Nonmonotonic Inference Rules for Multiple
Inheritance with Exceptions

ERIK SANDEWALL

The semantics of inheritance “hierarchies” with multiple inher-
itance and exceptions is discussed, and a partial semantics in terms
of a number of structure types is defined. Previously proposed in-
ference systems for inheritance with exceptions are discussed. A
new and improved inference system is proposed, using a fixed
number of nonmonotonic inference rules. The hierarchy is viewed
as a set of atomic propositions using the two relations isa (sub-
sumption) and nisa (nonsubsumption). General results concerning
systems of nonmonotonic inference rules can immediately be ap-
plied to the proposed inference system.

I. MULTIPLE INHERITANCE WITH EXCEPTIONS: SURPRISINGLY
DirricuLt

Inheritance “hierarchies’” are a classical mechanism in
artificial intelligence. They allow information to be stated
about general concepts, and to be ““inherited”” by their spe-
cializations and instantiations, through one or more layers.
Unlike the block structures, and other inheritance mech-
anisms in other branches of computer science outside Al,
artificial intelligence research has often emphasized the
need for multiple inheritance, where a more specific con-
cept may inherit information from several more general
concepts. For example, the concept “boy”’ should be able
to inherit information both from ‘“male person’’ and from
“’child,” neither of which is a specialization of the other.

A second requirement on practical inheritance hierar-
chies is that they should allow for exceptions. For example,
the concept “ostrich” is a specialization of “’bird,” and
should inherit the properties of birds, except certain prop-
erties such as being able to fly.

Exceptions are fairly easy to deal with in single-inheri-
tance systems, and can be obtained through conventional
block structures. Multiple inheritance without exceptions
is also easy to deal with theoretically. The combined struc-
~ ture, multiple inheritance with exceptions, offers, however,
anumber of unpleasant and challenging surprises. The pur-
pose of the present section is to discuss them. In the sequel,
we shall use the shorter term “inheritance systems’” for our
topic, since the precise term “‘systems with multiple in-
heritance and exceptions” is too elaborate.

Manuscript received May 6, 1985; revised May 6, 1986. This re-
search was supported by the Swedish Board of Technical Devel-
opment.

The author is with the Department of Computer and Information
Science, Linkoping University, 58183 Linkoping, Sweden.

We shall represent exceptions through separate excep-
tion links in the structure, as previously used by Fahlman
[2], Etherington and Reiter [1], and Touretzky [7]. One then
has a structure of nodes, and two kinds of links between
nodes, which will here be written isa(x, y) and nisa(x, y). The
intended meaning is “any x is usually ay’’ and "“any x is usu-
ally notay,” respectively. The inclusion of “usually’”” means
that those statements may be qualified by other links in the
hierarchy. For example, some of the peculiar properties of
ostriches and penguins, relative to other birds, may be ex-
pressed as follows:

isa(Ostrich, Bird)
isa(Penguin, Bird)

isa(Bird, AbleToFly)
nisa(Ostrich, AbleToFly)
nisa(Bird, UprightWalker)
isa(Penguin, UprightWalker)

Fig. 1 illustrates this structure, and it also illustrates the
graphical notation that we shall use in the sequel (and which

AbleToFly UprightWalker

© Bird

Ostrich Penguin

Fig. 1.

is standard in the literature); namely, to represent isa by an
ordinary arrow and nisa by an arrow with crossbars.

The primary use of such a structure is to ““answer ques-
tions,” or more specifically, for answering questions about
explicit and implicit (derivable) links between nodes. If / is
an inheritance structure, then an extension of / is a larger
structure which contains the same nodes and links as /, but
where some additional links may have been added; namely,
all those links that can be derived from the links in /. (No

0018-9219/86/1000-1345$01.00 © 1986 IEEE

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

1345

Fig. 2.

extra nodes may be added.) Fig. 2 shows the extension of
the structure in Fig. 1.

We shall now consider three inheritance structures which
are particularly interesting, and which we shall refer to as
Type 1, Type 2, and Type 3 structures. Each of them is a con-
figuration of afew nodes and arcs, so a practical inheritance
structure may contain one or more substructures of each
type.

