O,
gooo [\ Ae o
sorols) oBg —
(co00600900
S g B8
78—\ eoe = _Ij]
/i
—/
—)

PROFESSOR ERIK SANDEWALL
System development environments

7.1 Introduction

There is a need to bring about a synthesis of knowledge
engineering techniques or expert system techniques on the one hand,
and conventional software engineering on the other. This arises from
the limited market and limited range of applications for the separate
expert system tools that we see today. There would be much more
applicability if we could embed intelligent facilities of the type that
expert systems provide into conventional software.

My recommendation for how to bring that about is that we should
try to unpackage expert systems. Instead of buying or building fixed
packages which promise to serve as a shell for an expert system, we
should look inside them to see what software engineering techniques
are being used there. We should then try to apply the same software
engineering techniques for more mundane purposes.

In this essay I want to show how that recommendation can be
carried out, in the particular context of office systems. I will do this
not only as a pedagogical exercise, but also as a report from actual
research projects. I have outlined the steps which we have gone
through in our own research. We started as an artificial intelligence
group quite a number of years ago and in the middle 70’s a large part
of our group switched its focus to study office systems. So we have

System devq&gment environments 107

been working for a number of years on office systems but from the
background and the perspective of artificial intelligence.

7.2 An Al perspective on office systems

The standard computer-based office services are certainly
familiar from the literature, and many people today use them in their
daily business. There is a need for text editing and handling
structured data such as forms, and for various services such as
computer mail. The computer calendar is often described and often
implemented but apparently not so often used. It is of course an
attractive concept in principle. You will also find a need for several
more specialised services in each office application of computers,
such as mailing lists and various aspects of accounting.

During the first phase of our research, we allowed our software to
grow and built up the software that provided these various services in
our own working environment. While we did so, we also gradually
tried to generalise on the software that was being used. One of the
steps that turned out useful was to build a general purpose editor. We
called it ED3 because it operated on tree structures. (The Swedish
language doesn’t have the ‘th’ sound, so 3 and tree sounded similar to
us) (Stromfors and Jonesjo 1981).

The idea in ED3 is that, instead of having a text editor, you have an
editor which operates on a tree. The user decides how he wants to
organise his data in terms of this tree. For example, if you have alarge
document which is conveniently organised as chapters, sections, and
so on, then you would let each of those subdivisions be one part of the
tree. If you have a program which has a block structure, then you
have a similar natural tree structure in your data.

So one of the two basic parts of the ED3 editor allowed the user to
change the structure of a tree: to add, delete, or move whole branches
of a tree. The other basic part allowed him to do text editing in the
leaves of the trees. Each leaf, or terminal node, of the tree was
supposed to be a piece of text. Gradually, as we used it, we recognised
that there was a need for other kinds of leaves. Sometimes it was
convenient to let one leaf be a figure, a graph, a picture, a table or
some other collection of structured data. The number of variants and
extensions of this tree editor grew. There was EDG for graphics,
EDF for forms and so on, and ED* for the most general system.

Similar ideas have emerged in other places, and are presently
becoming popular under the catchword of ‘outline processors’.

108 Intelligent machinery: theory and *+7ctice

These general purpose editors capture one key idea in what we think
is the key software engineering principle used in Al — always try to
write general purpose software that applies to tagged data. Instead of
having a number of separate programs, each of which applies to one
specific kind of data, we attempt to write one program which is ableto
cover all those needs, at least when those programs have a similar
structure. We organise the data so that local tags specify which
specific kind of data occurs in each position.

This might seem like a very simple observation, and it is a very
simple observation, but at the same time it does run counter to some
of the underlying practices and underlying principles of conventional
programming languages. When you start out to write a program in
COBOL, PASCAL, or any other conventional programming lan-
guage, you first write declarations of the data you are going to use.
After that, you write procedures which operate relative to the
declarations. Your program is therefore tied down to those particular
data structures that are expressed in the declarations. If you have a
number of different applications which require essentially the same
procedures, but different data structures, this programming disci-
pline forces you, or at least strongly encourages you, to write several
programs with a similar procedure content.

