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Axiom sets and their extensions are viewed as functions from the set of formulas ip the lar_lguage to a set of four truth values,
t, f, ufor undefined, and & for contradiction. Such functions form a lattice with “contains less information” as the partial order[_,
and “combination of several sources of knowledge” as the least-upper-bound operation LI. Inference rules are expressed as
binary relations between such functions. We show that the usual criterium on fixpoints, namely, to be ‘minimal, does not apply
correctly in the case of non-monotonic inference rules. A stronger concept, approachable fixpoints, is introduced and proven to
be sufficient for the existence of a derivation of the fixpoint. In addition, the usefulness of our approach is demonstrated by
concise proofs for some previously known results about normal default rules.

Les ensembles d’axiomes et leurs extensions sont considérés comme des applications de I'ensemble des formules du langage,
vers un ensemble de quatre valeurs de vérité 1, f, u pour I'indéfini, et k pour la contradiction. Ces applications forment un
ensemble ordonné avec “contient moins d’information” symbolisé par I’ordre partiel _, et “combinaison de différentes sources de
connaissance” symbolisé par 'opération d’union Ll. Les régles d’inférence sont exprimées par des relations binaires entre ces
fonctions. Nous montrons que le critére habituel pour les invariants, c’est-a-dire qu’ils sont minimaux, ne s’applique pas
correctement dans le cas des régles d’inférence non-monotones. Un concept plus fort, compatible avec les invariants, est
introduit et I’on prouve qu’il est suffisant pour qu’existe une dérivation de Iinvariant. De plus, la pertinence de notre approche
est démontrée grice 4 des démonstrations concises venant de résultats déja connus a propos des régles de défaut normales.
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1. Introduction and overview

Non-monotonic logic may be studied in terms of either
non-monotonic inference rules (Reiter 1980; Goodwin 1984) or
non-monotonic operators in the language such as the Unless
operator (Sandewall 1972; McDermott and Doyle 1980). In this
paper we pursue the former approach.

The concept of fixpoints is central to the study of non-
monotonic logic: For a given set v of propositions and a given
set of rules, we are looking for an extension, i.e., a set v' of
propositions which contains v as a subset, and which is a
fixpoint of the set of rules. Fixpoints are also used in the
denotational semantics approach to the theory of programming
languages (Scott 1970; see also e.g., Manna 1974; Stoy 1977,
Blikle 1981). There, the recursive definition of a function is
viewed as a functional, i.e., an operator on partial functions,
and the function is viewed as the fixpoint of the same functional.

In this paper we propose that the functional approach that is
taken in denotational semantics can be adapted and serves
conveniently for the study of non-monotonic logic. This is
attractive since logical inference is often viewed as a high-level
form of computation, and since computational inference often
needs to be non-monotonic.

Using the functional approach, we present a result regarding
criteria on the desirable fixpoints in the case of non-monotonic
inference rules. In the monotonic case, the criterium of being a
minimal fixpoint (i.e., no other fixpoint is “smaller”) is
sufficient for eliminating fixpoints that contain spurious infor-
mation not warranted by the given facts and inference rules.
Also, there is of course just one minimal fixpoint, which is then
the least fixpoint. It is well known that in the case of
non-monotonic rules, there is in general no single least fixpoint.
But in addition, the criterium of being minimal is not sufficient
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for eliminating spurious fixpoints. There may be minimal
fixpoints which have the given set of propositions as a subset,
but which still cannot be reached or approached (in the senseofa
limit) by any derivation using the given set of rules. We
introduce the concept of an approachable fixpoint, which is
stronger than the concept of a minimal fixpoint, and which i
proven to be a sufficient condition for the existence of a
derivation that reaches or approaches the fixpoint.

Besides this result, the usefulness of the functional approach
is also demonstrated through greatly simplified proofs of some
of Reiter’s (1980) results for normal default theories.

The following formal machinery is used. We start from two
domains: a domain L whose elements are called formulas anda
domain J of truth values. V is the domain of valuations, i..,
continuous functions from L to J.

A set of axioms is seen as a valuation that maps some
formulas (the axioms) to ¢ (for true) and “all” other formulastou
(for undefined). (Exception is made for the top element of the
domain L.)