The following often-used example, also shown in Fig. 3(a),
is a Type 1 structure:

isa(Clyde, RoyalElephant)
isa(RoyalElephant, Elephant)
isa(Elephant, Gray)
nisa(RoyalElephant, Gray)

Gray

© Ulephant

° Royalklephant
Clyde
@
R Gruy
't Elephant
A Royalilephant
6

Clyde
(b)
Fig. 3. (a) Type 1.

1346

In this example, we wish to be able to infer
nisa(Clyde, Gray)

because he is a RoyalElephant, which are known to be
non-Gray. Thus the nisa link from RoyalElephant to Gray in-
hibits the transitivity of isa links, which would otherwise
imply

isa(RoyalElephant, Gray)

causing a contradiction (or implying that there are no
RoyalElephants). Furthermore, we wish to be able to infer,
in this example,

isa(Clyde, Elephant)
but still the transitive conclusion from that statement plus
isa(Elephant, Gray)

should be blocked.

The particular problem with Type 1structures is that they
introduce nonmonotonicity. Consider the structure in Fig.
3(b), which is a part of Fig. 3(a). The extension of Fig. 3(b)
naturally contains the link

isa(Clyde, Gray)

Thus as we go from the structure in Fig. 3(b), to the larger
structure in Fig. 3(a), some of the possible conclusions are
lost. We say that a logical system is monotonic if it satisfies

A € B = Th(A) < Th(B)

where A and B are sets of propositions, and Th(A) is the set
of conclusions that can be obtained from A, i.e., the ex-
tension. If in our case we let A and B be sets of links, then
Type 1 structures fail to satisfy the property of monoton-
icity.

T);le following is the standard example of a Type 2 struc-
ture, also illustrated in Fig. 4:

isa(Nixon, Republican)
isa(Nixon, Quaker)
isa(Quaker, Pacifist)
nisa(Republican, Pacifist)

Pacirist
(.3

L)

Quaker

Sixon

Fig. 4. Type 2.

The puzzling question is of course: is Nixon a Pacifist or
is he not? The stance that one usually takes is that this struc-
ture has two distinct extensions, as shown in Fig. 5(a) and
(b). In one extension, Nixon is a Pacifist, and in the other
extension Nixon is not a Pacifist.

If such a structure arises in a practical situation, one
would, of course, expect the software to look for additional
information which allows it to choose between those two
alternatives. But as long as we only study the inheritance

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

(@ (b)
Fig. 5.

structures themselves, the additional information is not
available, and the only possible approaches are to allow
both alternatives, or to ban such structures altogether.

Although there are two possible extensions, it is not per-
mitted to mix them arbitrarily. For example, if the original
structure also contains the link

isa(RichardNixon, Nixon)

which makes sense if the node ““Nixon"’ refers to any mem-
ber of the Nixon family, then the first extension would con-
tain the link

isa(RichardNixon, Pacifist)
and the second extension would instead contain the link
nisa(RichardNixon, Pacifist).

Fig. 6(a) and (b) shows the revised extensions. Notice how
the relation between the nodes RichardNixon and Pacifist

Republican Quaker

>
Richarillixon

(a)

(b)

Fig. 6.

SANDEWALL: INFERENCE RULES FOR MULTIPLE INHERITANCE

are obtained from a Type 1 structure in both cases. An in-
correctly designed inference system would produce four
extensions, including one where Nixon is a Pacifist and
RichardNixon is not, and also the reversed one. Touretzky
uses the term decoupling for that anomaly.

It should not come as a surprise that multiple extensions
arise in the same context as nonmonotonicity. Sandewall
[4] describes the nonmonotonic operator Unless, and the
observation that it leads to multiple extensions.

The following is a Type 3 structure, also illustrated in Fig.
7:

isa(Whale, Mammal)
isa(Mammal, LandAnimal)
nisa(Whale, LandAnimal)
isa(LandAnimal, x).

-4

LandAninmal

) nmmedd
N

>

> Uhale

Fig. 7. Type 3.

The issue is whether the link
isa(Whale, x)

should be allowed in the extension(s) of this structure. It
seems natural that the answer must be “’no,” since the only
reason why a Whale would be an x is by the three-step isa
chain, and the nisa link specifies an exception to its lower
two links. However, if the link

isa(Mammal, x)

is added to the original structure as an independent fact,
then there does not seem to be any reason for not drawing
the conclusion that Whales are x’s. This means that different
facts have a different derivational “‘power.” The distinction
is not simply between axioms and derived facts, however.
Suppose that the two links

isa(Mammal, y)
isa(y, x)

are both added, then again one should be allowed to con-
clude that Whales are x’s. The difference in derivational
“power” is, therefore, made on the basis of derivational
dependency, or whichlinks are derived from, and therefore
dependent on which other links.

