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Abstract

The relationship between quantitative/physical knowledge on
one hand, and qualitative/conceptual knowledge on the other
hand is discussed, in particular from the viewpoint of the de-
sign of autonomous agents. It is proposed to view quantitative
knowledge as the primary model of the world, and qualitative
knowledge as a secondary world model. The transformation
from primary to secondary model is seen as a kind of per-
ception transformation, and may be described as an automa-
ton. It is proposed that an equational style of specification,
called discontinuity equations, is appropriate for expressing
such transformations. Results regarding criteria for the ex-
istence of a unique solution to discontinuity equations, are
briefly reviewed. ‘

1 Conceptual and physical knowledge

1.1 Conceptual vs. physical knowledge

An intelligent autonomous agent that moves and acts in
the real world must be able to deal with both qualita-
tive and quantitative information about its environment
(and about itself). The qualitative knowledge, by con-
ventional wisdom, should use a conceptual structure that
is reminiscent of what we find ourselves using, for ex-
ample in natural language. It should use concepts and
constructs such as “objects”, “actions”, “events”, tem-
porally dependent “properties” of objects, and so forth.
The formal character of the conceptual structures may
be as wif in a suitable logic, or as partial interpretations
for logic formulas, or simply as high-level data structures
according to taste.

It is equally clear that the quantitative knowledge
must be organized according to the principles of classi-
cal engineering, with mathematics (especially calculus),
physics, and automatic control engineering in successive
layers providing both concepts and theory.
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It is not at all clear, however, how the qualitative,
concept-oriented knowledge is related to the quantitative,
physics-oriented knowledge, and what is the best kind
of formal description of such a relationship. The char-
acter of that relationship is very significant both from
a practical viewpoint (when designing intelligent robotic
systems), and theoretically in order to have a precise def-
inition of all aspects of intelligent agents. The purpose
of the present paper is to address that issue and propose
a well founded approach.

1.2 Time continuous fluents

We choose to describe all aspects of behavior as time-
continuous fluents, i.e. functions of time where time is
measured as real (or possibly rational) numbers. The
reason for this choice is that continuous time is necessary
in order to accomodate differential equations and other
aspects of mathematical calculus, which are the standard
tool for expressing quantitative knowledge. For compat-
ibility we assume that qualitative knowledge also refers
to continuous time. A qualitative fluent such as “John is
having dinner” is therefore seen as a function from the
real time axis to truth-values.- Since the range of such
qualitative fluents is a finite and discrete set, qualitative
fluents must be piecewise constant. In other words they
are time-continuous but amplitude-discrete.

Our topic can then be rephrased as follows: what is
the relationship between the amplitude-continuous, quan-
titative fluents and the amplitude-discrete, qualitative
fluents which occur in the quantitative resp. the quali-
tative accounts of one and the same scenario in the real
world?

1.3 Temporal span in qualitative fluents

It is important to notice that qualitative fluents which
capture conceptual information, can not be seen sim-
ply as predicates on the current value of a corresponding
quantitative fluent. For example, the conceptual fluent



“John is having dinner at the current time” can not be
determined by only taking a snapshot of the state of the
world itself at time ¢; one must also take the state of
the world during a preceding interval inté account. John
might for example be interrupting his dinner for a brief
phone call around time ¢, so that the snapshot catches
him doing something that is unrelated to the dinner.

For another example, consider the conceptual fluents
“car A is overtaking car B” and “car A is driving along-
side with car B”. Clearly each of these propositions would
qualify as a fluent, so that in a temporal logic using ex-
plicit time one should be able to say for example “during
the interval between time 56 and time 82, car A is over-
taking car B”, presumably expressed with a formula such
as .

[56,82]Overtakes(A, B)

The quantitative fluents for the automobiles can also be
easily defined, and would include for each of the cars its
position on the road as a function of time. However again
it would not be possible to define the transformation from
quantitative to qualitative fluent on a momentary basis,
since a snapshot of the two cars at one point in time is
not sufficient for determining whether car A is overtaking
or driving alongside car B at that time.