The alternative is, not to begin by writing the declarations. Instead
write the program first, and organise it so that the declarations are
variable. This is often an issue which is brought up in the debate
about conventional programming languages versus languages such as
LISP or PROLOG. The proponents of the classical languages
complain about the lack of declarations in, for example, LISP. The
answer is that people in the LISP culture certainly see the need for
descriptions of the structure of data. That facility is so important that
it should not be restricted to be just a constant for a program. It is
important to be able to write programs which can accept data
descriptions, i.e. the kind of information that you put in declarations,
and which can decode those data descriptions. Instead of having fixed
declarations in the program, we should be able to treat the declar-
ations as data structures and let the program decode them.

We then proceeded to examine the specialised services in our office
environment. We found some services which could be satisfied in the
context of that tree structure editor or outline processor. We took the
opportunity to implement various services as far as possible in the
uniform environment rather than build special software for it. There
were also some applications in the office environment that required

System development environments 109

more than the general purpose editor could provide. This led us to
implement a number of tools for these particular classes of applica-
tions (Sandewall 1982).

One very obvious tool was a forms handler, or forms management
system. It was of course an example of the principle of writing general
software rather than using declarations. A second tool which built on
the forms management tool was an information flow handler. The
need for this tool was first seen in an application in the university
hospital, namely the information traffic between the patient ward and
the laboratory for chemical analysis of samples from patients.

Essentially, the patient ward issues purchase requests, internal
requests for analysis for each sample that they wanted to have
processed. In the daily work of the hospital, this request was issued
using forms on paper. The very simple observations we made were
that lots of forms are used in organisations, and when you complete a
form you almost never proceed to put it in the drawer of your desk.
Rather, when you have completed a form you send it on to somebody
else. That other person is likely either to add some more information
to it and send it on again, or he or she will leave it on his desk for a
while and later do something to it, more or less immediately.

If you trace the itineraries that are taken by forms in the
organisation, you will see certain standard paths, but also cases where
a form goes on a unique route. The degree of standardisation of the
itineraries depends on the character of the organisation and the topic
that the form addresses. In the particular cases we looked at first,
there were very strongly standardised paths for the forms.

They went from the ward where the patient and the doctor were
located to the chemical laboratory and from there back to the ward, as
well as to central files, to accounting, and so on.

A reasonable way of describing this data processing service was
therefore to draw a flow graph which showed how these forms, or
these packages of information, were created in one part of the
organisation, and how they were sent on from workstation to
workstation or from person to person, and how finally the informa-
tion ended up in data bases which were more or less longlived. For the
purpose of a systems designer, and for the purpose of dialogue with
the end users, it was very convenient to use an ad hoc graphical
language to describe the flow paths. We used it for specification work.
We also implemented a tool whereby we could input such a flow
graph into the computer, and interpret it in prototype style in order to
show what the intended new services would be like when imple-

110 Intelligent machinery: theory and ; otice

mented on personal computers. After this prototype had been
debugged in cooperation with the users, it could be rapidly transfer-
red to everyday use. '

The software for supporting the information flow is also an
example of another principle that we inherited from our previous Al
activities. In Al research projects there are a large number of cases
where people write special purpose tools which operate on a special
purpose language. They have identified some aspect of the applica-
tion domain or some aspect of a technical system which lends itself to
a concise description in a special purpose language. Then they
implement an interpreter or a compiler for that language. Indeed
LISP has been characterised as a very high level implementation
language. It is a very convenient tool if you want to implement a
number of such special purpose languages, and enable them to work
nicely together. We brought the same practice into the more
mundane domain of office systems.

Another such tool, which we also found quite convenient, was
dialogue software supporting dialogue transition networks (Hég-
glund 1980, Higglund and Oskarsson 1975). You can think of them
as a tool for writing adventure games. There seem to be quite a
number of applications where the user needs to navigate in a dialogue
space. Each point in the space, or each node in the dialogue transition
network, consists of one interaction. In each node of the network, the
user is presented with one printout, or one screenful from the
computer. Also for each node the allowable inputs from the user were
defined. The present node and the user input together determine the
next node to be used in the dialogue.

