Office Information Systems, N. Naffah (ed.)
© INRIA/North-Holland Publishing Company, 1982

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

Erik SANDEWALL

Software Systems Research Center
Link6ping University, Linkoping, Sweden

Abstract: The paper describes the design for a software environment
which unifies the dialogue management support of a number of
existing software tools, such as command-language handlers,
operating-system shells, transition diagram interpreters, and forms
management systems. The unification is accomplished without undue
complexity: the resulting design is clean and inspectable.

A key notion in the design is the use of three orthogonal abstraction
hierarchies, for interaction contexts, for interactive operations
(roughly = commands), and for data types. These orthogonal
hierarchies are used for obtaining multi-dimensional inheritance, i.e.
mappings of several arguments, which may be stored in the system’s
data repository, and which inherit their values along the hierarchies
represented in the arguments. Mappings with multi-dimensional
inheritance are used in the invocation mechanism, i.e. for selecting the
appropriate procedure to be executed in various situations. Currently
used programming languages and software tools only use
single-dimensional inheritance.

A working implementation called the CAROUSEL system, is available.

This research was supported by the Swedish Board of Technical
Development under contract Dnr 80-3918.

1. Conventional approaches to dialogue management.

It is well known that the design and implementation of the dialogue
with the user, is a substantial part of the implementation effort for
software that is to be used interactively (see e.g. ref. BOE80 and
WASSI). A large number of efforts have been made to provide relief.
We distinguish the following approaches:

1. Software enwvironments, ie. software systems which communicate
directly with the user, and which contain a number of application

175

176

E. SANDEWALL

programs, procedures, and/or modules which the user can invoke. This
includes both command handlers for operating systems, and
incremental programming systems.

In its simplest form, the command handler of an operating system
merely allows the user to select one out of a number of different
‘application programs’. The UNIX shell (ref. BOU78) is an example of
a more powerful software environment, where the command language
contains control primitives and a procedure mechanism. Interaction by
command lines, which is natural in many applications, can then be
implemented in the command language, rather than in the
programming language that is used for the detailed processing.
Dolotta and Mashey have reported that the command language often
serves as the primary programming tool (ref. DOLS0).

Incremental programming languages, such as LISP (ref. SANT7S,
WINB8L, TEI78), APL, and Smalltalk (ref. BYT8I) go one step further
by completely integrating the programming language into the
computing environment. LISP systems, in particular, contain a data
repository which is used both for storing application data, and for
storing procedure definitions, and all software management services
such as editing, compiling, and generation management are done in
that uniform software repository.

Both kind of software environments support one significant aspect of
computer dialogue, namely the need for frequent revision, or in the
words of Wasserman: Our goal was to create a tool that would
facilitate the "rapid prototyping” of the interactive dialogue in such a
way that a user could interact with the "system” at an early phase of
system development and so that the developer could easily modify the
dialogue and present a revised interface. (ref. WASSI).

2. Software tools for dialogue management: By software tools we mean
software which perform specific functions, and which are intended to
be used by the programmer in the engineering of an application
system. The following are some groups of software tools for dialogue
management:

2.1. Navigational tools, which maintain a topological model of a
universe in which the user ’moves’ in the course of the interaction.
Most frequently the universe is a network (as in the following
systems: IDECS: ref. HAG75, HAGS80; ZOG: ref. ROB78, and its
predecessor PROMIS: ref. SCH79; the Transition Diagram
Interpreter: ref. WASS8L; and the design proposed by Carlson and
Metz: ref. CARS80). Nievergelt (ref. NIE79) gives a discussion of such
systems. Systems for computer-aided instruction (e.g. TUTOR: ref.
GHE?75; Coursewriter: ref. MAR73) also maintain such models, but
there the movement through the network is under the control of the
system rather than the user. The universe may also be a tree (as in
the PRESTEL system: ref. FOR79), or it may allow continuous
movement for zooming in on significant data (Spatial Data
Management System: ref. HER79).

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

In all these systems, the user navigates in a fixed universe. There are
also systems where the universe is the user’s information structure,
particularly information management systems such as PIE (ref.
GOLS81) and ED3 (ref. STR8I).

2.2. Language tools, which simplify the implementation of a set of
commands or a command language. This includes query languages for
data bases, where different applications are realized as different
information structures (e.g. using data base schemata), but the query
language as such is a fixed resource. The EUFID system (ref. KAM78,
BURS0) is a representative example of this large group of systems.

The query language approach is not sufficient when the application
emphasizes active manipulation of data, rather than mere access to an
existing data base. Office automation systems is one of the
applications where active data manipulation plays a major role (see
e.g. