FORMAL SPECIFICATION AND IMPLEMENTATION
OF OPERATIONS IN
INFORMATION MANAGEMENT SYSTEMS

Erik Sandewall
Software Systems Research Center
Link6ping University
Linkoping
Sweden

ABSTRACT

Among information management systems we include general purpose
systems such as text editors and data editors (forms management sys-
tems) as well as special purpose systems such as mail systems and com-
puter based calendars. Based on a method for formal specification of
some aspects of IMS, namely the structure of the data base, the update
operations and the user dialogue, this paper shows how reasonable pro-
cedures for executing IMS operations can be written in the notation of a
first-order theory in such a way, that the procedure is a logical conse-
quence of the specification.

1. SPECIFICATION OF IMS AND
THE FORMAL IMPLEMENTATION PROBLEM

Information management systems (IMS) include general-purpose systems such as
text editors and data editors (e.g. forms management systems), and special purpose sys-
tems such as mail systems and computer based calendars. An IMS provides an interac-
tive service for ‘moving data around’ or ‘general housekeeping’: entering data into the
computer; changing it; displaying part of the data through a ‘window’ on the screen
while it is being entered or changed; rearranging it and printing it out on various
media. :

The computing world abounds with IMS: there are IMS for various kinds of infor-
mation (text, structured data, graphical data, etc.) as well as for various applications. As
Boehm has shown [BOE80] the implementation of an interactive application program
consists to a large extent of implementing a number of IMS services. In the academic
- environment as well, every hacker writes his own editors: not just once, but often
several times. Programming environments, which are presently an area of high research
interest, are IMS for software.

In spite of this proliferation of IMS, there is a striking lack of systematization or
formal understanding of what this kind of software really does. In fact, the lack of for-
mal understanding is probably one reason for the proliferation: various IMS perform

This research was supported by the Swedish Board of Technical Development.

126

very similar tasks and it is reasonable to believe that there could be a design which is
simpler and more powerful at the same time. A formal specification of IMS can serve
this purpose if it is clear and easy to understand, and if it can accommodate the appli-
cation specific details as well as the generalities that are present in all IMS.

In a previous paper [SAN82] we have described a method which allows us to express
in precise terms the services which are provided by actual IMS (both those services
which are characteristic for most IMS as well as a framework for characterizing
application-specific services). In particular, the following things are characteristic for
IMS (see [SANS2]):

- the existence of a data repository where information is stored;
- update operations on the stored data;

- the existence of a focus of attention (often represented as the cursor position) relative
to which the edit operations are performed;

- display operations on the screen - involving a traversal of the structure at hand so
that its parts can be displayed individually, and layout planning so that the whole
display makes sense;

- dialogue interpretation, particularly the common command loop. An additional prob-
lem is the prompting situation where the user is supposed to provide an answer to a
question or a specific piece of data (in data entry). However, even in prompting
situations the user must be able to override the context by entering special com-
mands (often implemented using control characters).

Our approach to IMS separates the specification of the contents of the display from
the specification of the effects of operations on the data repository.

The topic of the present paper is to describe a method for transforming the
specification of a set of operations (i.e. of their effect on the data repository) into a pro-
cedure which executes them. We use the term implementation for the transformation
from a specification to a procedure which satisfies it. In the present paper, the resulting
procedure is expressed in a simple language which we introduce here, but which has the
characteristic properties of conventional programming languages: local variables,
assignment statements (although using ‘single assignment’), operations which ‘update’
the data repository, conditionals, recursion, etc. At the same time, the language for
expressing procedures is chosen from a restricted first order theory, and the relation
between the specification and the implementation is one of logical consequence. The
“paper contains specifications of the proposed languages, as well as some examples of
how an operation can be implemented in the language.

2. NOTATION

In order to write specifications for the IMS operations, we must first define the
domains for data structures in the date repository of the IMS. Following the advice of
Blikle [BLI82], we shall express our domain equations in set theory notation. The nota-
tion will therefore be the standard notation of predicate logic and set theory, with only
a small number of notational extensions which agree with Blikle and/or agree roughly
with the practice of the denotational semantics literature. We use the following nota-
tion:

127

Predicate logic

/N and

vV or

= implies

= logical equivalence

3 existential quantifier

v universal quantifier (free variables are viewed as universally quantified)

Set theory

U union of sets

€ membership in sets (particularly domains)

C . subset relation between sets

<X,y,...>
The sequence whose members are x, y, etc. <x > is distinct from x. g.x is the
result of applying the function g to the argument x. Also written g[x]. For
functions of several arguments only the latter notation is used.

hd hd.<x1,x2,...,x,,>=x1

tl H<x1,X2, ..., >=<X3,...,Xp>

prx pix(x,<xXi,... ., % >)=<X,X1,...,%X,>

conc concatenation of sequences:
XYy oo e s X CONC < Xpgt1s e v o 5 Xp =Xy e oo 3 X >0
This operation is extended to sets of sequences in the obvious way:
A conc B={a conc b|a€A NbEB}.

rev reversal of sequences

subst substitution in a sequence structure: subst[old ,new ,x] replaces every occurrence
of old by an occurrence of new in the structure x.

X Cartesian product: A XB X ... XD is defined as the set of all <a,b,...,d>
where a €4, etc.