This dialogue pattern re-emerged from time to time. Of course if
the network is very simple you can implement it easily in any
programming language and environment, but quite often we needed
to have a fairly large number of such nodes, and a large space for the
user to navigate in. Then it was convenient to have a tool where you
could interactively build the network and interpret it. This brought
several advantages, including the advantage of rapid prototyping.
We would let the system designer and the end user sit together at the
terminal. The end user could try his hand (or her hand) navigating in
the dialogue network to get things done. If some aspect of the system
seemed to be counterintuitive or difficult to understand, then the
system designer, who was the other person at the terminal, could go
in and very rapidly modify the network and let the user try again.

System deve’~doment environments 111

Yet another tool, and the last one which I will describe, was a tool
for distribution of modules to subsystems (Sandewall e al. 1981).
This need arose especially as an extension of the information flow
service. In the organisation we looked at there were a number of
workstations, and hence a number of users. There were also a
nutpber of separate services, each of which could well be described as
an information flow. So we had a kind of a matrix structure for the
software. Each user, or each user workstation, was affected by a
nurpber of the services, and each service affected several work-
stations.

Because of the 2-dimensional structure of the problem, we had a
difference between how we wanted to cut the software at develop-
ment time, and how we wanted to cut it at run time. At development
time it was reasonable to develop each of these information flow
services, one at a time. We could take a bird’s eye view of how one
particular kind of information package would flow through the
organisation. At run time, however, we wanted instead to have the
software which was relevant for one particular user in his or her
workstation, or in his or her workspace in the central computer.

The appropriate tool for the development phase, therefore, was a
development environment which contained one information flow
model, including all the components for all the different users which
were involved along its flow path. When the model had been
debugged, we wanted to decompose it into the pieces which belonged
to the individual workers along the path, and distribute those pieces
to the end user environments of the respective participants. Con-
versely, since each end user environment needed contributions from
several flow paths, it needed to receive contributions from several
such development environments. This defined how the general
purpose module distribution system should work. It should allow
one to generate a contribution from one environment and send it to
another environment where it could be nicely integrated into the
right places.

In order to get that principle to work properly we needed to pick up
yet one other key method from artificial intelligence software
techniques. Namely, it was necessary to store data, and descriptions
of data and procedures, in an integrated way in a data base. In
traditional programming we are used to storing data and programs as
text 'ﬁles, which means that manipulation of the procedures and

manipulation of special purpose languages becomes fairly difficult.

112 Intelligent machinery: theory and practice

What we do instead in the Al style software technology is to define a
data base in which different kinds of formulae can be stored, and
where executable procedures are just one kind of data.

This is also the kind of structure that we needed in these
development systems or development environments. In them, we
needed to manipulate forms descriptions, information flow descrip-
tions, descriptions of end user environments, descriptions of the
topology of the total data processing system that one was operating
against, and so on. Based on these various special purpose descrip-
tions, this environment must be able to extract the structures that
could be sent out to the target workstations for run-time use.

A common idea in this list of key methods is that we used a system
development environment, a kind of computer aided design system
for software in order to support the various tools.

7.3 Some lessons from Al-based software technology

This section looks retrospectively at the experience that was
gained during this period. What did the software look like? What
were the bottlenecks? What were the difficulties which had to be
overcome in later generations of the system? Secondly, I want to look
over these methods from several ordinary points of view: the point of
view of the programmer, the point of view of the end user and so on.

First, let us consider the software that was built. We thought while
we were doing the work that we did a fairly decent job as
programmers. Things were done according to the best prescriptions
of structured programming, project management and soon. Yet after
a number of years, of course, the accumulated set of software was
fairly large and fairly difficult to extend and to work with. We went
back to try to identify where the complexity arose. Which were the
parts of the system that were difficult to develop and to maintain? For
this analysis, we needed a model, shown in Figure 7.1, of the total
structure of the system.

At the heart, we had the program execution system, which was a
variety of the INTERLISP system. This provided the database in
which descriptions and programs could be stored. There were
various low level routines subordinate to it for executing services
such as screen management, handling small text objects and so on.
Immediately above the level of the program execution system, we had
a number of information handling tools, such as forms management,
command dialogue, configuration control, sending things to other
environments and so on. Above it again, we had the level of

System development environments 113

1ng tools such as the information flow tool that I
described, and a few other, similar ones. Finally, on the highest level
we had the specific services, so, for example, each particular use of
the information flow model would be located on the top level.