A valuation may be thought of as a partial information state.
If valuations were used in a treatment of knowledge and belief,
then the state of mind of one agent could be appropriately
represented as a valuation, since the agent may believe some
propositions to be true and some others to be false and does not
know about yet others. One such information state “contains
less information” than another one, if the only way they can
differ is that the former state assigns undefined to a proposition
whereas the latter state assigns true or false. That relation of
“containing less information” is clearly a partial order and will
be represented by the symbol C.

Logical deduction may then be seen as a process that goes
from an initial information state to successive other states that
contain “more” information in the sense of [_. A set of inference
rules corresponds therefore to a binary relation of valuations,
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relation. An inference relation holds between two valuations v
and v if v_ v' and the augmentation of information from vto v'
results from a one-step application of an inference rule. A
derivation using an inference relation F is a sequence of

valuations,

Vo, V1y oo
where

(v, vien EF

for each i = 0.

Inference relations can be used for expressing both proofs and
semantics, provided that there are syntactic functions and
predicates on L which characterize the abstract syntax of the
language. This includes predicates which indicate whether a
formula is a conjunction, a disjunction, an implication, atomic,
etc., as well as functions, e.g., for composing the conjunction
of two other formulas. The conventions for calculating the truth
value of a propositional expression may then be seen as an in-
ference relation F where F(v, v'), e.g., in the case where

va)=t
wb)=t
walNb)=u
ViaN\b)=t

V(x) = v(x) for all other formulas x

Here a/\b refers of course to the formula obtained by
composing the formula g, the conjunction operator, and the
formula b.

The concepts and results of conventional logic can easily be
rephrased along these lines, allowing a uniform treatment of
proofs and models. In the case of non-monotonic logic, there is
however a particular advantage with using this approach. A
non-monotonic rule

a, Unless ()= ¢

can now be seen as an inference relation F which allows F(v,
v'), e.g., in the case where

v(a)=t
v(b)=u
vc)=u
V') =f
v'(c)=t

v'(x) = v(x) otherwise

In other words, one derivation step using F will change the
truth values of the two formulas b and c at the same time. This is
different from the viewpoint in ordinary logic, where the
intuition is that each formula or proposition has “its” truth value,
so that rules of inference may contribute additional information
about “the” truth of a proposition. In non-monotonic logic, we
must be prepared to recognize multiple extensions of the given
axioms, or multiple fixpoints of an inference relation. It
therefore makes sense to correlate assignments of truth values in
the way just described. -+ i
~ By the-usual notions of non-monotonic logie;, we should be

Instead of the usual type of definition such as “a valuation is
inconsistent if it assigns the truth value ¢ both to a proposition
and to its negation,” it is convenient to use the four-valued logic
proposed by Belnap (1977). Besides the truth values ¢z, £, and u,
we also allow the truth value & for “contradiction.” A valuation
is consistent if it does not assign the truth value k to any
proposition.

One can think of these truth values as the ones assigned by
committees (cf. Borgida and Imielinski 1984): If some members
of the committee assign the value r to a proposition and the
others assign the value u, then the committee assigns ¢, but if
some members assign  and others assign f, then the committee
assigns the value k to the proposition. “Committees” are
a convenient metaphor whenever there are several parallel
sources of knowledge, such as when several inference rules are
being used.

Let us now go back to the example of a non-monotonic rule
above. The inference relation F should allow F(v, v') alsoin the
case where

vig)=v'(a)=t
w(b)=u
v(e)=f
vi(b)=f
vi(e)=k

True and false add up to a contradiction, as in the case for the
committee. In this case, we rightfully obtain a contradiction: ¢
had previously been assumed or proven to be false, and now we
derived that it is true. Therefore v’ (or one of its successors) may
well be a fixpoint of the inference relation, but it will not be a
consistent fixpoint.

However, in line with the idea that F should change the truth
values of both b and ¢ at the same time, we should also have
F(v, v') in the following case:

wa)=v'(a)=t

wb)=t

v(e)=u

viib)=k

vi(e)=t
But in this case, v is really a valuation (or in other words, an
information state) where the non-monotonic rule should not be
applied at all, since the non-monotonic antecedent, “b is not
known to be true,” was not satisfied. Formally speaking, in the
last example we want v to be approved as a consistent fixpoint
for the inference relation, and therefore F(v, v') should not
hold for any v' different from v and particularly not for an
inconsistent v'. In the case before that, however, we do wish
F(v, v') to hold for the inference relation F, so that the
contradiction is made explicit.

