SPPLs for a specific function;
languages for programming real-time and process control systems represent an example of SPPLs
for a specific application area.

However, researchers in programming languages and software engineering tend to treat special
purpose languages condescendingly. One reason is that from the view-point of professional
language design, the embedded language in, for example, spreadsheet systems offer little of
interest. The languages in existing products often fail to satisfy (conventional) criteria for ‘good
language design’, and the task of designing such a language appears to be so simple that it does not
offer a challenge for the professional language designer.

Perhaps one would expect research in software engineering to have assimilated the idea of
special purpose languages, in view of their considerable practical importance. This does not seem
to have happened, and the reason is possibly that in its attempt to establish software development
as a branch of engineering, they have identified factors which are important in other kinds of
engineering (particularly in electrical engineering), but missed factors which are indigenuous to
software, such as the possibility to build a system which can analyse and compile its own programs;
an approach that has no counterpart in hardware.

One of the very few trend-setting texts which emphasizes the use of special-purpose languages is
the book by Sussman and Abelson, (1985) Structure and Interpretation of Computer Programs, and
their use is one of the important messages in that book.

To summarize, we have made the following observations:

® by tradition in AI and KBS, Lisp is often as a VHLIL for implementing special-purpose
programming languages;

® SPPLs are important in practical software engineering;

® SPPLs have not been ‘discovered’ by the research communities in programming languages and
software engineering; '

® consequently, little research has been explicitly directed towards the development of actual
VHLILs, or to design principles for such languages.

As integration between knowledge-based systems and other aspects of computing increases,
there is a danger that the special character and special strength of KBSs are lost under the strong
constraints imposed by conventional operating systems, conventional data base systems, and
conventional programming languages. If we can identify and argue for the special significance of
SPPLs and VHLILSs, not only from the KBS point of view but from a general software engineering
point of view, then there will be a better chance for the special character of KBS to survive the
integration process.

2 Criteria for special-purpose languages and their implementations

Before proceeding to the réle of Lisp in the context of VHLILs, let us first discuss the
characteristics of good SPPLs and their implementation languages.

Probably the most important feature in an SPPL is conciseness. The thesis work of Tore Risch
(1978,1980) illustrates this point. The task that Risch undertook was to write an optimizing
translator from a fairly conventional query language to a corresponding, efficient Cobol program.
Optimization in this context means, for queries that refer to several relations or files, to select the
order in which the different relations are accessed, based on information about the ‘fan-in’ and
‘fan-out’ of each field in each relation. Risch compared the output of his compiler with the Cobol
programs that were manually written by the commercial programmers, and found a remarkably
high agreement. The query language, however, was considerably more concise: a query of a few -
lines expanded into almost as many pages of Cobol code.



Very high level implementation languages 149

A popular explanation for this factor of size is that it confirms what you already knew about the
verbosity of Cobol. However, the difference is so large that there must also be some other
explanation. In my opinion, one should understand it in terms of expressiveness: the ideal niche for
special-purpose programming language is an area which is semantically narrow, meaning that only
a limited set of programs and functionalities belong to it, and at the same time it is commercially
broad, meaning that there is a large demand for programs which fall within the niche. A special
purpose programming language for a semantically narrow niche only needs to express enough
information to identify one member from the rest of the niche. It can therefore be much more
concise than a language which identifies the intended program in the class of all possible computer
programs, as a general purpose programming language must do.

Interfaceability is another, very obvious requirement for an SPPL. It follows from the definition:
since a special-purpose language cannot satisfy all needs, it must usually be combined with other
special-purpose tools that solve the other parts of the whole given problem. Also, since require-
ments and technologies change, and SPPL must be designed and implemented with an open system
philosophy so that it can easily be interfaced to new products which appear in the future.

Interfaceability has implications for how the SPPL is implemented, but it also has consequences
for the language design: a clear semantics and clear language definition are important to make sure
that interfaces to other systems can be realized and maintained. This adds to all the other, well
known reasons for providing precise and clear language definitions.