1.4 Proposal: automata as characteriz-
ers ‘

In view of the observations in the previous sections, the
following viewpoint is now proposed:

o A distinction is made between a primary and a sec-
ondary model of the world in itself

The primary world model is quantitative, as de-
scribed by physical or other scientific knowledge.
For example in the car scenario, the primary world
model would include quantitative fluents specify-
ing the position and other parameters of the cars
as functions of time. :

In general, each momentary world state s(¢), in the
primary world model, is constructed from objects
having a number of fluents such as mass, veloc-
ity, acceleration, temperature, and so on. Physi-
cal knowledge characterizes the primary world state
using the familiar concepts of calculus and physics.

The secondary world model contains qualitative/
conceptual knowledge, and characterizes the world
state and ‘its history indirectly and in aggregated
form. It is obtained from the primary world model
using a transformation with “memory” which I shall
call a characterizer, and which can be informally
thought of as a kind of perception function.
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In the most general formulation, the secondary worl¢
model at time ¢ can be seen as p(S(t)), where the
historical world state S(t) is defined as

S(t)={ur s(w)u <t}

i.e. as the history of the world up to the present
point in time. More specifically, however, the his-
torical information is captured by the agent’s cur-
rent state, which is dependent not only on its cur-
rent sensory input but also on its past history.

The reason for informally viewing the secondary world
model as the result of perception is as follows. Consider a
primitive device (or animal) which has the capabilities of
perception, action, and a limited amount of computation
for going from perception to action. It would be reason-
able to design (or evolve) such a device as a real-time
finite-state automaton, whose actions at each point in
time is determined by its current, discrete internal state
as well as by the quantitative value of its current inputs.
The design would therefore contain one component we
could speculatively call a perceiver, which maps continu-
ous sensory input to a piecewise constant fluent for inter-
nal state, and another component we could call an effec-
tor which maps (continuous sensory input) x (discrete
internal state) to (signals to actuators). — We ignore at
this time the sensory limitations, and a.pproxima.te s(2)
with the sensory input at time ¢.

When intelligence is added, in a next step of de-
vice evolution, it is natural to let the intelligence modify
rather than replace the low level behavior that was just
described. Using a temporal logic or by other means,
the intelligence should reason about the-intervals dur-
ing which the piecewise constant fluents in the internal
state have their distinct possible values. In particular
this gives the device a capability for temporal prediction,
which serves for making plans for sequences of actions
that exploit opportunities, or avoid a.cc1dents or other
disadvantages in its environment.

We use the term “characterizer” rather than “per-
ceiver” for the transformation from. continuous sensory
fluents to discrete conceptual fluents, since the analogy
with perception is only heuristic, and the design as such
has a mathematical and intended engineering character.

If time were seen as discrete, then the transformation
from the primary to the secondary world model could
therefore be written as an equation '

C(t) = ¢(5(1),C(t-1))

as illustrated in figure 1. The internal state C(t) that is
obtained from the characterizer sub-system is then used
both to control the choice of action in the lower behav-
ioral level of the layered agent, and as the basis for rea-
soning and other cognitive activities. The transformation



that is performed in the characterizer uses a current state
which is updated in each step. Below we will revise this
formulation so that it works for continuous time.

The internal state of the intelligent device is then seen
as a real-time knowledge base, and conceptual structures
are thought of as those discrete structures which are use-
ful to have in the internal state of an autonomous agent.
One consequence of this view is that to understand why
qualitative knowledge has the structure it has, it is im-
portant to understand the natural designs of character-
izers. Another consequence is that formal description
methods for characterizers are significant for A.L

1.5 Situated automata

The view proposed above is related to but distinct from
the view of situated automata proposed by Rosenschein
[Ros85, RK86], according to which it is possible to let the
internal state remain unanalyzed. Rosenschein defines
knowledge in an agent as follows: the agent is said to
know a proposition ¢ iff ¢ is true in all external states
S(t) such that p(S(t)) equals the current internal state of
the agent, where p is a function characterizing (but not
necessarily implementing) the agent. The idea is that
the internal state of the agent, or situated automaton,
should be seen as an implementation issue.