We resolve this matter by using two related inference
relations, usually written F and G, and it is the consistent
fixpoints of G that we are interested in. Thus in the last case of
the_example, G(v, v') would not apply, whereas F(v, v')
applies. The inference relations G and F are in general relatec_i S0
that G C F, and the difference occurs in cases like the one just
discussed, where G rejects using a rule if it means that a

non-monotonic antecedent (a formula given as the argument
4~ TTmlnoe) then nhtaing the h’l]ﬂ'l Vall.'lc k.
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The reason for using the inference relation F at all is that it has
simpler mathematical properties, so it is convenient to prove
results for F first, and then to transfer them in a “guarded” way
to the relation G.

By using inference relations in this way, we can abstract away
the detailed mechanics of applying inference rules. We identify
the properties of inference relations if they have been con-
structed from ordinary inference rules: monotonicity, compact-
ness, and so on. We then carry out the proofs in terms of those
more abstract properties.

The present paper only reports results on fixpoints for
inference relations that express non-monotonic inference rules.
However, we believe that the notions of valuations and
inference relations may also be useful in other ways. The
possibility of using valuations as arguments for operators
expressing knowledge and belief has already been touched
upon, and of course operators expressing information transfer
(“tells that,” “asks whether”) belong to the same general
category.

Also, if a valuation is seen as an information state during a
deductive process, then the choice of a deduction strategy may
be seen as a transformation from a given inference rleation to
another related one, for example a transformation from F to a
subset of F or to a subset of F*. The relationship between the
original and the derived inference relation may be characterized
either by using logic on the meta level or by a relational algebra.

This has been an outline of the key ideas of the paper. We
now proceed to the systematic treatment.

2. Monotonicity and fixpoints for relations

The domain J contains the elements {u, ¢, f, k} as already
discussed, with the partial order [ described by the following

figure:
k

u

(The reader who is not familiar with Scott’s domain theory may

§kip the next two paragraphs and proceed using the intuitions
introduced in the previous section.)

The domain J is therefore a flat lattice with u as the bottom
element and & as the top element. The flat domain L is called a
language and its elements are called formulas, with Ib as the
bottom element and I as the top element.

A valuation is a function v from L to J which satisfies

v(lb)=u
v(it)=k

which in particular guarantees that valuations are continuous
(and therefore monotone) functions. A valuation is consistent

iff no formula other than It is-mapped to-k,

Valuations form a lattice with the partial order  defined in s,
following way:

vE v iff (Vx)v(x) T v'(x)

We say then that v’ is an extension of v, and that v’ is abovey
(withrespectto(0). A valuation vis finite iff v(l) = y exceptfory
finite number of formulas /.

An inference relation is a binary relation on V, i.e., a subge
of VX V. The operation U and the relation C are therefyr
defined on inference relations. The partial order  could alsoe
extended to inference relations, but that will not be needed in
this paper.

An inference relation F is conservative iff

F(v, v)y—=> vy’
which can now be written

Fcl
A chain is a sequence of valuations where
VO,; Vi [; v

It is well known that each such chain has a least upper bound
(lu.b.) in a lattice. A derivation from v to v' using a
conservative inference relation F is a chain where

V=1
F(V,', v,-+1) forall i=0
v’ is the l.u.b. of the chain

Notice that we say a derivation —to v’ — even in the case of an
i?lﬁﬁite sequence where v’ is never reached, just approachedasa
AI; inference relation F is monotonic iff
VLV AF(, y)— @y )FO', y)NAyLy")
It is linear iff
F(v,y)=> F(vlz, ylz)

Clearly every linear inference relation is also monotonic.

We need an existential quantifier rather than a universa
quantifier in the definition of monotonicity, since for the givenv
there may be several y such that F(v, y), each of which
expressing one of the conclusions that can be immediately
added from v. If now v’ is another valuation which contains
“more” information than v, we wish that each of the steps that
can be taken from v to one of the y should have a counterpart
from v’ to a correponding y'.

A valuation v' is a fixpoint of an inference relation F iff

F(vl’ vll)_> vl —_ v"

Thus in particular v’ is a fixpoint if F does not allow any
“successor” v". For a given valuation v and inference relation F,
we shall be interested in fixpoints of F above v, i.e., fixpoints of
F which are ] v.

A fixpoint of F above v is minimal iff no “smaller” (by )
fixpoint exists for the same F and v.