Many SPPLs are, in principle, programmable editors, in a broad sense of the word ‘editor’. In
other words, they are primarily defined as a ‘system’ i.e., a program which enables the user to
operate on a particular kind of data structure, such as the text buffer in the text editor, or the
spreadsheet matrix in a spreadsheet system. The editor is made programmable so that sequences of
user commands can be turned into ‘subroutines’, and so that certain operations (such as updating
the screen) are performed automatically but in a way customized by the user. In such cases the
language aspect of the SPPL is secondary, and one should really see a generic software system,
(GSS), where the ‘language’ is a secondary design which is only needed to support the customiza-
tion facility.

Several examples of generic software systems come to mind easily: not only text editors such as
Emacs, and spreadsheet systems such as Visicalc, but also forms management systems, hypertext
systems, and more specialized ‘editors’ such as electronic mail systems and electronic calendars.
Non-interactive text formatting systems such as Latex are also generic software systems, although
not editors.

In all these generic editors the primary data structure that the editor operates on is fairly simple.
In addition, there is a whole range of ‘editors’ which perform complex and high-level operations on
a high-level and application-oriented data structure; for example, knowledge acquisition systems
and computer-aided design systems. Many such systems can also be configured using an auxiliary
programming language.

When an SPPL is really the language aspect of a generic software system, then the semantics
definition should start with a definition of a system’s primary data structure in high level terms. The
second step is to define the elementary operation of the software system, including the interactive
command language used by the user in case of an editor-type system. Only then is it meaningful to
define the syntax and the semantics of the SPPL as a language for defining more complex
operations on the primary data structure. In some earlier papers I proposed methods for defining
and compiling the formal semantics of editor-type generic software systems (Sandewall, 1983; a,b).

3 Programming environments for special purpose programming languages

In early history, the programming language was the primary design issue. The task in systems
building was to implement an efficient compiler for a given programming language and a given
target computer; a task which was also amenable to theoretical analysis for those so inclined, but
which did not seem to require any new concepts. The alternative approach of emphasizing the



E. SANDEWALL 150

programming environment developed primarily in the Lisp world (Teitelman, 1969; Sandewall,
1978), and started from the idea to organize a number of tools around a common, computer-
oriented representation of the program as a data structure. Translating a piece of program to
machine language was just one of the functions of the programming environment. During the
1980s, the concept of programming environments was adopted by other programming language
cultures, and has been generalized to other kinds of environments—for example, for software
development.

The common thread of this development has been to downplay the significance of the
programming language, and to emphasize the importance of the system for administrating pieces of
programs and performing various functions on them. These principles are naturally applicable to
special purpose programming languages as well as to general purpose ones (GPPLs). They also
combine with the above observation that some SPPLs are really just the customization language of
a generic software system. Since such a system in itself is typically a collection of tools for operating
on the primary data structure, the ‘programming environment’ for the SPPL is then merely defined
as being those of the tools that support the customization language.

In fact, for several reasons it is more convenient to develop a programming environment for an
SPPL than for a GPPL. The limited domain and limited expressiveness of the SPPL is one obvious
reason. If the SPPL is well designed and has a clear semantics, is not very complex, and only
addresses a limited range of functionalities, then one should be able to support it more effectively
than a general purpose language. This goes both for the compilation service, where the character-
istics of the SPPL’s niche can be utilized, as in Risch’s system, and for the user dialogue, which
could be set up in a domain-specific and therefore user-oriented fashion.

The limiting factor is of course cost. The development costs for programming environments of
modern general-purpose programming languages such as Ada appear to be astronomical. By its
very nature, a special purpose language and its user community cannot carry such expenditures.

There is an obvious and fascinating solution to this dilemma: let us drop the traditional notion
that an implementation language (for implementing programming languages and their program-
ming environments) should be as close to machine language as possible, presumably for perform-
ance reasons, and consider instead the possibility of very high level implementation languages which
are designed to be suitable for implementing SPPLs and generic software systems. The next section
discusses the requirements on such a VHLIL.

4 Requirements of very high level implementation languages

The discussion of SPPL and GSS above has a number of specific implications for the design of a
VHLIL. First, clearly the VHLIL should be able to host several SPPLs in a common environment
so as to provide as much support as possible for the bridgings between multiple SPPLs. Therefore,
the VHLIL must itself be a general purpose programming language.