In this software architecture, the complexity was quite clearly
located on the level of information handling tools. The extent to
which it was concentrated there was very surprising. The program
execution system was given and did not offer any problems. The
lovyest level consisted of a few individual routines which could be
written easily by any competent programmer, e.g. a competent
undergraduate in computer science. Given a specification, he would
goaway and write the program and come back with it completed. The
application modelling tools were also surprisingly simple. In the case
of information flow, for example, the actual work of implementing
the information flow model, given that the forms management
system and the other underlying tools existed, was quite small

application modeli

Figure 7.1: Software architecture for Linkoping Office Information

System
Specific
services
») Application
nformation. Patient management modelling
flow activities model tools

Information
Configuration handling
control tools

User dialogue
by network
model

Forms;
management:

Program execution system
(interlisp system)

Low-level Handling Low-level

screen small text procedures
management| objects

114 Intelligent machinery: theory and praciice

(Sandewall 1979). This has later been cc...irmed in th.. continuation
of the project, where the idea of information flow has been transferred
to software companies who built such information flow handlers on
top of their forms management software and database software.
Again the same story repeated: it was a small piece of software work.
All the complexity arose on the level of the information handling
tools. We therefore took as one of our goals in the research project to
look over that level, as well as the total structure of the software, in
order to reduce the complexity.

We now think the key to dealing with that complexity is to
recognise an essential similarity between many of the office services.
Essentially, in the office environment again and again we are building
special purpose “mumble management systems” where mumble is a
variable. We write telegram management systems that we call
computer mail systems; appointment management systems that we
call computer calendars; management systems for munaging duties
and promises which we call tickler files, and so on. The key idea in
each of these is that you have a system which allows you to store data
in the computer, and to put it in and bring it out piecewise. So another
good term would be systems for piecewise operations on data — put the
datain, move itaround a bit and print it outin various projections and
selections. In fact, this general framework also covers some types of
software which are not usually thought of as office software, for
example, computer aided design systems.

The first observation was that we have a lot of mumble manage-
ment systems around. The second observation was that the essential
similarity between many of those services are hidden by the
terminology: not only by the names we assign to these systems, but
also because there are a lot of unnecessary differences between their
user interfaces. The end users repeatedly complained that the sets of
operations were difficult to remember because “the same thing was
called different names in different systems”. This indicated an
awareness and a perception from the end users that there was really
“the same thing” in different software. So sometimes you have to
write PRINT, sometimes TYPE, sometimes DISPLAY, and some-
times SHOW in order to see something on the terminal. If you want
the information on a printer you say LIST or PRINT or maybe
OUTPUT. Entering data is called ENTER or CREATE or NEW, or
mayte you go into the editor even if you have new data. DELETE
can be called REMOVE and I think several of us have sometimes
searched frantically for the magic word that you need to get out of a

u_y.ubll;. 'uz.;ruo.wpulw/u t;;LOL?;/;u/w/ua 110
piece software. & ‘f\'uld you say EXIT or STOP or QUIT or OK or
BYE or whatever? '

Clearly some kind of normalisation is needed here. Ideally, we
should not have several separate systems in parallel to each other at
all. Notice the reason that we have all the different names for the
“same” operation is not that somebody intentionally created those
alternative list of names in order to confuse the user. The reason is
that we actually have parallel sets of software doing similar things.
There is one whole program which does the operations in the first
column of Figure 7.2, another program which does the operations in
the second column, and so on. Instead of that software architecture,
we would like to have a single piece of software which supports a
matrix organisation, where the different operations with standard-
ised names are listed in one dimension: PRINT, LIST, ENTER,
EDIT and so on. The other dimension lists the various contexts or the
various data environments. Ideally again, we would like to write the
procedure for each of those operations just once.

In practice, that is not entirely possible. But there are going to be
some differences (although perhaps marginal ones) between how you
print out one entry in the mail system, and how you print out one
entry in the address directory. The differences may depend on the
structure of the data, but they may also depend on the character of the

Figure 7.2: An interactive command thesaurus

Application

1 2 3 4 5

PRINT TYPE PRINT DISPLAY SHOW
LIST PRINT LIST COPY OUTPUT
ENTER ENTER CREATE NEW EDIT
EDIT UPDATE EDIT CHANGE EDIT

DELETE REMOVE DELETE DELETE DELETE

EXIT STOP END QUIT OK

116 Intelligent machinery: theory and praciice

application. So just having one proced...e for each o. _..e commands is
not rich enough. What we can do instead is to say that for each context
C and for each operation OP there should be one operator definition
procedure. Often the operation definition procedure for similar
contexts C or similar operations OP will be roughly the same.