What has been described so far uses some of the tools of
denotational semantics, but in a different fashion than usual.
The differences are dictated by our desire to deal with logic
using these tools. The reason for that, again is the wish to cor-
S}der non-monotonic deduction. Anyway, the obvious proper:
ties of the monotonic case follow easily, in particular:



Pro ositionll . For a conservative, monotonic inference rela-
tionp(a) there is a unique least fixpoint above each v; and (b) the
Lu b, of any derivation from v is L_ the least fixpoint.

Proof. Let the inference relation be called F.
(a) Consider a set {v} of fixpoints of F above v. We wish to

prove that v/ =N v;is also a fixpoint of F. Suppose
F(v', 2)

By monotonicity, for each v; there exists a valuation z; such that
F(vs, 2:)
Lz

Since each v;is a fixpoint, we have
V=2

and therefore
L' (=MNz)

and since F is conservative,

v'=z [l

(b) Let vg, v1, ... be a derivation using F, and let v* be the least
fixpoint of F above vp. By induction, it is easily proven that

Vi '; y*
for each i. il

The following concept is also of interest in the non-
monotonic case: A valuation v is maximally consistent w.r.t. a
deduction F iff it is consistent and

F(v, v')—v=v'\/[v' is inconsistent]

3. Linearity and compactness

There are two significant properties, linearity and compact-
ness, for inference relations formed using a number of rules.
This section studies consequences of these properties. Linearity
was defined in the previous section.

Proposition 2. If F is a conservative, linear inference relation,
and there exists a derivation from v to v’ using F, then for every
y such that

veyCv'

there exists a derivation from y to v’ using F.

Proof. Let the derivation from v to v’ be
Vos Vi, +.

where vo = v. The sequence
vy, viUy, ...

is a derivation using F, and by the assumptions we have
wly=y

and the 1.u.b. of the sequence is v'. ]

Proposition 3. If F is a conservative, linear inference relation

and there are derivations from v to v’ and from v to v" using F,
then there is a derivation from v to v’ LI v" using F.

ou
Proof. Let the derivations of v' and v" be

v, Vi, ...

Vo, V1, ...
where v = v§j=v. Since F is linear, the sequence

vo, V1,

vilvi, va Ll vy,

vall v, viLl vy, ...
is a derivation from v using F, and it has v' LI v" as its
L.u.b. |
The proof of Proposition 3 generalizes easily:

Proposition 4. If F is a conservative, linear inference relation
and there are derivations using F from v to each member of a

non-empty (possibly infinite) set W of valuations, then there is a
derivation from v to the L.u.b. of W.

Proof (outline). Use the same technique as in the previous
proof, but select some ordering of the members of W (presumed
denumerable), and construct the new derivation in a triangular
fashion, so that it may use the first j terms of the derivation for
the first member of W, the first j — 1 terms of the derivation for
the second member, etc. 1

The other important property is compactness. An inference
relation F is compact iff whenever F(v, v') there exist some
finite valuations y, y' such that

y[_ v (which of course means v=vLiy)
vi=vlUy'

We shall see in a moment that the inference relations obtained
from “ordinary” rules of inference are compact, but let us first
identify a consequence of compactness.

Proposition 5. If F is a conservative, linear, and compact
inference relation and there are derivations using F from v to v’
and from v’ to v", then there is also one from v to v".
Proof. Let the derivation from v to v’ be
Vo, Vi oo
and let the derivation from v' to v" be
Vs V1 ooe
where for each i = 0 there are some finite y;, z; such that
F (yi, zl')
yillvi
vig=vilz
Construct now a sequence of valuations as follows:

Voy Vis +ves V"O’
Vny LI zg, Vngt+1 L zg, ..e» Yy LI zg,
v,,lL.Izong,_,

XX
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where the n; are selected so that
n;= Ry

yi; vn,-

for i = 0. By compactness such a sequence must cxi'st, and b'y
the linearity the sequence is a derivation using F, and its L.u.b. is
clearly v". ]

We can now proceed to introducing the counterparts of in-
ference rules in our system. _

A kernel is a pair (v, v'), where v and v’ are finite valuations,
and v[_v'.