Furthermore, since many SPPLs are attached to generic software systems, the VHLIL must be
suitable for implementing such a GSS. In particular, this means that the VHLIL must have full
access to dialogue screens and other user dialogue interfaces, file systems, data bases, computer
networks and other communication interfaces, and other systems programming services.

Almost all programming languages are designed so that programs are complex formulas, and
this goes for SPPLs as well. Language facilities for formula manipulation, such as the availability of
recursive data structures (list structures) and recursive program execution, are therefore elemen-
tary needs. This is particularly important, as the programming environment proceeds from only
offering a compilation or interpretation service, to providing a host of other operations on
programs.

A very important factor in any programming environment is the possibility to move easily
between program execution and program editing. It is unthinkable that the user of a programming
environment for one or more SPPLs should have to leave the environment to test-run his or her
programs, and the VHLIL must therefore be able to interpret SPPL programs. The natural way to



Very high level implementation languages 151

arrange this is to make the VHLIL itself interpretive, and to arrange it so that SPPL programs can
be compiled to VHLIL programs (possibly in a subset of the VHLIL), and that the VHLIL
programs can in their turn be compiled to a machine language level.

In Lisp this property is obtained automatically as a consequence of the non-distinction between
programs and data. It is so obvious in the Lisp community that I would not have to mention it here
except to point out how VHLILs naturally require a facility which is characteristic of Lisp but
unavailable in most other programming cultures.

In addition to these basic needs for the VHLIL, there is the obvious need for facilities which
increase the reusability of the various parts of the SPPL programming environment, and thereby
reduce the software costs. Standardized facilities for documentation (for example, a hypercard-
type facility); for user interaction (such as standardized window system) and so on are important in
that respect.

Another powerful tool for programming environments is partial evaluators. The first time I
thought of SPPL as an independent software technique was when we were using ATN grammars

- for syntax analysis, and predicate logic for deduction in a natural language project. We had written

interpreters for both the ATN language and for Horn clause logic, and wanted to compile both to
Lisp code. The idea we came up with was to write a universal tool which takes an interpreter and a
program which it can interpret, and which constructs from them a corresponding ‘compiled’
program in the language in which the interpreter is written. That universal tool, the partial
evaluator or partial interpreter, was first used for compiling a subset of predicate logic (Sandewall,
1971, 1973; Beckman et al., 1976), and was extended by Haraldsson et al. (1977, 1978; Emanuels-
son & Haraldsson, 1980) to other uses, and by Emanuelsson 1980 to partial evaluation of an
interpreter for pattern matching. The next step was taken by Komorowski (1981, 1982) who
transferred the partial interpretation idea for Lisp to Prolog, and generalized it to the notion of
partial deduction (Komorowski, 1989).

Partial evaluation is a powerful technique, but its successful usage depends on a number of
preconditions: it belongs naturally in an interpretive, symbol manipulating environment, and it can
only work if the SPPL at hand has been defined by an interpreter which is reasonably clean, simple,
and well organized. What was said above the need for precise and simple syntax and semantics for
SPPL is therefore also a precondition for the use of partial evaluation techniques.

5 Systems development environments

Since many special purpose languages are best seen as the language aspect of a generic software
system, it is natural to ask whether that holds for general purpose languages as well. Would it make
sense to view the systems development environment as the primary technical device, and the
programming language as the secondary instrument for tailoring the environment to particular
applications or application classes?

From the viewpoint of conventional programming languages, this would be a profound
paradigm shift, and it is well known how long it takes for those to happen. From the viewpoint of
Lisp culture the answer to the question is ‘yes, of course’, since already in the late 1960s Lisp
changed from a programming languages to a systems development environment, with list
structures (including programs) as the primary data structure. By a systems development
environment I mean a fully general GSS, which is more or less universally applicable.

In the context of the present paper, we must ask what would be the best implementation
technology for SPPLs, and for the GSSs that often carry them. Again, the answer to the question
must be ‘yes, of course’; a software development environment would be very suitable for
implementing SPPLs, and for two reasons. On the one hand, many of the functions which are
needed in a programming environment for an SPPL require manipulation of the object program,
for various kinds of program analysis and program transformation, including partial evaluation. A
generic software system which is particularly capable of handling programs is then an adequate
tool.



