INFORMATION PROCESSING 86, H.-J. Kugler (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1986

313

SPECIFICATION ENVIRONMENTS FOR INFORMATION

MANAGEMENT SYSTEMS

Erik SANDEWALL
Linkoping University
Linkoping, Sweden

By information management systems or
(synonymously) information manipulation systems,
we mean systems for piecewise, interactive
operations on information. The user of the IMS is
engaged in an interactive session, where here or she
_inputs successive pieces of information into the
system, navigates in the accumulated information,
modifies information locally, and obtains
presentations, on paper or other media, of selected
segments of the thus managed information.

This category of software includes text editors,
forms management systems, programming
environments, CAD systems for electronics,
mechanical engineering, etc. It also includes
specialized office services such as mail management
systems, computer based calenders, and ”to do”
systems.

As an application of artificial intelligence techniques,
we should also expect to see information
management systems where some of the low-level
operations are automated, so that the user can
delegate relatively routine tasks to the computer
system and have them be performed automatically,
and with some discretion and intelligence. Routine
communication tasks, in an electronic mail
environment, may be among the first to be
supported in that way.

Although IMS software occurs very frequently, little
theory is available for characterizing them. This
applies particularly for the office system type
services, which presumably have been considered to
be too mundane to merit the attention of
theoretically inclined researchers. Still, there is great
need for systematic understanding, and therefore for
the formation of theories, in the realm of IMS.
Available software is often unsystematic, and does
not identify and exploit those general principles and
regularities that do exist.

Specifications may play several roles in this area.
For one thing, we need specifications of the basic
and general-purpose services, such as plain text
editing. Such specifications are useful for guiding the
implementor, of course, but they can also serve a
very important goal by helping to identify general
design principles for editors in a broad sense of the
word. This becomes particularly important as we go

towards “integrated” editors i.e. editors that can
deal with text, forms, tables, graphs, pictures etc. in
a unified way. But in these cases the specifications
are not communicated to the end user of the IMS,
except indirectly if their structure is reflected in the
behavior of the system, or in its documentation.

One of the characteristic features of IMS systems is
the cursor. The.interactive operations are defined
relative to the cursor (add, delete, etc.), and some of
the operations have only the effect of moving the
cursor (next, down, etc. for positioning in a
structure). In some important cases there are several
cursors around. This creates a challenge when one
looks for formal specifications of IMS systems.
Cursor related operations are like operations with
side-effects, such as Lisp’s rplacd. However, since our
aim is to model something that already exists, we
can not apply the classical approach of normative
computer science ("if you can not find a theory for
it, ban it”). It is not possible to deny the existence
and usefulness of cursor related operations, and
therefore a theory for information management
systems is empirically inadequate until it has found
a nice way to account for cursor operations/side
effects.

Our approach to solve this problem has been
reported in ref. 1.

There is however also a need for specification of
another kind, namely the specification in the terms
of the end user. Contemporary specification
techniques are rarely adequate for that purpose. In
order to understand why, consider figure 1 which
shows a ’system’ which is controlled by a
’computer’. The system could be a mechanical
device, such as an automatic manufacturing cell in a
factory, or a steel plant, but it could also be an
administrative process.

A program is a prescription for the behavior of a
machine. Given the figure, we must ask ”which
machine”? One possible answer is to prescribe the
behavior of the computer, the data machine.
Anotner possible answer is to prescribe the behavior
of the total machine, e.g. the manufacturing cell.
Computer science has mostly been preoccupied with
the former viewpoint, that is to define the
input/output behavior of data machines relative to

314 E. Sandewall

its environment. But the development in the field of
robotics has clearly shown how the needs of the
operator or end user is best met if one writes
programs for the total machine, and then solves the
problem of how the computer system shall interpret
that program in order to perform its controlling
task.

The same distinction applies in the case of
administrative systems, although one may not
always be willing to refer to the organization as a
machine. None the less, it is important that a
specification for high level information management
services should be expressed in terms of the
information = management processes in the
organization that the computer serves, and not in
terms of the input/output behavior of the computer
visavi the organization.

One specific example, which we have studied in
research projects in our department, is for
information flow in organizations. Many routine
tasks are handled using forms, which are transmitted
from one agent in the organization to the next, and
which therefore describe paths according to
predetermined rules. Our system defines a graphical
notation for describing the information flow paths,
and the operations which take place along them. It
is assumed that each agent in the organization is
supported by a workstation, and that the
workstation should contain the necessary software
for carrying out this agent’s part of the information
flow path.

Usually there will be a many-to-many relation
between flow paths and user systems, since each
flow path affects several users, and each user
participates in several flow paths. We therefore need

/7 [T

system

to distinguish between the specification
environments, which are used for building up and
testing one flow path at a time, and the end-user
environments on the other hand. Each specification
environment must be able to cut up its flow path
into the appropriate segments, and distribute those
segments to the corresponding end-user
environments. The end-user environments, on the
other hand, must be able to receive such incoming
flow-path segments and integrate them into their
structure, in a way which accomplishes a good total
system for the end user.

A total system including such specification
environments and end-user environments has been
implemented, and has now gone through several
implementation generations. It has also been used in
a number of practical projects, and the whole
concept works to our full satisfaction. More detailed
descriptions of the project can be found in references
2, 3, and 4.

References.

1. Erik Sandewall: ”An Approzch to Information
Management Systems”. Report LiTH-MAT-R-82-19,
Linképing University, 1982.

2. Erik Sandewall: ”A description language and
pilot-system executive for information transport
systems”. In: Proc. of the Fifth International Conf.
on Very Large Data Bases, Rio de Janeiro, 1979.

3. Hans Gill et al.: ”A Notation for Information
Flow Models Supporting Interactive System
Development”. In: Proc. of the 6th Annual Symp. on
Computer Applications in Medical Care,
Washington, D.C., 1982.

4. Erik Sandewall: ”System Development
Environments”. In: ”Intelligent Machinery - Theory
and Practice” (Ian Benson, ed). Cambridge
University Press, 1985

	
	