The following example also illustrates this point. Sup-
pose we augment the ‘’Nixon" example of Type 2 struc-
tures, with the additional link

isa(Pacifist, DraftEvader)

as in Fig. 8. Like before, we have two choices for the relation

1347

DraftEvader

Kepublicnan Quaker

Nixon

Fig. 8. Type 3B.

between the Nixon and Pacifist concepts, as shown in Figs.
9(a) and 10(a). The corresponding extensions are shown in
Figs. 9(b) and 10(b). The case of Fig. 9(b) offers no surprises,
but in Fig. 10(b) both the following links are derived ones:

nisa(Nixon, Pacifist)
isa(Quaker, DraftEvader)

and if those links would have equal status, then one should
be allowed to derive

0

(a) (b)
Fig. 9.

¢
()
Fig. 10. (b) Type 3B.

1348

isa(Nixon, DraftEvader)

but it would seem unsatisfactory to accept that conclusion,
since it relies on the existence of an implicit link

isa(Nixon, Pacifist)

which has been rejected by the choice of a nisa link instead
between those two nodes. We refer to this structure as Type
3B.

In the context of derivational history, we must also con-
sider the structure shown in Fig. 11, which we shall refer

Gray

Elephant

RoyalElephant

Clyde
Fig. 11. Type 1B.

to as Type 1B. It is like Type 1, except that the link
isa(Clyde, Elephant)

in the example is now an axiom rather than a derived link.
We require that also in this case there shall be only one ex-
tension, where Clyde is non-Gray, just like in Type 1.

Type 1B is also similar to Type 2 structures, except that
in Type 1B we have the extra ““diagonal” link, namely

isa(RoyalElephant, Elephant)

in the example. It is this extra link that restricts one of the
two extensions that Type 2 structures have.

Finally, we give in Fig. 12 a slightly more complex ex-
ample, which does not introduce any new situation type,

N
NN
N

but which illustrates the applications of the given three
types. (The representation by formulas is omitted.) Fig. 13(a)
and (b) shows structures which must certainly be admitted

Fig. 12.

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

(@

(b)

()

Fig. 13.

as extensions. Butwhat about the structurein Fig. 13(c)? The
link isa(a, f) may not be derived from isa(a, d) and isa(d, f),
since we have a Type 1 substructure with a, b, d, f. It could,
however, be obtained from isa(a, ¢) and isa(c, f), since the
nodes a, b, ¢, f form a Type 2 substructure.

At this point it is clear that the structures of multiple in-
heritance with exceptions have a very nonstandard logic.
Their analysis requires the use of concepts such as “‘con-
clusions’ and ““derivation,” but the three types of special
structures all run counter to the traditional rules and in-
tuitions of logic. Type 1 structures show that we have non-
monotonicity; Type 2 structures show that we have to deal
with multiple extensions; and Type 3 structures show how
the logical dependency between propositions affect the
possible conclusions.

Before we proceed to the formal treatment of these struc-
tures, we must, therefore, discuss in some more depth how
they relate to ordinary logic.

SANDEWALL: INFERENCE RULES FOR MULTIPLE INHERITANCE

Il. PHILOSOPHICAL ASPECTS OF INHERITANCE SYSTEMS

The concept of having several extensions in a logical sys-
tem is an unusual one, and may be considered hard to ac-
cept. That depends, however, on what we think of as the
goal for logic. If the goal is to formulate what are the ad-
missible conclusions, one at a time, from a given set of ax-
ioms, then one will expect to have a unique extension;
namely, the set of all (individually) admissible conclusions.
If, on the other hand, one takes as the goal to specify what
are admissible belief structures, when a certain set of “’base
beliefs”” is given, then one should not be so disturbed by
the existence of several distinct, but admissible belief struc-
tures or extensions. Thus the quest for monotonicity is re-
lated to the yearning for the single truth.