E. SANDEWALL 152

Also, when it comes to implementing generic software systems, notice that the very character of
a GSS is that it starts as a relatively general tool which is specialized to each particular application
area by adding more information to it. It would therefore be a very natural strategy to begin with a
super-generic software tool, i.e., the software development environment, which can at first be
specialized in various ways to create the various GSS, and which are then further specialized in turn
for each particular usage. The various techniques mentioned in the previous section, including
partial evaluation, tie in immediately with that notion. The same goes for the standardized facilities
for documentation, user interaction, etc.: they can now be viewed as organic parts of a software
development environment, continuously available as the environment is configured in various
directions.

Finally, the notion of a very configurable software development environment can contribute to
interfaceability between multiple SPPLs which may need to be combined in the same application.
If all the SPPLs are based on the same software development environment, then interaction
between them would at least be facilitated.

To summarize, the duality between special-purpose programming languages and generic
software systems is matched by a duality between VHLILs and software development environ-
ments. It is common to refer to the language, although the corresponding system is actually more
significant. We continue the tradition, so that the term VHLIL in the following sections actually
refers both to the language and the system.

In an earlier paper I described and discussed our experience using Lisp as a system development
environment for office information systems (Sandewall, 1986).

6 The role of Lisp as a VHLIL

The requirements of VHLIL described above are almost exactly an abstract description of Lisp,
but they have been independently derived from the basic characteristics and basic needs of SPPLs
and GSSs. In other words, if Lisp did not already exist it would have to be invented, since no
other*existing language is adequate as a VHLIL, and VHLILs are a useful and powerful concept.

There are already a number of examples of how Lisp is being used as a VHLIL, and as an
embedded language, in widespread software products: expert systems tools such as Epitool and
Kee, text editors such as Gnu Emacs, computer-aided design systems such as AutoCAD, data base
systems such as Mimer, and so forth. However, the total ‘market’ is several magnitudes larger than
the present usage, and it is therefore important to discuss what have been and what are the factors
that limit its more widespread usage.

Four factors stand out as being most significant: buyer and user acceptance; performance;
interfaceability; and standardization. The standardization, which is needed for very obvious
reasons, has obtained a solution through the establishment of the Commonlisp standard. Interface-
ability is needed because parts of a generic software system, or otherwise the run-time system for an
SPPL, needs to be written in languages other than Lisp, such as C, for example. The arrival of Lisp
systems which interface well with code modules written in other languages is therefore very
welcome, although long overdue.

But again, it is important to remember that systems, not languages, are the primary issue. It is
not enough to interface to other programming languages; there must also be interfaces to standard
text editors and formatters, standard data base systems, and standard user interface management
systems. Also, in designing such an interface, the rapport between the data structures in the
respective systems is at least as large a problem as the compatibility of the procedure invocation or
function-call mechanisms.

We all know that Lisp has a bad reputation with respect to performance, and that the reputation
is too pessimistic and not entirely deserved. Although much has been done to improve the
situation, more can and should be done. In many cases, it seems natural to only use Lisp for higher-

*Except, of course, those that are very similar with Lisp or contain an embedded Lisp system within them.



Very high level implementation languages 153

level parts of the system being developed, and to use other languages for ‘inner loops’ or
performance sensitive parts of the system. In such cases, improved interfaceability is essential for
dealing with the performance issue. In other cases, the special properties of Lisp are uniformly
valuable throughout the application, and then Lisp co-processors or even Lisp machines are the
natural way to go.

User and buyer acceptance, finally, is in a certain sense the crucial hurdle, but it also depends on
the other issues: if answers can be found to the problems of performance, interfaceability, and
standardization, then a good software product which happens to be wholly or partially imple-
mented in Lisp should not have any user acceptance problems.

But still it might: to gain acceptance a product must have not only technical strength, but also
credibility. It is important for the market acceptance of Lisp that we can explain its raison d’étre in
clear and convincing terms. The general views of Lisp as a language for list processing, for Al, or
for formula manipulation are simply not strong enough: not enough people identify with these
niches (when was the last time you had a list processing application?), and also these views fail to
explain the philosophical differences between Lisp and conventional third generation languages.
Why shouldn’t a programming language for Al or knowledge-based systems enjoy the blessings of
strong data types, block structure, and syntactic sugar?