! set of onetuples: 4!={<a>|a €4}

* *={<aj,...,a,>a, €A N\ n>0}

T A'=(<ai,...,8,>a,E€E4 N n>1}

~» pseudo-mapping: 4 ~»B | e is the set of all total functions from A to B such that

flal#e for only a finite number of arguments. If f is a pseudomapping for
which e is nil we shall not distinguish it from the set of all pairs <x,f[x]>
where f[x]#nil. In particular, no distinction will be made between the pseu-
domapping which maps everything to nil and the empty set.

Named domains and selector functions

The symbols introduced above are used for writing domain equations for a collec-
tion of named domains. Often a domain A is defined by an equation of the form
A=BXCXD The components of a member of A can then be selected using the
functions hd and #/ defined above. It is convenient to introduce the following, more
mnemonic notation:

128

s— s—b is a function A — B which decomposes an object in 4 and determines its
B component (assuming there is exactly one such component), and similarly for
s —c, s —d, etc. Thus with the given definition for 4 :
a€A = s—ca=hdila.

3. HIERARCHIES

In characterizing an IMS the structure of the information in its data repository is
specified first and the operations on that structure next.

As fundamental information structure we use the hierarchy. This is a tree having
data elements (integers, strings, or entities) as leaves. All of its nodes (both leaves and
branch points) are associated with a set of attributes, each attribute being a pair of a
name and a value. The following domains will be used:

M Atoms or data elements are objects which are indivisible from the point of view
of this theory.

E Entities are atoms which are used for fixed purposes in the information structure.
They will be written like identifiers in programming languages, e.g. john, red,
linenumber . We have E C M. The distinguished object nil is a member of M but
not of E, and is identified with the empty sequence and the empty set. Integers
and strings are also examples of atoms which are not entities.

The composite domains: T (trees), H (hierarchies), A4 (attributes), and L (labels), are
defined by the following equations:

H={h}XLX(TUM)

T =H*
L=E~M | nil
A=EXM .

Here h is a symbol which is not otherwise used. It serves as a mark on each hierarchy.
- The definitions mean that:

A tree is a sequence of hierarchies. In particular, nil is a member of T.

A hierarchy is formed from two elements, where the first one is a label and the second
element is either an atom or a tree.

A label is a pseudo-mapping from entities to atoms, i.e. a certain set of attributes. (In
other papers on the use of IMS we shall in fact need non-atomic attribute values in
labels, but the above definition is sufficient for our present purpose).

An attribute is formed from two elements, where the first one is an entity and the
second one is an atom.

We shall use a graphical notation for these structures, where atoms are written as text.
A tree which is a sequence of hierarchies is written as follows (figure 1):

129

h) h, h,

with the members of the sequence at the lower ends of the successive arcs (from left to
right, of course).
A hierarchy is written as follows (figure 2):

atom

where the box represents the label and provides space for writing (some of) the attri-
butes.

Hierarchies may be written as formulas, using the notation that was introduced in
the previous section, but we also introduce the following infix notation for improved
legibility: _

: is used as an infix symbol for forming hierarchies:

JEL ANxeE(TUM)=>J:x=<h,J, x>

and also for forming attributes:

eEE ANmeM s em=<e,m>.

; is used as an infix symbol for the function pfx, restricted to the domain H X T, for
constructing trees.

For example, x;y;z;nil =<x,y,z>.
If h,, h, and A, are hierarchies and J is a label,

J:(hy;hays hs;nil)
is another hierarchy.
We use the following precedence rules for the infix operators:
xiy;z2=x5(y;52)
Jx;y=(J:x)y
x;J:y=x;J:y)
abx=a.(bx).

130

4. SURROUNDINGS

The concept of a cursor is fundamental in most practical information management
systems. It is a point in the data repository relative to which the operations are per-
formed. We introduce the cursor as a distinguished object, which shall be written # . It
is not a member of any of the domains that were introduced in the previous section.
We shall use two domains defined informally as follows:

A surrounding is similar to a hierarchy, except that # occurs exactly once in a posi-
tion which would otherwise have been taken by an atom or tree. The cursor may not
occur in an attribute.

A perspective is also similar to a hierarchy, except that # occurs in exactly one posi-
tion which would otherwise have been taken by a hierarchy.

In other words, the difference between surroundings and perspectives is that in a
surrounding the cursor # ‘has’ a label (there is a substructure consisting of a label and
the cursor). The cursor with ‘its’ label (resp. the cursor itself as the case may be) may be
located between two hierarchies in a tree (= sequence of hierarchies). Thus it is located
between structures rather than at a structure.

The surrounding is a basic concept in the IMS: the operations which the user
invokes interactively while he is working with the system, such as inserting or deleting
at the position of the cursor, or moving the cursor, are functions from surroundings to
surroundings.

The following is an example of a surrounding (figure 3):

Volvo red 1982 Saab brown 1975

For a strict definition, we introduce variants of the recursively defined domains H
and T as follows:

H'={h}XLX(T'U{#})
T'=H* conc H'! conc H*

and

H"=({h}XLXT")U{#}
T"”=H* conc H"! conc H* .

Thus every member of 7" is a sequence of surroundings, exactly one of which contains
the cursor symbol (not more than one of it) and similarly for 7”. (Remember that
A'!'={<a>|a€A}.) Then H’ is the domain of surroundings and H"” is the domain
of perspectives. We shall write

131

U=H’
P=H".

For the specification of operations on surroundings it is convenient to introduce
functions allowing us to describe a surrounding relative to the cursor position, so that
the structures that are adjacent to the cursor appear close to the top of the expression
rather than deep down in a substructure. We introduce the following functions:

LXP - U
J:p=subst|# ,J:# ,p]

per TXUXT - P
per[l,u,rl=subst[# ,rev.l conc # ;r,u].