Kernels may be used for expressing how the truth value of a
composite expression follows from the truth value of its
component(s), or vice versa. One such example was given in the
introductory section. For another example, the rule that if a is
true then —a is false, is expressed by the kernel (v, v') where

Wa)=v'(a)=t
v(ma)=u
vi(hay=f

The direct realization of a kemel (v, v') is the inference
relation formed as

{vUy,v'Uy)lyeV}

In other words, the direct realization of a kernel (v, v') is the set
of all possible pairs (y, y') such that v[_ yand y’ = y Ll v'. Each
such pair characterizes a derivation step that is allowed by the
kernel, i.e., if the preconditions v are satisfied in y then the
conclusions v’ may be accumulated to y giving y’.

The direct realization of a set of kernels is defined to be the
union (using U) of the direct realizations of the individual
kernels. This has the effect that from each valuation v there are
several successors, corresponding to the choices of which
derivation step to take. From this definition it follows:

Proposition 6. The direct realization of a set of kernels is
conservative, linear, and compact.

4. Non-monotonic rules

We shall now characterize those inference relations which
correspond to (what we intuitively think of as) a set of
non-monotonic (NM) inference rules.

Following Goodwin (1984) approximately, an NM rule is a
triple (M, N, C) of finite sets of formulas, where M is the
monotonic antecedents, N is the non-monotonic antecedents,
and C is the consequents.

The idea is that if each member of M is true and each member
of N is false or undefined, then each member of C can be
inferred to be true. At the same time, the assumption is made
that all members of N are false. In practice, we will usually be
interested in infinite sets of NM rules, corresponding to the set
of substitution instances of what is maybe intuitively thou ght of
as a single rule,

Each of M, N, and C may be the empty set. If N is empty we
have a monotonic rule. If C is empty we have what Reiter
1980) called a normal default rule.

The kernel that corresponds to an NM rule (M, N, C) is the

pair (v, v'), where

vm)y=v'(m)y=1t forall minM
viiny=f forallnin N

vi(c)=t forallcinC

and all other values are u.

Thus non-monotonic rules differ from the monotonic ones,
partly by causing several formulas to change their truth valye
as one inference step is performed. A possible objection against
this way of dealing with non-monotonic antecedents is that the
resulting valuation should differentiate explicitly between that
information which has been obtained as a consequent and that

which was “merely” assumed in order to be able to apply the
rule, i.e., the assignment to the non-monotonic antecedent(s), |
We, however, view that as a book-keeping issue which need not |

concern the formal treatment of the inference relation as such,

The direct realization of an NM rule is the direct realization of

its corresponding kernel.

We let H be that inference relation which performs the

obvious deductions of conventional, propositional logic. For |

example, if a valuation v satisfies

va/N\b)=1

then the valuation H*(v), which is the least fixpoint of H above .

v (Proposition 1), satisfies
H*(v)(a) = H*(v)(b) =1

(unless a contradiction occurs in which case H*(1) = kforalll).
We work presently on a more specific definition and analysis of :

this inference relation H.

We want the direct realization of a set of NM rules to be the
inference relation which has as subsets the realizations of each .
of the rules, but which is also able to do trivial derivations of the
truth values. We therefore formally define the direct realization -
of a set of NM rules as H U (the union of the direct realizationof
each of the rules). Clearly the direct realization of a set of NM

rules is linear, conservative, and compact.

The restricted realization of an NM rule (M, N, C) is a subset -
of the direct realization of the same rule. It is obtained by -
excluding all those pairs (v, v') where v'(n) = kforsome n€N. ;

Notice that pairs (v, v') where v'(c) = k for some ¢ € C are not
excluded, unless some v'(n) is also k. The restricted realization

of a set of NM rules is obtained as the union of H and the :

restricted realization of each of the NM rules. The restricted
realization is conservative and compact but not monotonic (and
therefore not linear).

An example may be useful at this point. For the following
examples, we assume that the language consists of the formulas
{a, b, ¢, ...}. A valuation will be written as [x, y, ...} meaning
the valuation v where v(a) = x, v(b) =y, etc. If either of the
sets in a rule is a singleton, then the curly brackets around it will
be omitted, and the empty set will be written as a dash. Thus{a,
—, ¢) is an example of a rule, meaning the same as ({a}, {}, {ch

Example 1. Suppose we have the following rules:

<"v a, b)
(b’ it C)




.

pformally, this says: b holds unless a is known to be true; if b
hen ¢. The restricted realization G of this set of rules satisfies

(this uses the rule “b unless a”)

(this uses the rule “if b then ¢”)

G((u, v uls LSy 1 1))
G(Lf, 1, ul, Lfs 8 2D

and [, 1, 1] is also a fixpoint for G over [u, u, ul.