My proposal here is that it would be better to advance Lisp as a VHLIL, since the need for
SPPLs, GSSs and VHLILs are readily received by practitioners, and since the distinguishing
characteristics of Lisp make perfect sense in that context.

This proposal also bears on the present trend to re-implement expert systems shells from Lisp to
a conventional language such as C. The reasons for the change are quoted in terms of performance
(in time and in memory space), interfaceability, and user acceptance. It seems to me that the
benefits of such reimplementations are often overstressed, and the disadvantages are under-
estimated, when this trend is described in the computing press. But again, the unique contributions
that Lisp can provide for an advanced expert systems shell are best formulated if the shell is seen as
a generic software system which needs an auxilliary special-purpose language, and for whose
implementation one needs a good VHLIL.

To summarize the situation, there has been significant progress in some of the areas which are
relevant for increasing the use of Lisp in practical computing, but a lot remains to be done. None of
the problems appears insurmountable in principle. The software developers which bet on Lisp as a
viable implementation instrument, have, in my opinion, a great opportunity for the future, but
need to put additional efforts into Lisp’s infrastructure. Also, we must all contribute to the analysis
of, and the public debate about, the deeper characteristics of Lisp visavis other programming
languages.

7 Lisp in the systém software borderland

My argument up to now has dealt with Lisp as a VHLIL for SPPLs, in general, subsuming
knowledge-based systems. Let me conclude with a few words about the possible role of Lisp in the
forthcoming restructuring of the systems software borderland. This term was introduced in a recent
paper (Sandewall, 1988), along with an argument about the sharp distinction that contemporary
software engineering makes between the operating system on one hand, and the programming
language(s) and its run-time system on the other.

In this context. I view the operating system as that software system which is in charge of the
primary dialogue with the user, and which is able to invoke other software systems supporting
general-purpose or special-purpose languages. By this definition I de-emphasize other standard
definitions of an operating system, such as the administrator of shared resources.

The réles for the operating system and for the programming system are well defined by the
conventional wisdom. It defines, for example, the character of the data structures that the
operating system maintains and the programming system uses, namely the usual structure of
directories containing files which are characterized by (mnemonic) character strings.



E. SANDEWALL 154

Two things are interesting about this interface between the operating system and the program-
ming systems: it is tailored to the realities of procedural or ‘third generation’ programming
languages, and it is very stable. The basic design choices are the same in operating system that are
now on the rise, such as Unix or (?) OS-2, as they were in OS-360, TOPS-10, and even in their now
forgotten predecessors. The reason is very simple: every new programming language and
programming system must be able to thrive under existing operating systems, and every new
operating system must accommodate existing programming systems.

Unfortunately, the character of this established interface is now completely inadequate, since
the requirements on the operating system must be seen as the requirements made by the common
generic software systems, and not as the requirements made by the common programming
languages. To mention just one example, consider how the realities of programming would change
if the operating system would offer a hypertext or ‘hypercard’ data base instead of the conventional
file directory, to be used as a common resource for all generic software systems. Such a change
would provide strong additional support, both for the organization of application data and for the
organization of the program and its documentation.

Thus the borderline area between the realm of the operating system (OS) and the programming
- system (PS) is today a border zone that is very difficult to transgress. In principle, one could obtain
amuch more interesting, and I believe a much better software technology if it were possible to draw
the line differently. In fact, one would then also realign the border between data base systems on
one hand, and the OS and PS on the other. The term systems software borderland was proposed in
Sandewall (1988), for this challenging problem area.

For the design of advanced knowledge-based systems, this borderline is a significant difficulty.
For traditional ‘crunching’ types of computing the problem is marginal, but the non-uniform data
and the close integration of programs and data that is characteristic of a knowledge base does not fit
comfortably with the traditional borderline.

The Lisp programming technology is likewise hurt by the current stalemate in the systems
software borderland, since the sevices offered by Lisp do not only fit on one side of the curtain.
This, I believe, was the most significant reason for the development and attraction of special Lisp
machines, and a much more important one than the hardware issue. The Lisp machines, of course,
dealt with the problem by going 100% for Lisp: when the computer uses Lisp as the only language,
even on the user entry level that is usually considered to be the turf of the operating system, then
the operating system is assimilated into the programming system, and the misplaced divider has
been removed.