It is easily seen that the ranges of these functions are U and P, respectively. A sur-
rounding as in figure 4 can now be written

J:per[l,K:p,r]

where r is the sequence of “sister’ hierarchies to the right of the cursor, in their ordinary
order; J is the label just ‘above’ the cursor symbol in the diagrams; / is the sequence of
‘sister’ hierarchies to the left of the cursor, in reverse order; and K is the label immedi-
ately above J in the diagram. It is the label above the members of / and r in the
hierarchy from which the surrounding was formed. Finally, p may be # or a new
expression formed using per. In this way, a surrounding can be written so that the
information close to the cursor appears on the top level of the expression. This is
important when specifying IMS operations that have effects close to the cursor.

J:per[l,K:p,r]

where

r=<X4,X5>=x4;Xs; nil

| =<X3,X2,X,>=x3; X2, X1; nil
p=perlysynil,M:p’,ys3;yq;nil)

Figure 4

132

In the applications, attributes are used for a number of purposes: for specifying the
field names for fields in a record; for specifying record types and the choice of keys; for
specifying the position of various substructures on the screen or in a printout, etc. But
there will also be many situations in which there are no attributes, i.e. in which the
label is the empty set.

An expression J : p is fully inverted if and only if either p is the constant # or if it
has the form per[/,u,r], where u is fully inverted. It is easily seen that each member of
U can be written as a fully inverted expression in exactly one way.

Let us give one brief example of how this structure may be used. A conventional
record may be represented by a hierarchy in which each daughter has the label

(fid:n)

(where fld is a constant and n is a variable). Such an expression will be abbreviated by
capitalizing the symbol for n, for example

Year ={fld: year} .

The surrounding in figure 3 above, if provided with reasonable field names, can now be
written: ’

nil : per [(Manuf : Volvo ; Color : red ; Year :1982; nil); nil , nil : # ,
(Manuf : Saab ; Color : brown ; Year :1975; nil); nil] .

If the cursor is moved to a position between the nodes for Volvo and red, the surround-
ing becomes:

nil : per[Manuf : Volvo ; nil
nil : per[nil , nil : # |
(Manuf : Saab ; Color : brown ; Year :1975; nil); nil],
Color . red; Year :1982; nil] .

S. DEFINITIONS OF OPERATIONS AND
THE APPROACH TO THEIR COMPILATION

The simple interactive operations in an IMS are those which add, delete, and modify
structures immediately before or after the cursor and those which move the cursor to a
new position, for example one step forward or backward. Thus a simple view of an
IMS is that it is a system which at each moment has a state which is a member of U.
It receives from the user successive operations which are mappings U — U and
changes state accordingly. These operations can be conveniently specified using the
notation of the previous sections. For example, the operation nx that moves the cursor
one step to the right is characterized by the axiom:

nx.C:per[l,u,x;r1=C:per[x;l,u,r]

plus one other axiom which specifies what happens when the cursor is already at the
right end of the sequence, and which for example may be chosen as:

v=C:per[l,u,nil] = nx.v=v .

When a command driven system such as an IMS is implemented, it is natural to
organize the program around a case statement which contains one branch for each pos-
sible operation, each branch being the implementation of the axiom(s) specifying the

133

corresponding operation. The topic of the present paper is to show how the transition
from specification to implementation for an operation can be done within a single logi-
cal system.

Before we go into the details of compilation, let us specify a number of additional
operations which have been implemented in the present system in order to provide
some intuition for what the specifications may look like. We only specify the main case
in the definition, corresponding to the first line in the definition of nx above, and omit
the specifications of exceptional cases.

The bk operation moves the cursor one step backward:
bk.C:perix;l,u,r}=C:per[l,u,x;r].

The dw operation travels downward along the substructure to the right of the present
cursor position:

x€T = dw.C:per[l,u,J:x;r]=C:per[nil,J‘:per[l,u,r],x] .
The up operation leaves a substructure and positions the cursor after it:
up.C:per[nil,J :per{l,u,rl,x]1=C:per[J:x;l,u,r}].

The rs operation resets or ‘rewinds’ the cursor to the beginning of the present subtree
level:

rs.C:per[x;l,u,rl=rs.C:per[l,u,x;r]
v=C:per[nil,u,r] = rsv=v .
The in[x] operation inserts an element before the cursor:
in[x).C:per[l,u,r]=C:perlnil:x;l,u,r].
The del operation deletes the element immediately after the cursor:

del.C:per[l,u,x;r]=C:per[l,u,r].

We can now proceed to the issue of compilation. Our method is based on making a
transformation between two subsets of the language of first-order predicate calculus
(FOPC), namely the subset used for specifications and a subset which corresponds to a
conventional programming language. The specification for an operation op is assumed
to be written in the form

Ay NA; N ... N A,
where each of the A; is a specification clause having the form
PyNPy, \N... NP, = o0px=y

where x and y are surrounding-valued expressions and where the literals P; are formed
using the notation that was introduced in previous sections.

As the recursive specification of rs above shows, op may be used also for forming
the expression y. Of course, other operations, defined in one or more other clauses of
the specification, may occur as well. We do not impose such constraints as would
guarantee in general that a specification is solvable; that has to be verified separately
for each individual specification. The same applies to the programs that implement the
specification.