We proceed now to the issue of semantics. In order to
develop a logical theory, one must first identify the struc-
ture of the phenomena that one wishes to describe, and
then define the language and inference machinery of the
logic, i.e., the syntax of formulas, the choice of axioms and
inference rules, and so forth. The semantics of the logical
theory is then the formal expression of the ““structure of the
phenomena,” together with an account of how it relates to
the selected language.

In the case of inheritance systems, it is not so easy to de-
fine semantics. One might like to base semantics on the
notion of individual objects, which are “members of”’ or
“included in"’ the concepts represented by nodes in the
inheritance structure. Then isa(x, y) would mean some-
thing along the lines of ““all x are y”’ or, since exceptions are
allowed, ““most x are y.” Exactly what does ““most”’ mean?
Suppose 90 percent is sufficient. But then if we have

isa(xg, X1), isa(x1, X2), ..., isa(xq, Xq9)

we might in the worst case obtain that only about 35 percent
of the xg are x;q!

Another annoying problem is that when we analyze fine
points of the proposed system (e.g., whether to admit the
extension in Fig. 13(c)), proposed solutions cannot be re-
futed by concrete counter-examples, exactly because it is
the purpose of the system to accomodate occasional
counter-examples. Consider the example of a Type 3 struc-
ture that was given above, where the issue was whether

isa(Whale, x)
should be an admitted conclusion. If we select
x = AnimalWithLegs

then all the links in the structure are in accordance with our
common sense knowledge, and isa(Whale, x) should not
follow. If, on the other hand, we select

x = AnimalThatObtainsOxygenFromAtmosphere

then again all the links in the structure agree with common
sense knowledge, and it would be correct for isa(Whale, x)
to follow. (We cannot choose x = AnimalWithLungs since
insects do not have lungs.) Regardless whether isa(Whale,
x) is in the extension or not, we can accomodate both
choices of x in an application, simply by adding an extra isa
or an extra nisa link, for the case where the deduction ma-
chinery does not yield the desired result.

The task of defining an inheritance system might, there-
fore, be thought of as a design task, rather than as the task

1349

of identifying the correct forms of reasoning. The system
should be designed so that reasonable consistency is ob-
tained, and so that one minimizes the number of extra isa
or nisa links that have to be introduced in order to adapt
the results of the inference machinery to reality.

The published attempts to define the formal properties
of inheritance systems have, therefore, used a nonstandard
inference process for defining extensions. One then de-
fines an inference operator that will add one more link (or
other, similar construct) to an inheritance structure. The
admissible extensions of an inheritance structure / are de-
fined to be those supersets of / which are closed with re-
spect to the inference operator (i.e., everything that the op-
eratorwould add to the closure, is already a member there),
and which are well founded (i.e., all members of the ex-
tension must either be members of /, or have been obtained
through the inference process).

By the standards of traditional logic, it is debatable
whether such an inference process qualifies as a satisfac-
tory semantics. One would like to have a semantics which
defines the underlying meaning, and which the inference
process could be measured against. But as we have already
seen, such an underlying meaning is hard to identify and
make precise. Inheritance systems were introduced be-
cause of their utility, not because of elegant formal prop-
erties.

Another, although related, problem is that the inference
processes for inheritance systems that have been proposed
so far, are not particularly transparent. The reader is not
likely to accept them as they stand, and in fact the only rea-
sonable way to approach them is through specific cases,
like our Type 1, 2, and 3 structures. 1, therefore, propose
that we consider such collections of structure types as the
definition of the semantics, for the time being. They do sat-
isfy two basic requirements for a semantics: they can easily
be grasped intuitively, and one can effectively determine
whether a proposed inference process will deal with them
correctly. The remaining problem is that they are only par-
tial semantics, so itwould be possible to have two inference
processes, both of which agree with the semantics, i.e., they
treat the specified structure types correctly, but still they
can be proven to be nonequivalent. If and when that hap-
pens, one will have to identify additional structure types for
which those processes differ, and add them to the seman-
tics, thereby making it more precise.

If we think of logic and/or information science as an em-
pirical endeavor, where information structures which ac-
tually occur in the real world are identified and formally
characterized, then such an iterative strategy should be
quite acceptable.

