Stepwise structuring: A style of life for flexible software

byERIK SANDEWALL, STURE HAGGLUND, CHRISTIAN GUSTAFSSON,
LENNAT JONESJO, and OLA STROMFORS

Linképing University
Link6ping, Sweden

ABSTRACT

In a life cycle perspective on software, the paper describes a strategy for initial-
ization and successive growth of software, which emphasizes flexible introduction
and flexible use. The examples in the paper are taken from office information
systems or personalized data processing systems.

The key points in the paper are as follows:

1. The system should be organized so that it allows multiple representations of
the same information, particularly as images (bitmaps), text, and structured
data.

2. New applications should first be started by using representations with rela-
tively little structure (such as images) and only gradually shift to using more
structured representations.

3. Itis valuable for the end user to be able to control and make use of the gradual
introduction of more structure.

4. Tt is useful to have software tools that facilitate the interactive work of intro-
ducing more structure into the information. Some tools that have been imple-
mented in this project are described.

65






Stepwise Structuring for Flexible Software 67

A PRACTICAL CASE: FROM TEXT FILE TO
STRUCTURED DATA

When we have used office information systems in our own
work, we have repeatedly found it useful to use plain text files
as an interim representation before building a conventional
data file. Consider a very simple example: an international
address register, which contains name and address informa-
tion correctly in the various formats used in different coun-
tries and which is used for one single purpose: printing adhe-
sive mailing labels to be put on envelopes. If this address
register is represented as a text file, it can be edited (with a
standard text editor) and it can generate the required labels
(using the standard PRINT operation).

Such an implementation leaves with the user, of course, the
responsibility of making sure that all entries are correct—e.g.,
have the correct number of lines and observe the maximum
line length. However, it is not difficult for the user to under-
stand these requirements. If there are any mistakes, they can
be observed when the labels are printed out, and the user can
readily solve the problem. This arrangement has the funda-
mental advantage that the user can easily master the system.
For the user, that is an advantage that is often worth the price
of extra attention.

The text-editor implementation becomes impractical, of
course, when the number of addresses in the directory in-
creases and when the same information is to be used for
multiple purposes. The application is then converted to a file
of records in the obvious way—to a structured representation.
The extra effort of converting the existing text files to the
record format can be avoided if one implements the structured
representation right from the start. However, it can be worth
the effort, since the first stage, using the text file representa-
tion, provided a body of experience of several kinds: experi-
ence of all the odd varieties of addresses that may occur in
practice (which is useful for the implementor), a familiarity
with the computer system as a tool (which is significant for the
end user), and finally a check of possible practical problems
with computer-based solutions (such as mechanical problems
with the printer and the labels).

This simple case examplifies the first two of the general
principles that we proposed:

1. The data that are contained in an information processing
system occupy a slot in a spectrum from less structured
(in our example, the text file) to more structured (in our
example, the file of records).

2. Tt is useful to let the early stages of software develop-
ment be based on less structured data and to increase the
strength of structure as the system matures. A significant

advantage of this approach is that it is conservative with

respect to structuring; i.e., one does not introduce more

structure than necessary for processing. The organiza-

tional effects of different information media with differ-

ent levels of structuring has been studied by Innis' and
Taylor.?

In the remainder of the paper we shall argue that there are

more than two significant points along that spectrum and dis-

cuss their character. We shall also argue an additional point:

3. Software systems for interactive information processing
should support more than a single point on the struc-
turing spectrum. In other words, data with different lev-
els of structure should be able to coexist in the same
system.

Finally, we refer to systems that have been implemented
and used in our laboratory that have allowed us to develop and
test these principles.

SOME OTHER EXAMPLES

Let us now discuss additional examples of applications whose
data have a place along the spectrum from less structure to
more structure.

References in a Text

A good example from the academic environment is the
preparation of the bibliography for a scientific paper. At first
the manuscripts are just text files. The first transformation is
to factor out the references individually as small text files
(notices, using the term of Sandewall et al., 1980.%) The main
text file is changed so that it contains only the expansion
command, with the file names of the text files for the various
references as arguments. A preprocessor must then be used
before the regular text formatter in order to reinsert the small
text segments for each reference.