134

The procedure for op, by contrast, is restricted to the form
Ay NA; N ... N\ A,
where each 4; is a procedure clause of the form
Py N\ ... NP, = opu’=u"

where 4’ and 4" are now restricted to single variables and where there are also a
number of restrictions on the literals P;. They may for example have the form

k+l—, k

u o.u

where u**! and u* are single variables and o is an expression. The conversion from

specification to program is a kind of pattern compilation: whereas the specification uses
construction functions such as per, the program contains e.g. tests for membership in a
domain and decomposition functions such as rg, defined by

rg.C:per{l,u,rl=r .

The language for procedure clauses resembles a simple, fairly conventional program-
ming language (more precisely: a single assignment language), while it is at the same
time represented entirely within FOPC. Various kinds of P; correspond to various
kinds of programming language statements: variable assignments, operations on the
data base, conditionals, etc.

The representation of the procedure for an operation will be introduced in a step-
wise fashion, by defining a sequence of sublanguages (each sublanguage being a first-
order logic with certain syntactic restrictions).

6. DECOMPOSITION AND MODIFICATION FUNCTIONS
In the sublanguages we need the following predicates:

OnT ispfx[t]= @Ax,y)t=x;y _
(In other words, ¢ is not the empty sequence. The name for the predicate was
selected because x ; y is also written pfx[x,y].)

On P isper[p]l= Q@l,u,r)p =per(l,u,r]
(In other words, p is not *.)

On U nontop[C:p] = isper[p] .

We also need decomposition functions for each domain except M and its subsets.
For the domains defined in section 3 this can be done by the ordinary conventions:

For H: if h=J:x, then
j=s—Lh
x =s —tm.h (with a simple generalization of the name convention for selection
functions).

ForT: ift=hy;h,; ..., then
hy=hd.t
hy; .. .=tlt . (The functions hd and ¢/ are therefore in T restricted to those ¢
that satisfy ispfx.z.)

135

For L, the . primitive serves to identify one component of the label at a time.

For A: if a=e:m, then
e=s—ea
m=s—ma .

When objects in the domains P and U are written using fully inverted expressions,
the convention for forming decomposition functions of the form s — do not apply as
usual, since the functions : and per do not directly correspond to composition rules of
the abstract syntax for these domains. However, since each surrounding has just one
representation as a fully inverted expression, similar functions are well defined, e.g. the
‘right list of sisters function’,

rgJ .per{l,u,rl=r .

We shall use the mnemonic names /bl (label), pc (perspective content), If (left), ow
(owner), and rg (right) for decomposing a surrounding according to the definitions in
the following table. The table also defines the modification functions sif (set left), srg
(set right), sibl (set label), and embed. These functions are used for obtaining the state
transitions required by an operation. For each function we specify its name, the types
of its domain and range, the precondition under which it is defined (as an additional
restriction on the domain) and, on the next line, the equation that specifies the relation-
ship between argument and value.

name type precondition
bl U—-L
blJ:p=J
pc U->P
peJip=p
rg U->T nontop [u] réquired for rg.u

rgJ :per[l,u,rl=r

If U->T nontop [u] required for If .u
if.J:per(l,u,r}=I

ow U->U nontop [u] required for ow.u
owJ :per[l,u,r]=u :

slf T - U ->U) nontop [u] required for sif [t].u
slif[t).C:per[l,u,r1=C:per[t,u,r]

srg T - (U->U) nontop [u] required for srg[t]u
srg[t].C:per[l,u,r]=C:per[l,u,t]

sibl L - (U ->VU)
sbl[J)C:p=J:p

‘embed LXTXT - (U - U)
embed[J ,1,rlu=J:per[l,u,r]

136

The following properties of these functions are readily inferred from the definitions
(all constrained by the preconditions of the functions):

nontop [srg[x].u]

nontop [slf [x].u]

nontop [u] = nontop [slbl[J |.u]
nontop [embed|J ,1,r)u]

Ifsrglx]lu=ilfu
If.slf [xlu=x
If sibl{J)\u=If.u

rg.srglxlu=x
rg.slf [xlu =rg.u =rg.sibl[J .u

Iblsrg[x J.u =Ibl.u =IbLslf [x .u
Ibl.sibl[J \u=J

ow.srg[x].u =ow.u =ow.slf [x }.u =ow.slbl[J .u

If.embed[J ,1,rlu=I

rg.embed|J ,l,rlu=r
Ibl.embed[J ,l,r|u=J
ow.embed[J ,1,ru=u

These definitions should be included as proper axioms in a forthcoming first-order
IMS theory, together with e.g. axioms which effectively are translations of the domain
equations, such as

r€T = ispfx[r] V r=nil .

Although the precise formulation of such a theory must wait for a later occasion, we
can already observe here that, in the IMS theory, the relation between the specification
of an operation and a procedure that implements it should be one of logical conse-
quence, i.e. the implementation should be a consequence of the specification.

7. LPSL - LINEAR PROGRAM SUBLANGUAGE
An LPSL program is conjunction of LPSL clauses, each of which has the form
~Vvivd v uSul L, ut)
PANP, AN...NP, = opp), ..., v']u=u"
The operation op is said to have this clause. The clause must satisfy:
I. Simple constraints:

m,n,p=0
O<h<m .

II. The literals P; must have one of the following forms:

1. uk =o.u* 1

where o is an expression for a mapping U — U, formed using one of the functions ow,
slf , srg, slbl, embed, which have just been defined, or operations which have other

137

~ clauses in the same LPSL program.

2.vk=x
where x is an expression whose value has a type other than U or P, and which is
formed using composition and/or decomposition functions as defined above.