In the worst case you have one procedure for each combination of
context and operation. In practice we can rationalise it. In some cases
several operations require a similar procedure and then we can form
the abstraction from them. In some other cases the procedures
associated with two different operations differ in some details. Then
what you want to do is to write a joint procedure which covers the
similarities, and also to have small attachments to those procedures
which account for the differences between the operations.

Another thing about this repertoire of standardised operations is
that many of them involve a traversal. In many cases the data
structure is some kind of tree. Many of the standard operations make
a scan over that tree and do something locally in each node. As an
extension of the abstraction process, many of the operations can be
characterised by a canned procedure which just traverses the tree,
plus information which is specific to each operation. The add-on
information specifies what to do in the leaf of a tree, what to do if the
sub-tree you are trying to traverse does not exist and so on. For
example, if you make a data access and you are trying toaccessa piece
of information which does not exist, you will just give up. On the
other hand, if you try to put the information into a part of the tree,
and the place where you are trying to put it does not exist, then it
should be created and inserted into the tree so that you can put your
data there.

The general framework was therefore to identify those operations
which had the character of tree traversal, and to form a joint
- abstraction for them. We then associated the general purpose tree
traversal procedure with that abstraction. With the lower level nodes
in the abstraction tree for operations we associated the detailed
procedures which specify how to handle the leaf, and how to handle a
missing daughter in the tree, and so on.

Using the design principles that I have now outlined, we were able
to rewrite the editor level of the system. After a number of iterations
over complex systems, we were able to build a compact system which
served quite well in the office environment, and which implemented
these key methods which we carried with us as our methodological

baggage.

g s g e

Cle. . ; none of services which I have described contains any
particular intelligence. If we look back on the figure of the structure
of the software (Figure 7.1), the logical place to put the kind of
intelligence facilities that are used in expert systems and other Al
systems is on the level of application modelling tools. Things like
rule-based reasoning, and maybe also truth maintenance logically
belong there. We therefore thought it was encouraging that what we
did on this level was relatively simple and turned out to be easy to
implement. That showed that in terms of the complexity constraints
of the total system, there was a lot of available “space” there. After we
had brought everything into good order up to the level of this
information management system, we were able to provide the
standard office services very easily. We felt we had plenty of room for
adding more intelligence. ' -

This observation provides the key to the strategy I want to propose
for introducing Al techniques and expert system techniques into
conventional data processing. If you feel that today’s expert system
packages do significant things for you, if they are worth their price
and if they are worth the effort of introducing them, then fine, go
ahead. If it is instead your feeling that the expert system technology is
not yet mature for the applications you have in mind, then maybe you
wish to wait a few years before putting it into wider application in
your own operations. At the same time you may be looking for ways
of positioning yourself, and positioning your software so that those
same Al techniques can be introduced easily and flexibly when the
time arrives.

The style of software architecture which is described in this paper
may then fit in nicely. It has a lot of merit in itself, so it is worth doing
quite apart from whether you are going to use Al later on. But, at the
same time, it puts you in a much better position for introducing Al
techniques later on, than if you pursue the traditional COBOL-based
or similar software engineering methods.

7.4 New approaches to systems development

In the final part of this essay I want to review the proposed
software strategy from a number of additional viewpoints. After all, if
we introduce a new software strategy we must know what we are
doing. We must know how it affects everything else that is important
in the operation of data processing.

Software engineering. Let us first consider how this strategy can be

113 Intelligent machinery: theory ana praclice

seen from a general engineering vi .point. Th cerm “software
engineering” has been introduced in order to suggest similarities with
other branches of engineering, and to suggest that this is a branch of
engineering (which is not entirely obvious to other engineers). It has
also been introduced in order to encourage us to borrow ideas and
principles from other branches of engineering.