Even this first step is valuable because it makes it con-
venient for various papers to share references. A second step
may be to change the text file representation of each reference
to a structured representation as a record in a database. Again
in this example, it is valuable to have a body of practical data
at work in the intended application before the structures are
decided.

From Image to Text File

We return to the problem of mixing paper-based and
computer-based documents and consider an information



68 National Computer Conference, 1983

workplace, i.e., an office or another working environment
where a large number of documents are processed by people.
By tradition, those documents arrive on paper.

It would be impractical to key all the contents of those
documents into the computer system—i.e., to convert them to
the form that we have called text in the previous section. Not
only is it expensive to do the keypunching; it is also difficult
to support all kinds of figures, tables, photographs, etc.

The obvious solution, by analogy with the argument in the
previous section, is to recognize the original image of the
arriving papers as another representation (probably imple-
mented by raster-scan techniques), along with text and struc-
tured data. The image is of course less structured than the
text: The conversion from text to image is done automatically
by formatters and printout devices; the conversion from im-
age to text is usually done manually (by key-typing), and only
in some cases automatically.

The support of the image representation requires hardware
as well as software. The following is a scenario for what the
system could be like. The personal work station consists of a
keyboard, a text screen (i.e., a conventional character display
terminal), and an image screen (e.g., a full video screen). The
direct user-computer dialogue is performed using the key-
board and the text screen—e.g., for issuing commands to the
system. The system also contains a long-term memory for
image data, using either photographic or electronic storage
technology, and a short-term memory for the same kind of
data (e.g., in digitized form on a disk memory).

Both kinds of image memory are kept at a central location
and may be viewed from all work stations. It is well known
that the technology that makes that possible practically is
becoming available. Information of lasting value, such as
printed reports (or reports that used to be printed), are stored
in the long-term memory. In a research setting, this would
also include, for example, scientific journals. Information that
has just arrived and that is of general interest to the user
community (bulletin board information and circulation list
information) goes into short-term image memory and is trans-
ferred periodically to cheaper long-term memory. Newspaper
clippings, advertisements for new products, and (in a research
setting) calls for papers for conferences are examples of infor-
mation that could be handled in this way.

From the perspective of the user, paper-based information
that arrives in one copy to the organization is available imme-
diately to everybody on the image screen in his or her office.

Again, the advantages of the strategy should be fairly obvi-
ous: Our everyday office life includes many documents that
are, properly speaking, images, and that cannot be easily
expressed as text without significant loss of information and
readability. An electronic office system that is able to repre-
sent image and text side by side makes it possible to shift from
one representation to the other exactly when it is worthwhile.

Redundancy in Structured Data
There is also a later step, after the conversion from text to

structured data, which may be either a normal form represen-
tation, in the sense of database theory, or a so-called truth

maintenance system, in the sense of artificial intelligence. If
the textual stage in the conversion chain is interpreted to
contain all the texts that are required by the organization and
if the structured-data stage deals with structured forms of the
same texts, then the next stage again should be one where the
user is relieved of the duty of maintaining redundant informa-
tion in cases where the same information is used in several
texts. This can be achieved either by reducing the structured
data to a normal form, with the standard techniques; or by
keeping redundant information in the system together with
operators that automatically maintain the consistency, which
is what truth maintenance systems do.

The advantage of the normal-form approach is, among
others, that it can store large amounts of data economically.
An advantage of the truth-maintenance approach is that it can
be more concretely understood by the user: the machine still
contains the user’s documents, and there are ‘“demons” that
propagate new information to all the relevant places. Those
demons can be created and removed at will and can also be
designed so that they can be asked about the reasons for their
actions.

A LARGER CASE STUDY: PERSONAL PLANNING
INFORMATION

Several experimental office information systems provide facil-
ities intended to facilitate the users’ personal planning: calen-
dars, agenda lists (such as “to do” lists and tickler files), and
others. Such facilities can serve a widely perceived need when
they make it easier to find common time for meetings and
appointments. (The potential disadvantages of making it even
easier to fill up people’s entire days with meetings have not
been discussed as much.) Further work along these lines is
envisioned: Morgan* points out that “in true automation, the
control of when to use the tools is placed in the machine
support system,” and he suggests that that is a desirable goal:
“Similar work at Xerox, IBM, and MIT holds much promise
for truly automating in the office environment” (p. 785).