3. An arbitrary predicate expression z, formed using some of the predicates defined
above (ispfx , isper , nontop) or an ordinary predicate such as equality.

The function per may not be used to form expressions, i.e. surroundings can only be
modified, not created afresh. Also, the expressions x and z in cases 2 and 3 may not
use any surrounding valued function except ow.

III. The constituent expressions (0,x,z) must satisfy certain constraints which we shall
now define. For a given LPSL clause, with the variables and indices specified above, we
define a sequence cy,c), . . ., ¢, Of current variable sets, which are sets of variable sym-
bols, (not sets of the objects that the variables denote), and which are defined as fol-
lows:

co={v1, e, v",uo} ;

if P; has the form u* =o.u*~! and
CGi—-1=c¢C U{uk_'}, then

c=cU{u*};

if P; has the form v¥ =x, then
G =c,»_1U{v"} ;

- if P; is a predicate expression z, then
Ci=Ci-1.

Clearly every ¢; contains exactly one u®

P; are now the following:

variable. The constraints on the sequence of

a) If P; is of type (1) above, u* ~! must be a member of ¢;_,. Intuitively speaking, u*

stands for the state of the data repository after the ‘operation’ P;. The succession of
such states as are obtained by successive update operations are presented in our logic
by a sequence of u; variables. The actual implementation in a conventional program-
ming language can contain a single variable # and perform successive assignments to it
and/or perform successive operations with side-effects on its value.

b) If P; is of type (2) above, the variable to the left of the equality sign must not be a
member of ¢;—;. In other words, it must be a new addition to ¢;. Intuitively, P; is an
assignment to a (programming language) variable to which no previous assignment has
been made.

c) All variables which occur in o, x, or z (as the case for P; may be) must be members
of ¢;—1. In programming language terms, this means that variables must have a value
assigned to them before they are used.

If P; is of type (3) i.e. a condition z, it should be viewed as the condition in an if state-
ment (of a conventional programming language). The subsequent P; ;| ... constitute the
then branch of the if statement. The else branch may be specified by another LPSL
clause.

~d) A decomposition function as described above may be used in P; only if its precondi-
tion occurs among or if it is a consequence in the IMS theory from

138

PyNPy; N ... N\ Pi_;. This is our couriterpart of type checks in programming
languages.
eu" €c¢, .]

In order to make condition (d) effectively decidable in general, it would have to be

strengthened to for example ‘can be inferred in at most 1000*p deduction steps
from...’. This practical matter will be bypassed here. This ends the list of constraints.

For example, the following is an LPSL clause:

v vhulul, u?
nontop [u°] V
vi=rgu® VvV
ispfxv'] V
u'=sif [hd[v']; (f.u®))u® V
w=srg[tv'u' = nx.u’=u’.

If an IMS theory is designed in the way suggested abové, this LPSL clause must be
a consequence in the theory of the following specification clause

nx.C :per[l,u,x;r1=C:per[x;l,u,r].

To verify that constraint (d) on LPSL clauses is satisfied throughout, we notice that
the precondition nontop[u®] legitimizes the use of rg.u’ If.u’ and sif.[...]Ju°. The
precondition ispfx[v'] legitimizes the use of hd[v'] and #[v']. Finally, u'=sif] ... Ju°
implies nontop[u'] (above) which legitimizes u*>=srg| ... J.u'.

The idea behind the LPSL clause is that, in addition to being a consequence of a
specification clause, it should express a procedure for executing the operation in the
cases covered by the specification clause. In other words, there should be a simple,
essentially syntactic, transformation transforming an LPSL clause into a reasonable pro-
cedure in a conventional programming language doing the same thing. The intuition as
to how the LPSL constructs are related to programming language constructs has
already been given. The constraints that have been imposed on LPSL clauses were dic-
tated by this goal. On the other hand, we are not yet ready to give a strict proof of this
correspondence between LPSL and programming languages. The set of constraints that
has been given here should therefore be seen as provisional. However, for the simple
examples in this paper it should be fairly clear how a specification clause can be
transformed into an LPSL clause and how an LPSL clause can be transformed into a
procedure.

8. BPSL - BRANCHING PROGRAM SUBLANGUAGE
The specification of an operation may consist of several clauses, €.g.

nx.C:per[l,u,x;r]=C:per[x;l,u‘,r] /\
nx.C:per[l,u,nil)=C:per(l,u,nil] .

When these are transformed into LPSL, we often obtain LPSL clauses in which the first

few A; are the same. It is natural to introduce a sublanguage in which these can be

shared and which thus contains the counterparts of if statements in conventional pro-

gramming languages. This is what BPSL does. The present section presents BPSL,
although still in a somewhat sketchy way.

139

A BPSL program is a set of BPSL procedures for different operations. A BPSL pro-
cedure for an operation op has the form

(AR AR LR 7L 7L 7LD oplvl, ..., v"1u® =/ R
where R is a computation rule in BPSL having the form
P,—>Py—>--- —P,—>u

with p =0, while the successive P; satisfy the same conditions as in LPSL and u is
either a variable 4™ with m <n or an expression

branch
ifR,
if R

Each of the R; is called an if clause and again is a computation rule in BPSL. When
several if clauses are nested inside each other, the possible ambiguity is resolved by
indentation: if clauses in the same u have their initial if keyword directly underneath
each other. ’

We must also impose on computation rules in BPSL a syntactic restriction
corresponding to the restriction on LPSL clauses, but in order to make it understand-
able we must first make clear the meaning of BPSL procedures.