One of the standard engineering methods, which is very often
recommended, is modularity. It is considered to be a good idea to
recognise recurrent phenomena and recurrent needs, and to package
solutions for those needs into a standardised format. Usually
modularity has been identified with the use of subroutines or other
similar things, which means that modules are components which can
be assembled into larger systems. Now I claim that, in engineering in
general, this is not the only important aspect of modularity.

One example of subroutine style modularity is shown in Figure
7.3. Here we have built an aeroplane from standardised components.
Of course, the components do not always fit the purpose precisely,
but at least something has been built.

Figure 7.4 shows an example of the other kind of modularity,
which is sometimes referred to as a universal tool. Here the
designer of this tool has identified one class of applications in the
workshop and has built a tool which supports whatever is common

Figure 7.3: Subroutine style modularity

OYIEHL UEVCLUPIILETLL CILULI VI 11

o

Figure 7.4: '_.\'universal tool

iy N

I
A4

3

U,

I

Ji

3

—ou

12U 1nieligent macminery. iheory and praciice

for that whole class of application. .he commc tool here, the
universal tool, contains an electric motor, and a cord, and controls so
that you can turn on and turn off the motor. A wide flexibility is
guaranteed because we can make various attachments to the chuck: a
drill, a polisher, and so on. Almost everything that is significant for
the use of this tool is concentrated in the exchangeable parts. On the
other hand consider the total cost of the system: the major cost is in
that part which is common. Another thing which is very important is
that there must be a device (in this case the chuck) which allows you to
easily and safely swop the changeable parts.

What has been shown here is not the same kind of modularity as we
had in the previous case: it is not the modularity which arises
because you have standardised components. Component modularity
also arises because we may have used, e.g., a standard, off-the-shelf
cord in the production of the basic tool. But the significant
modularity, for the purpose of this discussion, is the modularity
which is seen by the owner of the tool: the end user who is able to
easily change his general tool to satisfy different needs. In the
software engineering domain, this kind of exchangeability is not
easily supported by the use of sub-routines, but it is very similar to
what we have for example in the forms management system. The
forms handler corresponds to the motor parts of the tool, and as we
attach different forms descriptions to it, we plug in whatever
corresponds to these various attachments. Of course the spreadsheets
systems use a very similar principle. The basic machinery for
administrating the contents of a screen and doing the dynamic update
corresponds to the general tool, and the so-called templates that you
plug in correspond to the attachments.

This general engineering principle has not been properly observed
in the discussion of software engineering principles. There are plenty
of other examples from other branches of engineering. Fighter
aeroplanes provide an example, with bombs, robots and other
weapons as attachments. Figure 7.5 shows another example, a tractor
with all its attachments.

The tractor analogy is interesting from an additional point of view
when we discuss office systems. Quite often one makes parallels
between office automation and factory automation. There is frequent
reference to the investment for each worker in manufacturing
industry and the investment for each worker in the office, and it is
suggested that office productivity should be increased by making
offices more similar to industry.

QYICIL UCVLLUPHLCILL CItv I Viviiieiees POy

Thi rend is ac’ \:‘tuated by the choice of terms such as “oifice
worker” and maybe also “knowledge worker”. The use of the term
“worker” may be because people wish to apply the methods of
Taylor, or may be due to socialist romanticism, but in either case I
believe the analogy with industry is not the only relevant one. There
have been objections to whether industrialisation of offices is a
desirable development, and fears have been voiced that work in the
office could become as boring as work in manufacturing industry is
often thought to be.

There is, however, another branch of society which has an even
larger investment per worker, namely, agriculture. Certainly in
farming we don’t have the scenario of very routine work that is
usually encountered along the assembly line. The individual farmer
understands very well the domain that he is working in: the growing

Figure 7.5: Another universal tool

lea L NLELLLEENL HLUCTLILELY . LIEULY QI pldciiie

of the crops, the effects of the weatl. ~ ;andsoon. .thesame timehe
has at his disposal a number of very powerful tools whereby he can
fairly independently manage his work.

I therefore want to suggest that we should not look for the “office
worker” in the future, but rather for the “information farmer”: the
individual person who does independent work using very powerful
tools. The tractor that the farmer has as one of his tools would then
correspond to general purpose software tools into which the end user
can plug his particular templates or descriptions of the job to be done.

Data processing. Although we have examined the issues of general
engineering principles and the view of the end user, it is also
necessary to say something about the data processing perspective.