Although formal reports are hard to find, informal evidence
suggests that computer-based personal planning systems do
not usually become popular. We believe that the following
factors contribute:

1. Many people want to be in control of how they use their
time.

2. Personal planning information is needed the most by
people who move around a lot. At least with today’s
technology, a computer terminal is not available when
and where a decision is made to update a plan.

3. The computer-based system cannot compete, in terms of
overall convenience, with the paper-based system of
handwritten notes.’

This does not mean that all is well the way things are usually
done. The available range of literature, courses, and tools for
personal planning suggests that many people are not satisfied
with how they use their own time. Some of those tools could
be computer based.



Stepwise Structuring for Flexible Software 69

Clearly, personal planning information has a structure.
Some tasks such as meetings occupy a fixed location in time;
others are limited by deadlines, or by requirements that things
be done in a certain order. There is also a goal structure, since
most tasks are intended to serve a purpose. Finally, many
tasks have other information attached to them: the task of
calling a person can be executed only if a phone number is
available; the task of traveling to another city is associated
with the information that goes into the travel expense form.

At least for a computer professional, it is tempting to diag-
nose that problems arise because the structure of the informa-
tion is not made explicit and to implement a piece of software
that will administer the information, properly structured. This
would be another example of going from a less structured,
paper-borne representation of the information (often imple-
mented as a heap of paper slips, with notes scribbled on
them), directly to a more structured, computer-borne repre-
sentation. According to the principle that we argue in this
paper, one should not attempt to do that.

In this case, the intermediary station is not computer-borne
texts, but instead paper-borne structures. The following de-
scription should be interpreted as an example of what one
could do, rather than as a specification. The paper-based tool,
which represents many of the structures in personal planning,
could be a small, looseleaf binder, with tab sheets organizing
the papers in the binder into sections and subsections. There
could be sections for personal calendar-style time planning
(on several levels of time scale); for the schedule of the whole
organization, which serves as background for the personal
schedule; for agendas and deadline-directed tasks; and for the
various kinds of information that are attached to the tasks and
sometimes prerequisites for performing them.

Furthermore, the structure provided by the tab sheets
should be further refined by a repertoire of different forms
used in the binder. It is natural to have special forms for
calendar sheets, address directory sheets, and agenda sheets;
and the looseleaf structure would allow new forms to be intro-
duced as significant new structures are recognized.

A structured, paper-based planning tool of this kind serves
a purpose in itself, and such systems exist already in the office
supply market. They are relevant to the topic of the present
paper, because we argue that such a paper-based planning
tool is necessary before a computer-based tool can become
worthwhile. Provided that the integrity of decision making is
preserved, the individual user may find it beneficial to arrange
that the information in his or her planning book interacts with
the information in the computer.

Interaction means that information indeed goes both ways.
For example, it is clearly convenient to let the address/
telephone directory in the planning book be a selective print-
out from a file that is shared in the organization, but it is also
natural to treat the handwritten updates in one person’s
address/telephone printout as a source of update information
for the database. Thus the interaction between paper-borne
and computer-borne information should be viewed as a paper
refresh: The user brings in a set of paper sheets with hand-
written corrections, updates the information in the computer
accordingly (or obtains assistance for that chore), and receives

a clean set of printouts confirming that the updates have been
performed.

The paper refresh operation is of course similar to how
programmers work with listings of programs. It may also serve
as a model for how other items of personal planning informa-
tion, such as weekly schedules, communicate with the
computer.

The structuring of personal planning information will then
have proceeded top-down, and differently from the bottom-
up structuring that we discussed above for the publication
referencing. Top-down structuring aims at providing an over-
all structure, within which yet unstructured parts may con-
tinue to exist. For example, in an information system which
supports image information in short-term memory as de-
scribed above, it may be sufficient to store an image of each
person’s weekly plans, so that it is available for others to
watch. (Dividing the plan into two columns, one of which is
not publicly visible, is a natural modification.) With that de-
sign, no software can inspect or modify the contents of the
week’s plan—a limitation that many users will consider a dis-
tinct advantage.