First, an example of a BPSL procedure:
v vLu®u',u?) nxu® =/
nontop [u°] —
v!'=rg.u® — branch

if ispfx[v'] -
u' =sif [hd[v']; (If - u®)Lu® —
ul=srg[tivu' - u?
ifvi=nil - u°

This procedure is equivalent to the specification of nx that was given at the beginning
of this section. The first if clause handles the case of the first line in the specification,
while the second if clause handles the second line. Notice also that the second if clause
uses u°, not u?, i.e. variable numbers are incremented in parallel in the branches.

The meaning of a BPSL procedure is defined by transformations to an equivalent set
of LPSL clauses, as follows:

If v is a variable,
opu =/ v
has the same meaning as
opu=v .
The expression
x=/Py>Py—>...> P >u
has the same meaning as

Pl/\P2/\.../\Pp=>x=/u.

140

The expression

x = / branch
i
ifu?

has the same meaning as
x=/ud)Nx=/u)N....

Using these rules, it is clearly possible to rewrite each BPSL procedure as a conjunc-
tion of LPSL clauses (apart from the constraints). We shall call this the flat form of the
BPSL procedure. The above example of the BPSL procedure for nx can thus be rewrit-
ten as the conjunction of two LPSL clauses, one of which is identical to the clause for
nx that was given in the previous section. We impose on BPSL procedures the natural
constraint that each of the terms in the flat form must satisfy the constraints imposed
on LPSL clauses.* ‘

If a BPSL procedure is to be a usable program, it must take into account all cases
that may occur in the IMS in which it is used. The completeness criterion is that in
any expression

P, ... —> P; - branch
if Q1 — v!
if O > v"
the various criteria Q; must satisfy (again in the IMS theory)

PAAN...AP=(Q1 V...V Q).

The simplest way of satisfying this condition is if n =2 and Q,=— @, which means
we effectively have an ordinary if ... then ... else ... expression. A more common case
seems to be that the Q; represent the various possible cases in the syntax for an ele-
ment, e.g. whether a perspective is # or not, or (in the last example) whether a
sequence is empty or not.

In our BPSL procedure for nx above, the property nontop[u°] is required by subse-
quent operations. It means the procedure is not complete in this sense. However, all
IMS operations defined in section 5 assume the predicate nontop to be valid for their
arguments and preserve that property. It would therefore be reasonable to treat it as
an invariant of the IMS and to require only that BPSL procedures shall be well defined
and complete relative to the invariant. (This relaxes requirement II11.(d) in the definition
of LPSL.)

* except, since different if clauses may require a different number of u variables, a clause in the flat form may
end on
= op[v', e ,v"].u0=uk

where k <n without necessary equality. Compare with the definition of LPSL clauses above.

141

9. SECOND EXAMPLE
The operation up may be specified as:

up.J :per[nil K :per[ll,uu,rrl,r]=J:per[((K:r),lIl,uu,rr] N\
up.J :per[nil ,K :nil,r1=J : per[nil ,K : nil,r] N\
up.J :per[x;l,u,rl=upJ :per[l,u,x;r]

and a derived expression in BPSL is:

v vLvial u ut ud) upu® =/
nontop [u®} — branch
if ispf [if u°] —
u'=bku’ -
u’=upu' > u
if If u®=nil -
vi=blu® >
vi=rg.u® — branch
if nontop [ow.u"] —
u'=owu’ -
S ulr=sif[(blu’): v (fauh)u! -
wl=slbv'u? - u?
if pc[u'l=nil — u°

2

where bk was defined in section 5 as the inverse operation of nx.

10. IPSL - THE IMPLICIT-SURROUNDING
PROGRAM SUBLANGUAGE

LPSL and BPSL use explicit variables «° u',... for the successive surroundings that
are the states of the machine. When an expression in these sublanguages is transformed
into a conventional program, as is readily done, it is of course possible to use a single
variable for the ‘current ¥’ in the implementation, but the notation is still unnecessarily
cluttered by all the u variables. An implicit-surrounding program sublanguage IPSL, in
which references to the u’ surroundings do not have to be written out, can be defined
by a reversible transformation from BPSL to IPSL.

Each BPSL procedure
vvLo vl u) oy, v =/ R
is transformed into
Oplv',...,v"1 =/ (ocal v**' ... v™) R’
where R’ is obtained from R by the is transformation.
A computation rule in BPSL,
Pi>...> P, —>u
is transformed into
P/Y—>..—>P’
if u is a single variable, and into

P/ —>...> P >u

142

if u is a branch expression. In the latter case, the if clauses in the branch expression
are all transformed using the same is transformation.

A literal P; in a computation rule is transformed into a corresponding literal P;” by
the following transformation, according to the various cases that were specified in sec-
tion 7:

An expression

k —

u X

where x has the form o.u* 7!, is transformed into an expression

xl

where the transformation from x to x” will be specified immediately.
An expression

vk =x
is transformed into an expression
vh=x".
A predicate expression z, finally, is transformed into an expression z’. In all cases, the

transformation from x or z to x’ or z’ is defined recursively as follows:

Constants are unchanged. Variables v/ are also unchanged. Variables u/ for surround-
ings cannot be transformed.

Functions U — U with an explicit variable as argument are capitalized and the argu-
ment is omitted. Thus:

nontop [u] — Nontop
Iblu — Lbl

peu — Pc

rgu — Rg

Ifu - Lf

owu — Ow

sif [t)u — Sif[t']

srgltlu — Srgft']

sibl[J Ju — SIbl[J’]

embed|J,l,rlu — Embed[J',l’,r'] .