If we start instead from a valuation where a is known to be
e, €., v=[t u ul, there is no valuation v’ such that
G, V') The direct realization F of the same set of rules holds
of course for the same argument pairs as G, but also

F((t, w, u), [k, t, u])

since the direct realization will proceed even if it introduces a
contradiction. The valuation [#, u, u] is therefore a fixpoint for
G, but not for F. However, it is a maximally consistent
extension of [¢, u, u] w.r.t. F.

5. Correct extensions, approachability

Throughout this section, we assume that v is a valuation and
Ris a set of NM rules whose direct realization is F and whose
restricted realization is G.

A valuation v’ is termed a correct extension of v w.r.t. Riff:
(1)v'isafixpointof G above v (meaning in particular that v[_ v')
(2) v' is consistent
(3) there is some derivation from v to v' using G.

(The adjective “correct” is used since in the terminology used
here, the phrase “v’ is an extension of v” means simply that
y' Jv.) The notion of correct extensions expresses stringently
what are the desirable fixpoints for given v and G. If v’ isnota
fixpoint then some additional derivation steps remain to be
performed. If v’ is inconsistent it is for one of the following
reasons:

(a) v is inconsistent

(b) the set of NM rules implies an inconsistence (e.g., if v(a) =t
and one of the rules is (-, —, —a))

(c) some non-monotonic antecedent was assumed to be f at the
beginning of the derivation, and later in the derivation the
assumption was invalidated either by using an NM rule with the
same proposition as a consequent or by using the inference
relation H.

Finally, if there is no derivation from v to v' then v’ is
“unfounded,” like a nonminimal fixpoint in the monotonic case.

The third condition in the definition corresponds to Goodwin’s
requirement of well foundedness. The above formulation is
hovf/ever problematic in that it refers to the existence of a
denvgtion. By contrast, the minimality requirement on a
fixpoint need not refer to derivations; it just states that no
“smaller” fixpoint exists. Similarly, we would like to have a
static condition, which guarantees the existence of a derivation,
mstegd of having to prove its existence whenever needed. The
remainder of this section will give such a result. :

_ Although the definition of correct extensions uses G, the
inference relation F provides a partial characterization of them
and will be used as a tool. ‘

Proposition 7. Bach consistent fixpoint of G above v is a
maximally consistent extension of v w.r.t. F.

Proof. The proof follows easily from the definition of G from F,

since
F(V, V,)/\——]G(V, V’)

implies that v’ is inconsistent.

Tl}e converse does not hold, i.e., there are maximally
consistent extensions of v w.r.t. F which are not fixpoints of G
over v. This happens in those cases where a truth maintenance

system has to shift IN nodes to QUT status. Consider
Example 2. Suppose we have the following NM rules:
(~,a,b)
(==, a)
Then [f, #] is a maximally consistent extension of [u, u] w.r.t.
F, but G((f, 1], [k, £]).

Not every set of NM rules has a correct extension:

Example 3. Consider the NM rules
(=, a,b)
(b, -, a)
Then of course
G([u, ul, [f, )
G((f, 1, [k, 1)

and [u, u) does not have any correct extension w.r.t. these NM
rules.

Some of the propositions in the eatlier sections can now be
extended to apply to the realizations of NM rules. The basic idea
is to first use those results for F, and then to transfer the result to
G by introducing a consistency requirement.

Proposition 2A. If v' is a correct extension of v w.r.t. R, then
for every y such that

vCyLv'

there exists a derivation from y to v’ using G.

Proof. According to Proposition 2 this holds for F. However,
it follows from the definition of G that if F(z, z) and z'is
consistent, then G(z, z'). Since v’ is consistent, so must all
intermediate steps in the derivation from y be, because G is
conservative. Therefore we have a derivation from yto v' using

G. 0

Corollary (“minimality of extensions” (Reiter 1980)). If v' and
" are correct extensions of v w.r.t. R, then

vl—E—v"_) vl — vll

Proposition 3A. If there are derivations from vto v' and frorfl v
to v"using G,and v LI " is consistent, then there is a derivation

from v to v' LI v" using G.