SOFTWARE DEVELOPMENT STRATEGIES

We described initially how the various representations may be
successive stages in the system’s development process. One
starts with a less structured representation and later shifts to
a more structured representation when the time is ripe. The
body of available information at the time is converted to the
more structured form, and there is some procedure (e.g., a
formatter or a report generator) that is able to recreate the
less structured form from the more structured one. The more
structured representation becomes the source;i.e., it is hence-
forth the object of successive editing.

In some cases the user may wish to keep both representa-
tions permanently. For example, ordinary business cards con-
tain some information that it may be worthwhile to change to
a more structured form in the address directory, but also some
other information which is best kept as it is, such as the logo-
type of the company or perhaps handwritten notes on the
card. The user may keep both the image of the card and the
database entry in his or her OIS in such a way that one can
easily go from one to the other. In this case it is unclear which
of the representations should be thought of as source in the
above sense.

An additional and more sophisticated case occurs when the
choices of representation are used alternatingly. In an applica-
tion it is often easy to find a more structured representation
that accounts for most but not all of the cases. Returning to
the example of the reference list in the scientific paper, most
quotations fit into one of a small number of cases (book,
paper in a journal, internal report, etc.); but there are also
occasional references that do not fit those patterns. In the
transfer from the textual representation of the individual ref-
erence to the structured representation, the user might then
elect to retain the textual representation for the odd cases.

This easy way out has two drawbacks: Search operations
(e.g., the search for papers with a certain author) will often



70 National Computer Conference, 1983

not “see” the odd cases, and transformations (e.g., alterna-
tive formats for presentation of the quotation, with italics for
the title of the paper, the journal, etc.) have to be done
manually for the odd cases. However, those drawbacks may
be easily acceptable if the volume of information is moderate
and if the system is always used interactively, as is often the
case in OIS. It is much worse to have to think in advance of
all the cases that may possibly arise—or to deal with an in-
flexible system where some of the cases that should have been
thought of in advance have not been.

Two general observations are that one and the same system
should be able to account for the various representations of
information, and that each user should be able to understand
how those representations for the same information can be
used and exchanged.

Comparisons with Other System Development Methods

Conventionally, software engineering has recommended a
sequence of carefully separated steps (often illustrated as a
staircase or waterfall) from specification of needs to operation
and maintenance. Stepwise structuring recommends instead
that that an initial system should be put into operation early,
using general-purpose software that is able to support low
levels of structuring; and that only as more experience is
gained should the level of structure be increased. The disad-
vantage of the conventional method is, of course, that it is
often difficult to understand needs and do the specifications in
advance.

The method of rapid prototyping has been proposed repeat-
edly as another way of dealing with that phenomenon. It has
often been quoted as a raison d’etre for various incremental
programming languages, such as CS4,° Lisp,” or APL.® How-
ever, prototyping cannot deal with the fact that users’ needs
change continuously during the system’s lifetime (and in fact,
that the system’s lifespan is often limited by its ability to adapt
to these changing needs). Stepwise structuring does address
that issue; but at the same time it will clearly require other
kinds of software tools in order to be practical—for example,
tools that support the transition to higher structuring levels.

The method of structured growth has been proposed by one
of the present authors’ as a strategy for the gradual extension
of software. The idea there is to build an initial software
system with relatively few facilities, but with an organization
that supports the gradual incorporation of more and more
features. Thus it is closer to stepwise structuring in character;
but, whereas the method of structured growth emphasizes the
gradual accumulation of more software and more variants of
data structures, stepwise structuring emphasizes transforma-
tion of data between structure levels as the most significant
event during the development process.

SOFTWARE TOOLS FOR STEPWISE STRUCTURING

The method of stepwise structuring formulated in this paper
immediately suggests the need for a number of software tools:

1. Support for mixed data representations. The most impor-

tant tool is an information management system (IMS) (a
kind of editor) that is able to handle several kinds of data
at the same time—e.g., text, structured data, figures,
and images. If some data are kept on a lower structuring
level, even after the bulk of the data has been trans-
formed to a stronger structure, then this IMS will be the
working tool of the computer user. But even if complete
transformations are done at one time and all data are
thereafter in the stronger structured form, the mixed-
structure information management system is a necessary
tool for those who do the conversion work.