Unfortunately, the result of the commercial experiment with Lisp machines was negative. One
may speculate; whether this outcome was necessary, and whether, for example, a Lisp-based
operating system on conventional hardware would have been more successful. Certainly in the
short-term the battle is now over, and it is hard to see any alternative to Unix as a host for Lisp
systems.

In a somewhat longer perspective it is, however, important to remember that the intrinsic
anomalies in the systems software borderland have not been resolved, only suppressed. The
deadlock that characterizes the situation only means that the revolution will be so much more
violent when the present structure collapses, as it eventually must, and a new structure establishes
itself. It is my very strong belief that the future good design for basic systems software will be a
generic, but highly general software system which supports a reportoire of several languages,
ranging from general purpose to special purpose and from high level to low level. Such a computing
environment will be able to accommodate knowledge processing as well as routine data processing.
When it is designed, many of the typical characteristics of Lisp will be retained—or reinvented.

References

Beckman, L, Haraldsson, A, Oskarsson, A and Sandewall, E. 1976, “A partial evaluator, and its use as a
programming tool” Artificial Intelligence 7 319-357.



Very high level implementation languages 155

Emanuelsson, P and Haraldsson, A, 1980, “On compiling embedded languages in LISP” In: Proceedings
Conference on LISP, Stanford, CA.

Emanuelsson, P, 1980, Performance Enhancement in a Well-structured Pattern Matcher through Partial
Evaluation PhD thesis, Link&ping University, Sweden.

Haraldsson, A, 1977, A Program Manipulation System Based on Partial Evaluation PhD thesis, Linkoping
University, Sweden.

Haraldsson, A, 1978, “A partial evaluator and its use for compiling iterative statements in LISP” In:
Proceedings Fifth Symposium on Principles of Programming Languages Tucson, AZ.

Komorowski, HJ, 1981, A Specification of an Abstract Prolog Machine and its Application to Partial
Evaluation PhD thesis, Linkoping University, Sweden.

Komorowski, HJ, 1982, “Partial evaluation as a means for inferring data structures in an applicative language:
a theory and implementation in the case of prolog” In: Proceedings 9th Annual ACM Symposium on
Principles of Programming Languages, Albuquerque, NM.

Komorowski, HJ, 1989, “Towards synthesis of programs in a partial deduction framework” In: Workshop on
Automating Software Design at IICAI 1989, Detroit, MI.

Risch, T, 1978, Compilation of Multiple File Queries in a Meta-database system PhD thesis, Linképing
University, Sweden.

Risch, T, 1980, “Production program generation in a flexible data dictionary system” In: Proceedings 6th
Conference on Very Large Data Bases.

Sandewall, E, 1971, “PCDB. a programming tool for management of a predicate calculus oriented data base”
In: International Joint Conference on Artificial Intelligence, pp 159-166.

Sandewall, E, 1973, “Conversion of predicate-calculus axioms, viewed as non-deterministic programs, to
corresponding deterministic programs” In: International Joint Conference on Artificial Intelligence.

Sandewall, E, 1978, “Programming in the interactive environment: The LISP experience” Computing Surveys
10(1) 35-71.

Sandewall, E, 1983a, “Formal specification and implementation of operations in information management
systems” In: J Heering and P Klint, editors, Colloquium Programmeeromgevingen, MC Syllabus
Mathematisch Centrum, Amsterdam.

Sandewall, E, 1983b, Theory of information management systems Technical report, Computer Science
Department, Link6ping University.

Sandewall, E, 1986, “Systems development environments” In: I Benson, editor, Intelligent Machinery:
Theory and Practice Cambridge University Press. ‘

Sandewall, E, 1988, “Future developments in artificial intelligence” In: European Conference on Artificial
Intelligence, pp 707-715, invited paper.

Sussman, G and Abelson, M, 1985, Structure and Interpretation of Computer Programs, MIT Press.

Teitelman, W, 1969, “Toward a programming laboratory” In: International Joint Conference on Artificial
Intelligence, pp 1-8.



	
	
	
	
	
	
	
	
	