We have seen how some data processing services could be
immersed into a general purpose editor. We could also see, in the
course of our research project, how various other data processing
services in the office could be nicely characterised by special purpose
languages, for example, the information flow application. But what
about the remaining services? Will these two techniques cover every
kind of data processing in the office?

There is a very interesting paper by Boehm who organised students
to write and implement a few medium size office applications (Boehm
1980). They measured how much time was spent on different
activities, and how many lines of software were generated for various
activities. The interesting result was that the “job at hand” was served
by only 2%—-3% of the number of lines of code. The algorithm for
doing the work that was the purpose of the program was a small
fraction of the code! Everything else was for things like general
housekeeping of the data, error handling, describing the data that
needed to be operated on, checking for incorrect input from the user,
supporting the user with a convenient data entry language, and so on
and so on.

In the terms that [introduced earlier, I would say that 98% of that
special purpose program did information management and only 2%
did the things which were application specific. So from this point of
view maybe text editors, forms handlers and so on are just the
limiting cases of a general principle, namely the cases where the
algorithm is 0% rather than 2%. This suggests that the right way to
organise this kind of software should be to build the information
management system first, in order to cover 95 or 100% of the task.

Wh analgoritl” “needs to be added, it should be possibie to plug it
in. A good information management system should be able to receive
“plug in” procedures which account for the things that distinguish
different applications. This of course confirms again the idea of using
software with “plug in” modularity.

Language design. Another perspective from which to look at this
software technology is from the perspective of programming lan-
guages. In the literature, there have been a very large number of
papers about how to design good programming languages. These
papers reflect several different schools. In particular there is the
ALGOL.-like school, the school which started in FORTRAN and
ALGOL which has later on generated PASCAL, Ada and so on.
There is another school of thought which is represented by incremen-
tal languages such as LISP, APL, MUMPS, to some extent BASIC,
and more recently PROLOG.

Almost all this normative or even moralistic literature about what
is a good programming language comes from the first of these two
schools. We may speculate why that is so. With respect to LISP,
which has been used in Al projects, my explanation is that the users
have often been graduate students who were interested in the various
aspects of the LISP system they were using as a tool. But the research
leaders have often discouraged the study of the LISP as such, because
they saw a danger of losing sight of the main issue, which was the
design of Al. Therefore, over the years, there has been pressure to
discourage too much delving about in the tools. In the area of classical
programming languages, there has not been the same kind of
restraint, because there the programming language was the topic of
interest and therefore was considered to be the appropriate thing to
write about.

There is therefore a philosophical position about programming
languages which is quite widespread in actual work but which has not
been as often articulated in the literature. Figure 7.6 illustrates one
important difference between the two schools of thought. In the
LISP environment, the key idea when you build a system is to first
build a data base where you can store expressions. These expressions
can be, e.g., expressions in logic, or expressions which describe
forms in a forms management system, or descriptions of data
corresponding to the Data Divison in a COBOL program. But they
can also be procedures, as another special case.

A LT llbbvblrbs(«lbb ruup/uuul_y. LILOUI_y wiu ‘/l ULt

When we receive complaints abou- ae bad, pa ithesis-oriented
syntax of LISP programs, compared to the syntax in, for example,
ALGOL with all its syntactic sugar, the explanation for the
difference is that the notation used in LISP is not specially designed
for procedures. It is more general than that. We have a basis which is
able to store expressions in a data base. On top of that, the data base is
used for storing procedure definitions, application modules, software
management information, application data, and so on and so on in an
integrated way.

In the classical school, the programming language performs both
the service of “programming in the small” and “programming in the
large”. That is, it allows us to express the contents of procedures,
conditional statements, statement sequencing, loops and so on, and it
also allows us to define block structure and other global structures.
On top of that there will be module management. In sophisticated
systems there may be program generators, and there may be a
command system for the operating system or a programmable shell.