I, CURRENT THEORIES FOR INHERITANCE SYSTEMS
A. Etherington and Reiter: Default Logic

Etherington and Reiter [1] express each link in the in-
heritance structure as an inference rule in default logic [3].
They give criteria and proofs for the existence of exten-
sions, and prove the correctness of certain inference al-
gorithms. They claim that the resulting system defines a se-
mantics for inheritance systems.

Their approach, however, suffers from the problem that
the transformation from links to inference rules is not a lo-

1350

cal operation. In the “Clyde’” example for Type 1 structures,
for instance, the link that we represented as

isa(Elephant, Gray)
would have to be rewritten as

if Elephant (x) ,

and unless it leads to a contradiction to assume
Gray(x) A = RoyalElephant (x)

then Gray (x)

As Touretzky [6] pointed out, the need to write excep-
tional cases explicitly into the inference rules that may be
affected by them, is very impractical. Also, of course, the
very point with nonmonotonic reasoning and exception
links is that we should not have to perform that chore.

In order to deal with Type 3 structures, where deriva-
tional dependency comes into play, one would presumably
have to introduce additional artifacts into the inference ma-
chinery.

B. Touretzky’s Theory for Inheritance Systems

Touretzky [6], [7], uses an approach which is more remote
from ordinary logic: he considers an inheritance system as
a set of paths, where each path is an annotated sequence
of nodes. A link is a path of length 2, and in the originally
given structure all paths are links. The inference operator
combines two paths of length k into one new path of length
k + 1. Therefore, unlike ordinary logic, each derived path
contains its entire derivation history. This allows a correct
treatment of Type 3 structures. Also, although the inference
operator primarily operates on two existing paths, it may
be inhibited by other paths in the structure. This allows a
correct treatment of Type 1 and Type 2 structures as well.

The following summarizes the concepts and notation that
areusedin[7, ch. 2], together with some additional notation
that we need.

We consider sequences uy,. . ., u,), called paths, where
each u; has either of the following forms

+X;
—X;

where again each x; is a node in the network, and where the
sign must be + in each u;, except u,,. (Minus signs in other
positions would be used, e.g., for “‘non-x objects are y’s,”
expressed as

(=x, +y>

but Touretzky [7] daes not analyze such constructs.)
Touretzky [7] also allows u; of the form

#x;

but we ignore that case here since it does not add to the
difficulty of the analysis. A path characterizes the con-
junction of the following propositions:

isa(xy, X3)

isa(x,, X3)

isa(x,_ 1 Xa), ifu, = +x,
nisa(x, - 1 Xp), if Up = —Xp.

We write u + v when u and v contain the same node but
with opposite signs. (Thus + is a relation symbol here.) If

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

& is a set of paths, C(®) is defined by
C®) = {(uq, up) | Cuq, Uy, ..., u,) € D).

A path ¢ = (uy, Uy, ..., U, -4, u,), where n > 2, is said
to be inheritable in a set & of paths iff the following holds:

<U1,...,Un_1> ed
{Up, ..., u>ed

$ does not contradict o
® does not preclude ¢

where the last two conditions are defined as follows:

& contradicts ¢ iff some (u,, v) € C(®)
where v + u; for some i.
® precludes o iff some (v, w) € ® where w + uy
for some k, where
1 < k < n, and either
v = u, for some i < k, or:
Uy oo Ui, Vg, oo, Vi, Uiy) €D
and v = v; for some j
and1 < i<k

Actually, Touretzky [7] first introduces this definition with
the stronger restriction k = n, and then relaxes it to the
above formulation. He hypothesises that the two variants
result in the same extensions.

The set & of paths is a grounded expansion of a set S iff:

Scd
& is closed under inheritance
every path in & — S is inheritable in ®.

This is what we have called an extension above, and we shall
use the two terms synonymously.

Since an inherited path is longer than the two paths that
were used to form it, for every grounded expansion & of
S there must be some sequence of sets

SOIS']I"‘ISm

where S = S,, S,, = ®, and each §; is obtained from its pre-
decessor by adding one or more paths that is inheritable
inS;_1.

It is easy to verify that this definition treats our structure
types correctly. In Type 1structures there are two potential
and contradictory derived links (Clyde is Gray or non-Gray,
in the example), and one of them has to be inhibited. This
is done through the preclusion condition. The two ““either”
cases in the definition of preclusion deal with Type 1 and
Type 1B, respectively.