For those cases in which the argument to a function from U to U is not a variable
symbol, we introduce the operator ® defined by

fgx=(®g)x
so that e.g. nontop[ow.u"] can be rewritten as Nontop ® Ow.

Other functions and predicates (e.g. ispfx, hd, ;) retain their argument structure, but
each of the arguments undergoes the same transformation.

Finally, we add some syntactic sugar: if the final step in a branch has the form
ifQ - u™

where 4™ is a single variable, then it may be rewritten more suggestively as

143

if Q' — Ident
rather than
ifo’.

For example, the definition of nx that was given in BPSL in section 8, will be
rewritten as:

Nx =/ (local v')
Nontop —
v!=Rg — branch
if ispfx[v'] -
SIf (hd[v'%; Lf | >
Srg[d[v']
if v!=nil — Ident .

In this way we have moved our notation closer to the notation found in conven-
tional programming languages, but this is only a matter of syntax. The semantics of
first-order logic is retained.

11. TRANSFORMATIONS TO STACK MACHINE SUBLANGUAGES

The sublanguages introduced in the previous sections correspond to conventional
programming languages in the sense that their literals correspond to different kinds of
‘statements’ for variable assignment, operations on the data base, conditionals, etc. An
application of this correspondence is a translator from (e.g.) BPSL to a conventional
programming language. Such a translator only performs a syntactic transformation into
a subset of the target language. In this way we obtain a transformation from a
specification language to a programming language. The latter can be compiled for exe-
cution on a conventional machine. These transformations are illustrated in figure 5.

However, we could achieve greater conceptual economy by considering e.g. BPSL to
be the programming language for our use. We must then apply conventional compila-
tion techniques to BPSL. The present section will show how this can be done by an
extension of the same strategy as was used in previous sections, i.e. by making transfor-
mations into yet another subset of first-order logic, which intuitively corresponds to the
machine language for a stack machine.

We define the following domains:

B = {true, false}

Q=BUMUHUT

Q is the domain of practically everything. It is needed for defining counterparts of
registers and stacks.

S=UXQ*XQ

S is the domain of states for the stack machine. In a state <u,d,q >, the surrounding
u is the present contents of the data repository, d is the present stack, and g is the
present contents of a distinguished register. Whenever we want to refer to the contents
of the top of the stack, we make an operation that pops the stack into the register and
‘then refer to the present contents of the register. We shall discuss the need for such a

144

register below.

specification
y
conventional
BPSL > programming
language
1
i
I
I
: compilation
|
l l
!
|
- Yoo
' ! abstract
! BSSL | machine
1 [code
Le e e o = J

Figure 5

We shall now define a sublanguage, LSSL, which is analogous to LPSL except that
it uses states whenever LPSL uses surroundings. As a consequence, it uses a set of
operations on states which is different from (although related to) the operations on sur-
roundings that are used in LPSL. Later on, the additional steps that are taken from
LPSL to BPSL and IPSL will have direct counterparts for LSSL. '

We define the following new predicates and functions on states:

name type

push ; 0->(5->2Y9)
pushix].<u,d,q>=<u,x;d,q>

pop S-S
pop.<u,x;d,q>=<u,d,x>

reg S -0
reg <u,d,q>=¢q

test predicate on S, defined as:
' test <u,d,q> = q =true

145

Furthermore, for the predicates and functions that were defined in previous sections
with U as domain, we define bold-face counterparts on S. For the predicates as well as
for those functions whose range is not U, the counterpart pushes an element on the
stack: :

nontop nontop.u = nontop.<u,d,q>=<u,true;d,q>
— nontop.u = nontop.<u,d,q>=<u,false;d,q>

Ibl bl<u,d,q>=<u,(lblu);d,q>
pc pe.<u,d,q>=<u,(pcu);d,q>
rg rg<u,d,q>=<u,(rgu);d,q>
If | f<u,d,q>=<u,(ff.u);d,qg> .

For those functions whose range is U, the counterpart modifies the surrounding in
the state:

ow ow.<u,d,q>=<ow.u,d,q>

sif s <u,x;d,q>=<slf[x)u,d,q>

srg srg.<u,x;d,q>=<srg[x]u,d,qg>

sibl sl <u,x;d,q>=<slbl[x)u,d,q>

embed - embed. <u,r;J;l;d,q>=<embed[l,J,rlu,d,q> .

Predicates and functions with other domains than U are given boldface counterparts
that take their arguments from the stack of the state and also return their value
(represented using the domain B in the case of predicates) on the stack. For example,
we define:

pfx pix.<u,y;x;d,q>=<u,(x;y);d,q>

hd hd<u,x;d,q>=<u,(hdx);d,q>

ispfx ispfx.x = ispfx. <u,x;d,q>=<u,true;d,q>
and a similar definition for the case of — ispfx.x.

equal x=y =>equal<x,y;x;d,q>=<u,true;d,q>
and so forth.

Starting with an LPSL expression representing operations on surroundings, we can
rewrite it as an LSSL expression representing operations on stacks by changing every
u* variable to a corresponding s* variable, and by converting composite expressions
into sequences of stack operations. For example, the expression

u’=srg[tv'.u'

(in the BPSL procedure for nx) is transformed into

146

s?=push[v'].s' -
s’=tls? >
st=srgs3 .

The first operation pushes the value of v! on the stack; the second one performs a ¢/

operation on the top element of the stack, and the third one pops the top element off
the stack and inserts it as the new left sister list of the present surrounding.