In the conventional programming language architecture there are
these different layers which are stacked on top of each other. In the
LISP environment, on the other hand, the lowest level, the expres-
sion level, is intended only to correspond to the local aspects of the
programming language — “programming in the small”. Everything
else is programmed in that language, in an integrated way. I think it is
important to keep this correspondence in mind when you compare

Figure 7.6: Programming language and systems

Conventional LISP style

Programmable shell

Data base
Program generators containing

application
Programming-in-the-large models and

software
Global programming management
language constructs information

(e.g. block structure)

Expressionsina

simple procedural

or functional
programming language

Programming-in-the-small

QYL UCUCLUPHICILL €IV Uit Liw

prog. .aming lang ;}ges, for example, LISP to PASCAL or LISP to
Ada. Don’t compare all of kernal LISP with all of Ada because then
you are comparing structures that were intended for different ranges
of notational service.

Development methodology. Yet another perspective to take on this
software technology is with respect to the stages of development of a
piece of software. We are used to thinking about two stages —
specification and implementation. In the debate about rapid proto-
typing, which is yet another novel technology, we sometimes
encounter the question of where prototyping fits in. Is prototyping a
part of the specification phase or is it a part of the implementation
phase? It is sobering, in such a discussion, to remember that the
distinction between specification and implementation has not been
there always.

If we go back to the early days of data processing: the 50’s and early
60’s before procedural languages were in widespread use, we would
rather have used the stages shown in Figure 7.7. There was problem
analysis, followed by flow charting where flow charting was of course
done “off line” and not in direct connection with a computer. Instead
it involved the preparation of drawings which could be used as a
specification for the person who wrote the machine code.

These three stages therefore do not correspond directly to the
stages of specification and implementation. Some of what we do
now in specification would have been done in flow charting earlier,

Figure 7.7. Development methodologies

. 1955-65
l Problefn ' | Flowcharting ' I Coding '

analysis
Prototyping
""" .
i | Executable Tuning 1985~
H ! application model
-)

Specification 1970-80

126 Intelhhgent machinery: theory and practice

but flow charting also overlaps with ..nat we now .o in implementa-
tion in a procedural language.

If such a switch has occurred before, it may occur again. My
proposal is that the methodology from now on is likely to be
increasingly one where we have an initial thinking phase and a phase
of dialogue with users. Then there is a phase where we develop an
executable application model in the computer: something which runs
in the computer aided design system for software. For example, in
the case of information flow modelling, this stage would be the stage
where the information flow model is built up in the computer and
tested in co-operation with the users. When this executable applica-
tion model has been finished and judged satisfactory, there is either
transition to practical use, using automatic software tools, or a short
stage of manual tuning in order to speed up the system. But the
essential design work would then be done in the software design
system or design environment, by building and checking the
executable application model.

7.5 Conclusions

To summarise very briefly the message of this chapter is
that editors or information management systems are a key element in
software architecture. They are important as end user tools. They are
also important as parts of system development environments,
because during system development we are going to edit or modify
the application model continuously. Every step towards extended use
of such information management systems in practical data processing
operations today is valuable in itself, but it also paves the road for
increased use of Al technology over the years to come.

References and suggestions for further reading

Boehm, B.W. (1980). Developing small-scale application software products: some
experimental results. In Information Processing 80, ed. S.H. Lavington, pp. 321 -
326. Amsterdam: North Holland.

Higglund, S. (1980). Contributions to the development of methods and tools for
interactive design of applications software. Ph.D. thesis, Department of
Computer and Information Science. Linkoping, Sweden: Linképing University.

Higglund, S. and Oskarsson, O. (1975). IDECS2 User’s Guide. Report DLU 75/3,
Datalogilaboratoriet, Uppsala, Sweden: Uppsala University.

Sandewall, E. (1979). A description language and pilot-system executive for
information transport systems. In Proc. Fifth International Conference on Very
Large Data Bases. Rio de Janeiro.

Sandewall, E. (1982). Unified dialogue management in the carousel System. In

(O L L e A

P, 'ACM Confe:-_e on Principles of Programming Languages. Albuduaryue,
NM.

Sandewall, E. Stromberg, C. and Sérenson, H. (1981). Software architgcture based
on communicating residential environments. In Proc. Fifth I nternational Confer-
ence on Software Engineering. San Diego. .

Stromfors, O. and Jonesjo, L (1981). The implementation and experiences f)f a
structure-oriented text editor. In Proc. ACM SIGPLAN/ SIGOA Symposium on

Text Manipulation. SIGPLAN Notices, Vol. 16, No. 6.

	
	
	
	
	
	
	
	
	
	
	