In Type 2 structures, the two extensions are again ob-
tained through the preclusion condition, which guarantees
that whichever of the competing links is derived first, that
will inhibit the other.

Type 3 structures, finally, are handled correctly by virtue
of the contradiction requirement. For Type 3B, the last
clause in the definition of agrounded expansion plays a key
role for avoiding the incorrect conclusion

isa(Nixon, DraftEvader)

in the example in Fig. 10(b). That proposition is, in fact, de-
rivable in some subsets of the grounded expansion, but it
is not rederivable in the full expansion.

As we have already discussed, it is difficult to understand
the full consequences of Touretzky's definitions. For ex-
ample, although Type 1B is handled correctly, the slightly

SANDEWALL: INFERENCE RULES FOR MULTIPLE INHERITANCE

Gray

Elephant

RoyalElephant

AfricanElephant

Clyde
Fig. 14. Type 1C.

modified structure shown in Fig. 14 will result in two ex-
tensions, i.e., one where Clyde is Gray and one where he
is non-Gray. The reason is that the definition of preclusion
only allows the sequence of nodes v;, . . ., v, to be inserted
between two successive nodes u;and u; , 1, so the extra node
“AfricanElephant” in Fig. 14 results in a loss of the preclu-
sion condition. We refer to this structure as Type 1C.

This apparent anomaly supports our suggestion that the
collection of structure types should be seen as the currently
available, partial semantics for inheritance systems. New,
proposed theories for inheritance should first be calibrated
against that semantics, and only then should one maybe
investigate whether they are equivalent to Touretzky’s or
other existing theories.

IV. AN ALTERNATIVE INFERENCE MACHINERY, USING
NONMONOTONIC LOGIC, FOR MULTIPLE INHERITANCE WITH
EXCEPTION

Touretzky chose to use paths, or sequences of nodes, as
the “propositions’ in his inference machinery. This allows
him to capture the special properties of the structure types,
but it disassociates him from ordinary logic, which makes
it particularly difficult to extend the system, or combine it
with other logic. Etherington and Reiter, on the other hand,
stayed within anonmonotonic logic with considerable gen-
erality, but at the expense of sacrificing the spirit of ex-
ception statements.

In this section we shall show that it is possible to obtain
the best of both worlds. We use propositions of the fol-
lowing forms:

isax(x, y, s)
isa(x, y, s)
precl(x, y, z, s)
cntr(x, y, z, 5)

where x, y, and z are nodes, and s is either of the symbols
+ or —. The ternary isa relation is defined by

isa(x, y, +) =isa(x, y)
isa(x, y, —) = nisa(x, y).

If we wish to stay within a single-sorted logic we can, of
course, view ternary isa as an abbreviation. Type 3 struc-
tures, and the dependency conditions they imply, are han-
dled by the separate relation isax which is a stronger form
of isa. Thus isax(x, y, s) means that isa(x, y, s) independently
of other links. In practice one would use isax for stating the
explicitly given facts, or axioms (hence the relation’s name),

1351

or at least for stating those explicitly given facts that are
known to be independent of all others. The relation isa is
then used for both given and derived links. This machinery
is counterintuitive, since it makes an irrelevant distinc-
tion—between given and derived facts—and fails to make
the relevant distinction of when there are dependencies
between facts. However, it does work, since independent,
derived facts are treated in a different way, and as we do
not view the inference machinery as a way of clarifying the
semantics we do not have any qualms about it.

The relations precl and cntr are used for technical pur-
poses, which will be apparent in the inference rules. They
are vaguely related to Touretzky’s preclusion and contra-
diction conditions, respectively.

If sis + or —, then —s is the opposite sign as s.

Inference rules are written in the general form “If &, is
known, and &, is not known, then infer ®,.”” As we showed
in [5] one may determine extensions for such rules as fol-
lows: Construct a sequence of successively increasing sets
of propositions,

Lo Ty To...,Th ...

where each T ,, is constructed from T; by selecting an in-
stantiation of a rule where &, is a subset of T';, and &, is dis-
joint from T';, and then choosing T';,; as I'; U &;. The pro-
cess is continued to its (possibly infinite) limit, where we
obtain an extension. Depending on the order in which the
rules are applied, we may obtain several different exten-
sions. Among them, all consistent extensions are accepted,
but not those extensions containing both the propositions
p and —p for some p.