In situated automata, both physical and conceptual
knowledge therefore refer to the world state. There is
no connection between the evaluation of a proposition ¢
in S(t), and the actual computation of the internal state
p(5(t)). In my proposal, on the other hand, the only way
to evaluate the proposition ¢ in S(2) is to evaluate it in
the agent’s or automaton’s internal state C(t) = p(5(t)).

2 Formal specification of
characterizers

If conceptual information is seen as the result of “per-
ception” by characterizers, then it is important to find
concise modes of expressing and analyzing such charac-
terizers. Two obvious choices of formal approach come
to mind: direct use of logic, and the use of automata
approaches. In the former alternative, one uses a declar-
active formulation of the relationship between the his-
torical state S(t) of the environment, and its qualitative
description. In the latter approach one defines an au-
tomaton which can operate over continuous time, and
whose state C(t) contains the qualitative information for
time t. '

For a very simplistic example, the propositional fluent
“having dinner”, applied to a person, would be charac-
terized by an automaton which takes observations of the
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world as input, and where one component in the inter-
nal state is 7 during those intervals where the observed
person is having dinner.

2.1 Case study

Consider the simplest possible case of a characterizer
with internal state, namely the one illustrated in figure 2.
The input signal is a real number, and the output signal
is a truth-value, both of course as functions of time. The
output classifies the input as “high” or “low”, using the
two thresholds @ and b where a < b to determine when
the input “becomes” low and “becomes” high, respec-
tively.

In a conventional logic formulation, the criterium woul:
be expressed as follows:

d(t) > b= h(z)
d(t) < a = -h(t)
Jto[d(to) = a A Inside(to,t)] = -h(t)
Jto[d(to) = b A Inside(to, t)] = h(t)
where the auxiliary predicate Inside is defined by
Inside(to,t) & to <t AV [to <t/ <t = a<dt') < b]

This expression is actually still not complete, but suffices
as the basis for discussion. In the other approach one
characterizes the transformation from d to k as in figure
1, where there is an automaton (the characterizer) with
a feedback loop, so that the old value of the A fluent is
used for defining the new value. The characterizer ¢ is
specified by '

ho=[d<ars Fld>brs T[T hi

where h, is the output fluent from the characterizer, and
d and h; are the input fluents. The operator [...] is defined
like in LisP, so that = [a > y |J] is equivalent to (a =

z = y)A(~a = z = [J]). The feedback loop means that
h, and h; satisfy

hi(t) = ho(t - 1)

which can be rewritten more compactly as h; = Ah,,
where the previous value operator A is defined by A ft)=
f(t — 1). The total transformation from d to h = h, is
therefore the (or a) solution of the equation

h=[d<a» F|d>br T |T » Ah]

combined with a requirement on the initial value A(0).

The effect of the third branch of the conditional is
that if the “previous” value of h is known then the “next”
value is also known; the effect of the first two branches
is to specify when and how the value is to change.



2.2 Discussion

We have now seen two descriptions of the transforma-
tion from the quantitative world description, which in
this case is the continuous-valued fluent d, to the quali-
tative world description which in this toy example is the
truth-valued fluent h. In comparison, the first approach
uses logic in order to refer directly to earlier time, i.e. to
the full range of information in S(¢), and is clearly not a
viable alternative due to its complexity. The second ap-
proach essentially views the characterizer as a real-time
automaton where the fluent h, serves both as the inter-
nal state and as the output, and in addition the behavior
of the automaton is characterized equationally.

The automaton viewpoint is the obvious one to use,
due both to its conciseness and because it corresponds
to the intuitions — the state of the automaton can be
identified with the basis for the secondary, conceptual
world model as discussed above.

There are also other ways of defining automata, be-
sides the equational style. In the present context one
might define the characterizer by a set of assignment
rules, such as “when the input signal becomes > b, set
the output to 7”7. Alternatively one might define it in
two steps, where (for the example) the first step is a
“memory-less” classification of the input into the three
alternatives d > b, d < @, and a < d < b, and the second
step is a 3x2 transition table.