. Data parsers. Regularities of data often arise spontane-

ously within one structuring level; therefore a data
parser can be used as a tool for increasing the structure
level. For example, an address directory has fairly regu-
lar contents, even if it is stored as a text file. But of
course one cannot assume that all data will fit into the
presumed syntax. A data parser that is going to be used
for this purpose must therefore be embedded within an
IMS as just described so that it can be run under strong
user control.

. Catalogs. One aspect of such an IMS for mixed data is

that it must include the services of a conventional file
directory. The use of directories for text files is univer-
sally understood, but when one starts to use a very large
number of small text files, the function of the dictionary
changes from being a way of assigning mnemonic names
to individual files to being a database where combina-
tions of named objects (entities, in database jargon; con-
cepts, in semantic network jargon) from the application
domain, have fext objects (small text files, big strings)
associated with them.

Similarly, the image representation of information is
practical only if it is annotated by catalogs, which, for
example, will identify where a certain issue of a certain
journal is stored or in which picture frames a certain
article (defined by author, title, etc.) occurs, or where a
certain quotation within a certain article is located. In
our example, the catalog for the image information
tends to merge with the database used for generating
references in the bibliography in new papers. That ex-
ample illustrates a general principle: We really do not
need a system that is just a catalog; we need a database
that is organized in terms of concepts from the applica-
tion domain and that among other things contains what
used to be catalog or directory information.

When a text or an image is annotated in a catalog or
a database, some of its structure is already being identi-
fied. This suggests that the structuring operation (from
image to text and from text to structured data) is often
a top-down process, where one first identifies the top-
level structure and decomposes the original image (or
text) to a number of smaller images (or texts), which
may then be again decomposed. Several of the examples
follow this pattern, and a catalog in our wider sense can
be viewed as the software support for top-down
structuring.

There are also many examples of bottom-up struc-



Stepwise Structuring for Flexible Software 71

turing, where small parts of a text are broken out, but

the whole text retains its character as text. The above |

example of the references in the research paper is a case
in point, and one can add the examples of yearly activ-
ities reports, as well as curricula vitae, where lists of
similar events (seminars, travel, etc.) can be structured
in a bottom-up fashion.

. Reconversion tools. These last examples remind us of
another useful, general-purpose tool: a preprocessor for
the text formatter, which takes a source-source file as
input, recognizes the macro expansion commands in that
file, and produces as output a source file, which may be
input to the regular text formatter. For the bibliography
example, the user defines a command that fetches a text
file with a given name and embeds it in the main file.
Later, when the individual references are upgraded from
text to records, the command is redefined so that it
fetches the same information from the database and an-
notates it appropriately (e.g., using font shifts).

In general, there must always be a tool for recon-
verting data from a higher structuring level to a lower
one previously used. As long as a certain structuring
level is being used, one is likely to build up a number of
services that make use of that level. Services that cannot
be substantially improved by using the increased struc-
ture can continue to be used as they are if information
with the new, higher structure is reconverted to the pre-
viously used level as a preprocessor to the service.

. Recognition mechanisms. We have discussed examples
where the conversion from text to structured data is
done at one time. It is also frequently necessary to iden-
tify pieces of data in an incoming text in order to relate
it to structured data that are already in the system—e.g.,
when a computer mail message contains the date and
time of a forthcoming event that has to be related to the
contents of the user’s calendar. In general, one needs
software that can recognize structure in surviving lower-
level data to such an extent that they can be related to
the right point in the existing structure in the system.
Kofer® describes plans for the design of an interface
between the two representations that would be adequate
for this purpose.

. Prototype implementations. The contents of the present
paper are conclusions that we have drawn from earlier
implementation efforts, namely the Linkodping Office In-
formation System (LOIS)'"" and the ED3 structure ed-
itor,"* which is a candidate tool for conversion from text
to structured data.

One view of ED3 is that it is an editor for tree-
structured documents, where the structure may be the
one of chapters and sections inside one document, or the
dictionary structure that organizes a collection of docu-
ments, or both. In an editing session, the user starts at
the root of a tree and is offered a repertoire of oper-
ations for navigating and modifying the tree structure.
The leaves of the tree are pieces of text and are modified
by a cooperating text editor.