Intuitively speaking, this makes it possible for an infer-
ence rule to generate ““mines’” which will later on create a
contradiction in the proof sequence, and thereby render
it invalid. The relations precl and cntr are used for exactly
this purpose.

The following is our set of inference rules:

1) ifisax(x,y,s)eT
then add to I
isa(x, y, s)
2) ifisa(x,y,s)eTl
then add to I':
—isa(x, y, —s)
3) if the following are members of I':
isa(x, y, +)
isa(y, z, s)
and the following are not members of I':
isa(x, z, —S)
" cntr(x, y, z, 5)
then add to I:
isa(x, z, s)
precl(x, y, z, s)
—cntr(x, y, z,)
4) if the following are members of I':
precl(x, y, z, s)
isa(x, v, +)
isa(v, y, +)
then add to T':
precl(x, v, z, s)
5) if the following are members of I':
precl(x, y, z, s)
isa(y, z, —s)

1352

thenadd toT:

-isa(y, z, —s)
6) if the following are members of I':

isa(x, y, +)
isa(y, z, +)
isa(x, z, —)
isa(z, v, s)

and the following is not a member of I':
isax(y, v, s)

then add to T
cntr(x, y, v,).

In order to understand how these rules work, let us first
ignore Rule 6 and the cntr literals in Rule 3. The thus sim-
plified rules are sufficient for dealing with Type 1 and Type
2 structures, and their variants.

Rule 3 is set up so that it will not produce combinations
of the form

isa(x, y, +)and isa(x, y, —)

which would immediately lead to a contradiction through
Rule 2. Through Rule 3 we, therefore, obtain a correct treat-
ment of Type 2 structures. Also, when Rule 3 is applied, the
auxiliary proposition

precl(x, y, z, s)

is obtained. Rule 4 then “slides’ the second argument of
the precl proposition down through the structure, which
is used for spotting Type 1, 1B, and 1C structures. Rule 5
is used to invalidate undesirable extensions. (This is a coun-
terpart of backtracking, in the logical system.)

Consider, for example, the contents of Fig. 3(a), which
would be represented in our notation as follows:

isa(Clyde, RoyalElephant, +)
isa(RoyalElephant, Elephant, +)
isa(Elephant, Gray, +)
isa(RoyalElephant, Gray, —).

There are two main alternatives for the order in which the
inference rules are applied. If we start by inferring that Clyde
is non-Gray, we obtain using Rule 3:

isa(Clyde, Gray, —)
precl(Clyde, RoyalElephant, Gray, —).

After that we also conclude that Clyde is an elephant, and
obtain:

isa(Clyde, Elephant, +)
precl(Clyde, RoyalElephant, Elephant, +)

An attempt to deduce that Clyde is Gray at this point is pre-
vented by the inhibiting conditions in Rule 3, since we have
already concluded that he is non-Gray.

In the other main alternative, we do not first conclude
that Clyde is non-Gray. Instead we start with

isa(Clyde, Elephant, +)
precl (Clyde, RoyalElephant, Elephant, +)

using Rule 3, and then

isa(Clyde, Gray, +)
precl(Clyde, Elephant, Gray, +).

At this point we cannot conclude that Clyde is non-Gray,
because of the symmetrical character of Rule 3. However,

PROCEEDINGS OF THE IEEE, VOL. 74, NO. 10, OCTOBER 1986

Rule 4 allows us to conclude
precl(Clyde, RoyalElephant, Gray, +)

and then Rule 5 identifies the problem and reacts by in-
tentionally creating a contradiction, namely

—isa(RoyalElephant, Gray, —)
which contradicts what was originally stated as
isa(RoyalElephant, Gray, —).

In summary, two extensions are created, but one of them
develops an inconsistency, and only the other one is ad-
missible. For simplicity, in this example we have started from
the isa propositions, and ignored the original step from isax
to isa.

This machinery for Type 1 structures also prevents de-
coupling.