More generally, the various types of literals in LPSL are transformed as follows:

Type (1) literals in LPSL are reduced to a sequence of literals in LSSL which first
pushes elements on the stack with operations such as push with a single variable param-
eter, rg, If, etc., later modifies them with operations that accept/put arguments/results
from/on the stack, and finally deletes them with an operation such as srg.

Type (2) literals in LPSL are similarly transformed into a sequence of literals in LSSL,
the last two clauses of which are:

sk *+1=pop.sk
v =reg.sk 1.

Finally, type (3) literals are transformed into sequences of LSSL literals ending on:

Sk+1:pop.sk N
test.sk*1

With this notation, we can e.g. rewrite the LPSL program for nx as

~Vvls® ..., s
s'=nontop.s° A
s?=pop.s' N\
test.s? A\
s3=rgs? A
st=pop.> N
vi=regs* A
s>=push[v'].s* A
sS=ispfx.s® A
s’=pop.s® N\
test.s” A
s8=push[v']s7 A
s°=hd.s® N
s'0=1fs° N
sM=pfx.s!0 A
sP=sifs' A
sB=push[v'}.s? A
sU=ts"® A
sB=srgs™ = nx.s0=s'5

We can now see why even for a stack machine the register component of the state is
needed: for type (2) literals, we must pop a value from the stack and bind that value to

a v variable, but at the same time we must bind the new state containing the popped

stack to an s variable. This is taken care of by the register as shown in the example.

Since we do not perform any operations on the contents of the register nor allow the

register contents to be pushed back on the stack, we still have essentially a stack

147

machine.

Since LSSL is similar to LPSL, we can now introduce branch constructs into LSSL.
This results in a sublanguage BSSL, in the same way as for BPSL. We must notice,
however, that in BPSL it was the first literal after the if that constituted the test,
whereas in BSSL the test (using the operation test defined above) can occur only after a
number of operations involving the stack. It should be thought of as an exit from the if
clause or, more precisely, an exit that resets the state of the machine to what it was
when the if clause was entered.

The reserved word if in the BPSL syntax is therefore inappropriate and we shall use
>> for the same purpose of marking the start of an if clause in BSSL.

Finally, we can eliminate the state variables from the notation by introducing ISSL
by the same conventions as for IPSL, i.e. we capitalize functions and predicate names
to indicate that a state parameter is implicit. At the same time, we allow comments to
be written at the end of each line. We then have something which feels like the machine
language of a stack machine, except for the way variables are handled:

Nx = / (local v')

Nontop — check whether surr is C:per|[l,u,y] rather than C: #
push truth value on stack

Pop — pop truth value to register

Test — if not satisfied, exit

Rg — push y on stack

Pop — move y to register

v!=Reg — branch
>> Push[v'] >

bind v to y
push y on stack

Ispfx — check that y is not nil
Pop — pop result of test to register
Test — exit if test fails
Push[v'] —» push y again, assume it is x;r
Hd — change y into x on top of stack
Lf > push / above x on top of stack
Pfx — now x;/ is on top of stack
Sif — assign x;/ as new list of left sisters in surrounding
Pushjv!'] —» push y =x;y on top again
Tl - now r is on top of stack
Srg assign r as new list of right sisters in surrounding;
current state is result
>> Push]y'] - push y on stack again
Push[nil] - push nil above it
Equal — compare
Pop
Test if not equal then exit,

otherwise current state is result.

The machine is a bit clumsy because of all the transfers to and from the register, but

this can easily be remedied by introducing and using a few more operations. In princi-
ple we already have a machine here to which most of the intuitions of regular stack
machines apply.

148

12. PROPOSED CONTINUED WORK

The present paper has been semiformal. The next step would be to verify that, for
strict definitions of all languages involved, the transformations between the languages
are possible in all cases. We have tried to convince the reader that such proofs will be
possible, but there are some minor details which have been bypassed in the present
paper. For example, we do not allow surroundings to be pushed on the stack. This is in
principle a reasonable constraint, but as a compensation we must find some way of
allowing the user to access the components of the owner of the current surrounding, for
example in the expression

nontop [ow.u"]

in the example in section 9. This requires some simple additions to the repertoire of
operations.

The ISSL language, which was the last transformation step in the present paper, is
not in all respects a reasonable machine language. A few ‘more transformations and
modifications should be made:

- Introduce a real register machine and/or smooth the stack/register transfers in the
present treatment.

- Treat program variables in a variable stack in a separate component of the machine
state rather than modeling them by predicate-logic variables.

- If, with the current definition of BSSL, the test statement fails during execution of
an if clause an exit from the if clause should be performed and the next if clause
should be entered with the machine in the state it was in when the first if clause was
entered. In an implementation this would require that a copy of the state be made,
but it is intuitively clear that the surrounding and stack at the time of exit are the
same as at the time the first if clause was entered. In this and other ways, machine
behaviour more like that of a real machine should be obtained, while retaining the
close correspondence through all levels from specification to executable machine
language.

REFERENCES

[BLI82] Blikle, A., "Desophisticating denotational semantics,” to appear in: Proceed-
ings of the IFIP World Computer Congress, 1983.

[BOE80] Boehm, B.E., "Developing small-scale application software products,” in
Lavington, S.H., (Ed.), Information Processing 83, North-Holland, 1980.

[SAN82] Sandewall, E., “An approach to information management systems,” Report
LiTH-MAT-R-82-19, Software Systems Research Center, Linkoping Univer-
sity, July 1982.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