Proof. The proof follows directly from Proposition 3.

Corollary. If v' and v" are distinct correct extensions of v w.I.t.
R, then v' LIV"is inconsistent.
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This corollary subsumes Reiter’s (1980) “orthogonality of
extension” theorem. Proposition 4 of course extends similarly.

Let us return now to the issue of the third criterion in the
definition of a correct extension. This requirement cannot be
omitted, since that would allow fixpoints for which there is no
support. For example, the valuation [z, u, u] is a consistent
fixpoint of G in Example 1 above. In the monotonic case, such
fixpoints are eliminated by the requirement to be minimal, but
that requirement is not sufficient here since 1, 4, u] is indeed a
minimal fixpoint in the example (no “smaller” fixpoint exists).
However, we can substitute instead of the third requirement
another one which is similar in spirit to minimality, as follows.

A fixpoint v’ of G above v is called approachable from v iff

vCyCv'—= @y YoCy'Cv AG(Y, y)

Intuitively, this says that whenever we are on the path from v to
v', there is some step allowed by G that will take us closer to v'.

This concept is a strengthening of the concept of least
fixpoint, since the definition directly implies:

Proposition 8. If v' is an approachable fixpoint of G above v,
then it is minimal.

It is easily seen that the least fixpoint [, &, u] in Example 1 is
not approachable. This approachability condition can replace
the third condition in the definition of the correct extension, and
this property can be deduced from the following proposition.

Proposition 9. If v' is a consistent fixpoint of G above v, and v’
is approachable from v, then it is a correct extension of v w.r.t.

Proof. v' immediately satisfies the first two conditions for
being a correct extension. It remains to show that there is a
derivation from v to v’ using G.

Suppose this were not the case, i.e., every derivation from v
whose members are [ v’ (the existence of at least one such chain
is guaranteed by the definition of “approachable”) has a l.u.b.
yLv'. Let v" be the L.u.b. of all such y. By Proposition 4 there
is a derivation from v to v". since now v" [_ v', consider the y’
whose existence is guaranteed by the approachability, such that

G(v'", y")
v"[: y ! E v 1
The derivation step from v" to y’ must have been obtained using

the extension of a kernel (z, z') such that z_ v”, and z' is not
C v". By compactness, in any derivation,

20, 21y .-

of v, there must be some element z, such that z z,. But then
there is also a derivation of z, LI z', which is not C v". This is a
contradiction. 4]

In _this way we have obtained the desired counterpart of the
fixpoint criterion of the monotonic case.

6. Normal default rules

Reiter (1980) introduced the concept of normal default rules.
¥-Ie showed that every normal theory has an extension (in our
*Tms a correct extension) and proved semi-monotonicity, i.e.

larger set of normal default rules has a larger extension. His

results, which are given with fairly complicated proofs, can now
be obtained more easily from the material presented above,

A normal default rule is an NM rule of the form (M, {n}, {)

If v is a valuation then v* is the (obviously unique) Jeag
fixpoint of H above v. Clearly the * operation is monotonic, The
valuation v is fully consistent iff v* is consistent.

A valuation vis saturated w.r.t. aformula a iff v(a) = v*(g),

Let G be the restricted realization of a set of normal defay];
rules. A derivation using G is cautious iff in each derivatiop
step (v, v') that uses a rule (M, {n}, {}), v is saturated w.r.t. 5,
The idea is that in a cautious derivation it is not possible to have
the following scenario. Let the formula ¢ be —a. Start from the
valuation [u, u, f], i.e., T1a is false but the conclusion that 4 i
true has not been drawn. Use the extension of the NM rule (-, g,
b) to derive [f, t, f]. After that, use the inference relation H which
administrates simple truth-value calculations to derive [k, ¢,
f1. The cases that we exclude by being cautious in this sense are
the ones where an implementation would have to backtrack or
(in a truth-maintenance system) shift propositions from IN to
OUT status, because a non-monotonic antecedent, which was
temporarily accepted since no proof had been bound so far, had
to be retracted later when a proof was found.

Since H does derivation steps according to propositional logic,
one can derive a valuation that is saturated w.r.t. » in a finite
number of steps. If follows:

Proposition 10. Let v be a consistent valuation, and let G be the
restricted realization of a set of normal default rules. Each step
in a cautious derivation from v using G is fully consistent.