For Type 3 structures, we need the full set of rules. Rule
6 identifies the Type 3 structure. For example, in Fig. 7, we
would have x = Whale, y = Mammal, z = LandAnimal, and
v = x in Rule 6. Also Rule 6 can be applied if isa(Mammal,
x) is only a derived link, but not if it is a given link, because
in the latter case there will be an isax proposition. The con-
clusion from Rule 6,

cntr(x, y, v, S)
indicates that it is not allowed to combine

isa(x, y, +)
isa(y, v, s)

using Rule 3. Rule 3, therefore, checks for this condition in
a nonmonotonic assumption, so if Rule 6 has been used
then Rule 3 will not be applied. On the other hand, if Rule
3 has been applied first, then Rule 6 will be applied anyway,
and acontradiction will occur which will invalidate the pres-
ent derivation.

If the “bypass link” isa(Mammal, x) is derived but in-
dependent, because there is some separate node r for which
isa(Mammal, r) and isa(r, x), then it will not be possible to
chain isa(Whale, Mammal) with isa(Mammal, x), to obtain
the conclusion isa(Whale, x) that we should be allowed to
have in this case. However, the desired conclusion can be
obtained in another order, namely

isa(Whale, Mammal)
isa(Whale, r)
isa(Whale, x)

without being inhibited by Rule 6.

In summary, the proposed inference machinery handles
the three structure types and their variants correctly. It is
clearly not equivalent to Touretzky’s machinery since they
handle Type 1C differently. It would probably not lead to

SANDEWALL: INFERENCE RULES FOR MULTIPLE INHERITANCE

any complications to change his system in that respect, but
we have not tried to prove the equivalence between a re-
vision of his system and our system.

It is certainly too early to claim that the present system,
or any other proposed inference machinery, deals correctly
with all situation types that one can think of. (In particular,
the literature rarely deals with the case of circular isa struc-
tures, and they are also not represented in the structure
types in this paper.) In fact, it is not even clear that there
will always be a good common-sense answer as to what is
the correct way of dealing with a situation type. The present
contribution is only claimed to be a step in the iterative dis-
covery process that we must pursue at present. Meanwhile,
it has also pointed towards a way of accomodating the pe-
culiar characteristics of inheritance systems semantics in
nonmonotonic logic, for which some results at least are
known. Thus itis not necessary to use the inheritance paths,
containing the trace of the derivation, as Touretzky does.

In a previous paper about nonmonotonic logic [5], we
proved results for systems of nonmonotonic inference rules
which are directly applicable here. The following results
follow directly, with the requirement on extensions that
they must be consistent as we have assumed in this section:

Proposition: Let & and " be two extensions of an in-
heritance structure S, for which ® € ®’. Then & = &'.

Proposition. Every union of distinct extensions of an in-
heritance structure, is inconsistent.

Touretzky proved these results for his system, but for the
latter proposition his proof only applies if the isa relation
in S is acyclic. By relying on nonmonotonic logic we obtain
the same results as special cases of generally applicable
theorems, and we obtain a more general result since we do
not need the limitation of an acyclic isa relation.

REFERENCES

[1] D.W. Etherington and R. Reiter, “On inheritance hierarchies
with exceptions,” in Proc. (U.S.) Nat. Conf. on Atrtificial Intel-
ligence, pp. 104-108, 1983.

[2] S.E.Fahlman, NETL: A System for Representing and Using Real-
World Knowledge. Cambridge, MA: MIT Press, 1979.

[3] R.Reiter, ““A logic for default reasoning,” Artificial Intell., vol.
13, no. 1, pp. 81-132, 1980.

[4] E.Sandewall, “An approach to the frame problem, and its im-
plementation,” in B. Meltzer and D. Michie, Eds., Machine In-
telligence 7. New York, NY: Wiley, 1972, pp. 195-204.

[5] —,“Afunctional approach to non-monotonic logic,” in Proc.
1985 Int. Joint. Conf. on Artificial Intelligence, pp. 00-00, 1985,
and Computat. Intell., vol. 1, no. 2, pp. 00-00, 1985.

[6] D.S. Touretzky, “Implicit ordering of defaults in inheritance
systems,” in Proc. (U.S.) Nat. Conf. on Artificial Intelligence,
pp. 322-325, 1984.

[71 —, “The mathematics of inheritance systems,” Rep. CMU-
CS-84-136, Dep. Comput. Sci., Carnegie-Mellon Univ., Pitts-
burgh, PA, 1984; also London, UK: Pitman, 1986.

1353

	
	
	
	
	
	
	
	
	