The pros and cons of those alternatives are discussed
| more extensively in the full version of the present pa-
per, which is available from the author. Briefly, however,
we are interested in an equational description because
of its formal similarity with differential equations, which
are a primary means of describing continuous physical
processes. For those cases where discrete and continu-
ous change is tied together, one would expect to obtain
more concise descriptions if both kinds of change can be
accomodated in the same, equational framework.

There is however one significant problem which still
has to be resolved: the characterizer function that was
defined above relies on the discreteness of the time do-
main, since the operator A refers to the value at the
previous time-point. The approach should therefore be
modified to consider the continuous-time equivalent of A
which refers to the “previous” value over an infinitesimal
time-step. This is the topic of the next section.

3 Discontinuity equations

3.1 Characterizers

The generalization to continuous time is straight-forward,
and relies on the following basic assumptions. We con-
sider fluents which are functions from real time, to some
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continuous domain (for example real numbers, or vectors
thereof), and which are piecewise continuous. In other
words, for each fluent A there is a set of real numbers,
called breakpoints, such that h(t) is continuous for all ¢
which are not breakpoints, and every finite interval con-
tains only a finite number of breakpoints.

The continuous counterparts of A are defined as fol-
lows. If f is a fluent, then Af is another fluent such that

Af(t) = Jlim f(¥)

which in particular means that outside breakpoints, A f(t)
= f(t). For example, if f is piecewise constant, has a
breakpoint for ¢t = @, and is b; for t < a and b for t > a,
then Af is b, for ¢t < a and by for ¢t > a. The "infinites-
imal delay” affects the value in the breakpoint a itself,
but not outside the breakpoint.

The left limit operator A is matched by a correspond-
ing right limit operator p defined by

H !
pf(t) = lim f(t)
Furthermore we assume for each fluent f that besides
piecewise continuity, Af(¢) and pf(t) shall be defined for
every 1. '

An equation with one or more fluents as unknowns
and which uses the operators A and p will be referred to
as a discontinuity equation. It makes sense to use A as
the infinitesimal counterpart of A, and by direct gener-
alization one would expect the discrete-time formulation
above to generalize to

h=[d<ar+» F|{d>b» T |T » Ah]

Below we introduce a standard form and criteria for dis-
continuity equations which guarantee the existence and
uniqueness of the solution. In this example the standard
form would be

h=ph=[d<a»F|d>2b»T|T  Ah]

However before turning to the formal part let us consider
also another example of a transformation which can be
characterized using discontinuity equations, and now a
task which uses a simple “data structure”.

3.2 Example: continuous set accumula-
tion

Consider the scenario described in figure 3. Fluents may
have ”car id” (for example the registration plate num-
ber) and "set of car ids” as values. A number of observer
automata c;, cg,... take suitable input, and have as out-
put the car id of the car that is being observed or was



most recently observed by the automaton.. Each ¢; is as-
sumed to be similar to the output fluent in the previous
example, satisfying ¢; = pe;. The output of the stack
of accumulation automata should be a set-valued fluent
whose value at each point in time is the set of all car
ids that have been or are being observed by any of the
observer automata.
If each accumulator f, = ¢(c, f;) is defined as

¢(C, ft) = {C} U fi

then the whole set accumulation process is the solution
of the discontinuity equation

fn=an=/\fnUUci'

which conforms to the same normal form as was men-
tioned in the previous example.

4 Determinacy of discontinuity equa-
tions

From a theoretical point of view we would first of all be
interested in knowing whether a discontinuity equation
has exactly one solution -for every choice of the depen-
dent fluent (such as d in the first example above) and
of the initial value for the solution. In such a case the
discontinuity equation should be called deterministic, by
analogy with the corresponding automata. Determinism
is only obtained, as we shall soon see, if some additional
requirements are imposed. ~

We would have a two-way interest in knowing the
criteria for determinacy: in some cases determinism is
desired and then we want to know what are the require-
ments for having it; in other applications one may wish
to represent non-determinism and one is interested in the
complementary requirements.

In this conference paper we only give a summary and
simplified account of the determinacy results. The com-
plete proofs are available in a separate paper[San90].