ED3 has more recently been extended with support
for leaves that have other types than text, particularly

vector graphics and tables. As such, it illustrates the
required characteristics of a dictionary that encompasses
several representations, as discussed earlier in this
section.

But another view of ED3 is that it simply maintains a
conventional text file together with a bracketing struc-
ture that points out the beginning and end positions in
the text of blocks that may be nested recursively. When
the user views a position in the ED3 tree, he/she views
one selected block in the text file. The surrounding
blocks are not seen at all, and in the contained blocks
only the first line is seen.

This view of ED3 is actually closer to the actual imple-
mentation. It also explains how ED3 may be useful as a
tool for the transition from text to structured data: It
contains commands whereby the user can conveniently
bracket the text file into recursively nested blocks.

In another project we have developed the Carousel
system'' which shows how a hierarchical information
structure, similar to the one used in ED3, can be the
basis of a very concise system for many of the basic
services in an office information system, such as forms
management and command-oriented user dialogue.

Finally, an extensible preprocessor for the formatter has
been implemented within Interlisp and has been applied to a
number of different uses, including the administration of ref-
erence lists. It was used for the preparation of this paper.

Work in progress includes the formal specification of an
IMS that, among other things, should be a good software
support environment for application development by stepwise
structuring.

ACKNOWLEDGMENTS

This research was supported by the Swedish Board of Tech-
nical Development under Contract Dnr 80-3918.

REFERENCES

1. Innis, Harold A. Empire and Communications. Oxford: Oxford University
Press, 1950.

2. Taylor, James R. ‘“New Perspectives on the Office of the Future.” In
Proceedings of the International Workshop on Office Information Systems.
Paris: INRIA, 1981.

3. Sandewall, Erik, Goéran Hektor, Anders Strom, Claes Stromberg, Ola
Stromfors, Henrik Sérensen, and Jaak Urmi. “Provisions for Flexibility in
the Linkoping Office Information System (LOIS).” AFIPS, Proceedings of
the National Computer Conference (Vol. 49), 1980, pp. 569-577.

4. Morgan, Howard Lee. “Research and Practice in Office Automation.”
Invited paper. S. H. Lavington (ed), Information Processing 80. North-
Holland, 1980.

5. Maryanski, Fred. “Guest Editor’s Introduction.” Computer, 14 (1981),
p. 11.

6. Berild, Stig, and Sam Nachmens. “CS4—A Tool for Database Design by
Infological Simulation.” In Proceedings of Third International Conference
on Very Large Data Bases. Published in 1977; available from IEEE Com-
puter Society, Long Beach, California.

7. Erik Sandewall: Programming in the Interactive Environment: The ‘Lisp’
Experience. ACM Computing Surveys, Vol. 10, No. 1, pp. 35-72, March
1978.



72

National Computer Conference, 1983

10.

. Gomaa, Hassan, and Douglas B. H. Scott. “Prototyping as a Tool in the

Specification of User Requirements.” In Proceedings of the Sth Inter-
national Conference on Software Engineering. New York: IEEE, 1981.

. Kofer, G. Reinhard. Some Software Integration Technology Concepts for

Saving Money While Doing Empirical User Research. In Proceedings of the
International Workshop on Office Information Systems. Paris: INRIA,
1981.

Higglund, Sture; other authors (names not given in report). “80-talets
elektroniska kontor. Erfarenheter fran LOIS-projektet.” (“The Electronic
Office of the 80’s. Experience from the LOIS Project.”) Research report

11.

12.

LiTH-MAT-R-81-4, Software Systems Research Center, Linkoping Uni-
versity, Sweden, 1981.

Sandewall, Erik. “Unified Dialogue Management in the Carousel System.”
In Proceedings of the SIGACT/SIGPLAN Conference on the Principles of
Programming Languages. Albuquerque: 1982.

Strémfors, Ola, and Lennart Jonesjo. “The Implementation and Experi-
ence of a Structure-Oriented Text Editor.” In Proceedings of ACM
SIGPLANISIGOA Symposium on Text Manipulation. New York: Associ-
ation for Computing Machinery, 1981.