Proof. We first prove that any step is consistent. By the
definition of restricted realizations, a derivation step using a
normal default rule cannot introduce k into the valuation.
Suppose a derivation step according to H in a cautious
derivation does go from a consistent to an inconsistent valua-
tion. Let n be the non-monotonic antecedent of the most recent
derivation step, v’ to v”, that uses an NM rule. We must have
v'(n) = u, v'"(n) = £, and v' (1) = v"(!) for all other formulas ..
(By the definition of restricted realizations, we could not have
had v'(n) = ¢, v"(n) = k.) But by a familiar result of
propositional logic, if there was a derivation using H from v"to
a contradiction, there must have been a derivation using H from
v’ to a valuation y where y(n) = ¢, which means v' was not
properly saturated. Contradiction.

The full consistency follows easily, which completes the
proof. 0

Corollary. If v is a consistent valuation and there is a cautious
derivation from v to v’ using G, then v’ is fully consistent.

Proposition 11. If G is the restricted realization of a set of
normal default rules and there is a derivation from a valuation v
to a fully consistent valuation y using G, then ihere is a cautious
derivation using G from v to some y' such that yC y'C y*.

Proof. We prove by induction on the derivation of y, using the
monotonicity of F, that there is a derivation using F from v {0
some such y’ (just saturate sufficiently before applying each
rule). But since y* is consistent, so is y’, and the derivation
using F is also a derivation using G. 1l

The main results are now:
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roposition 12. If v is a fully consistent valuation and G is the
stricted realization of a set of normal default rules, then vhas a

orrect extension w.r.t. G.

woof, Let W be the set of L.u.b. of cautious derivations from v
sing G. By the corollary of Proposition 19, each member of W
s fully consistent. A subset YCW is called maximally
onsistent iff thel .u.b. of its members is fully consistent, but the
.b. of every strict superset of Y which is still a subset of W, is
ot fully consistent. Consider some maximally consistent Y (it is
Jear that some exist, although maybe Y = W). Let y be the
ub. of Y. Clearly yis a fixpoint of H, i.e., y=y*. According
o Proposition 4 there is a deri_vation frorr} v to y, and by
roposition 11 there is then a cautious derivation from v to some
' which is between y and y*, so y " = y. However there cannot
e any derivation from y using G, except the trivial derivation
onsisting only of y, since otherwise Y would not be maximal.
therefore y is a fixpoint for G and a correct extension. 0

dropositon 13 (semi-monotonicity). Let v be a fully consistent -

aluation, R’ CR” be two sets of normal default rules, and
5 C G" be the restricted realizations of R’ and R". If v’ is 2
worrect extension of v w.r.t. G', then there exists some correct
wtension v" of v w.r.t. G for which v’ v".

Proof. Let y be a correct extension of v’ w.r.t. G". Since using
7" there is a derivation from v to v' and a derivation from v’ to
y, there is also a derivation from v to y (Proposition 5). Let Wbe
he set of 1.u.b. of cautious derivations using G” from v to, or
nssing through y. Proceed as in the previous proof. 0

Reiter’s proofs for the last two results are considerably more
nvolved. The functional approach taken in this paper makes it
sossible to reason more abstractly, and therefore more con-
sisely.

7. Conclusion

The functional view of logic focuses on inference relations,
ie., binary relations in a space of possible “information states”
each of which represents partial knowledge in an agent or
represents a state in the process performed by an inference
machine. In the present paper, the information states are
functions from propositions to truth values in a four-valued
logic. Other kinds of information states are also conceivable.
We have demonstrated the utility of this approach for studying
non-monotonic inference rules.

The following are some promising directions for continued
work:

(1) To characterize inference strategies in terms of transfor-
mations or criteria on inference relations. ‘

(2) In particular, since non-monotonic deduction may be seen

as a process that explores the tree of possible derivations from a
given 1mt{a1 valuation, and which discards all branches where
an inconsistent valuation has been reached, we would like to
9harac§enze “reason maintenance” methods that take us from an
Inconsistent valuation in a derivation, “sideways” to a consis-
tent valuation along some other derivation from the same initial
valuation.

(3) To consider information states with other truth-value
dpmains, for example, for probability values or with informa-
tion states which have an entirely different structure than that of
mapping propositions to truth values. We would like to find
such types of information states for which the same general prop-
erties apply (e.g., compactness) as were studied in this paper.
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