Let D; be a continuous or discrete domain, and D, be
a discrete domain. A fluent f is a piecewise continuous
mapping from the positive real numbers to D; or.to D,,
for which Af and pf exist at all times. A function

¢:D; xD, = D,

is called a characterizer from D; to D,. Characterizers
will be used as the right-hand side of discontinuity equa-
tions on standard form. If ¢ is a characterizer from D;
to D, and v € D,, then the eigendomain of ¢ for v is

defined as
{z | ¢(z,v) = v}
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i.e. the set of those z € D; for which ¢ maps v to itself.
A characterizer ¢ is said to be regular iff the following
two conditions are satisfied:
1. For every v and «,

¢(.’l:., ¢(:L‘, v)) = ¢(x’ 1’)

2. The union of the eigendomains for all » in D,
equals D;.

The first condition is equivalent to saying that z is in
the eigendomain of ¢(z,v), for all z and ». A character-
izer ¢ is said to be deterministic iff it is regular, and in
addition one of the following conditions applies:

1. For every v € D,, its eigendomain is an open set
i.e. does not include its edge

2. D; is a discrete set

A discontinuity equation is in standard form iff it has
the form

h = ph = (d, \R)
h(0) = ¢(d(0), ~(0))

where ¢ is a regular characterizer, d is a known fluent
where d = pd, and h is the unknown fluent. The first
line of the equation is taken as an abbreviation for

V0 < t = h(t) = ph(t)] A
V[0 < t = h(t) = $(d(2), \h(2))]

and it is easily seen that for every combination of fluents
d and h it is well defined whether this condition holds or
not.

We have proved[San90] the following

Lemma 1 Every fluent h which is a solution of a dis-
continuity equation on standard form satisfies

h = ¢(d, h)

Theorem 2 The standard form discontinuity equation
with deterministic characterizer ¢ has at least one solu-
tion, and ezactly one solution h for every choice of h(0).

In the example above, one would define ¢ as follows:
#z,T)=(z > a)
¢(z, F) = ~(z < b)

where the relations < and > are seen as truth-valued
functions. Thus the eigendomain of ¢ for 7 in this ex-
ample is {x | £ > e}, and the eigendomain for F.is
{z | z < b}. Therefore the eigendomain of ¢ for 7 con-
sists of those z such that if the input fluent is z, the
output fluent retains the value 7 if it already has it.
Likewise, the eigendomain for F consists of those z for
which the output fluent is able to retain the value F. The



two eigendomains are overlapping, open sets, and their
union covers the whole positive axis.

We can then re-obtain the tentative formulation of
the discontinuity equation for the first example, previ-
ously stated in section 3.1 above. The expressions for ¢
above can be equivalently re-written as

¢(z’ T) =

¢(CC, F ) =

and again as the deterministic characterizer
#(z,v) =

so that the discontinuity equation h = = ph =
becomes in this example

[z<a-F|T»>T)
[22b0—T|T» F]

[E<a—Flz2b—>T|T» 0]

$(d, \h)

h=ph=[d<a> F|d>b»T| T Ahj
which is what we had in section 3.1.
In theorem 2 both the requirement h = ph and the
" condition on h(0) are essential, as the following examples
show. Let ¢(z,v) be as above, and consider the input
fluent d defined by d(¢) = t.  The only corresponding
solution h is

h(t) = [t < b F| T T)

but if the condition h = ph is dropped then for example
the fluent

ht)=[t<(a+b)/2> F|T — T]

also satisfies the remaining equation. Also consider the
input fluent d defined by d(t) = a + ¢. The only corre-
sponding solution 4 is

h(t)=ft<b—a»F|T - T)

since a is only in the eigendomain for F, not for 7. How-
ever the fluent which is constantly 7 does satisfy h = ph
and b = ¢(d, Ah), and is only rejected if the condition on
h(0) is included.

5 Conclusions

The present version of the paper is very brief due to
the page constraints for the conference proceedings. A
more extensive version of the paper is available from the
author.

John Hallam’s comments about an earlier draft are
gratefully acknowledged.
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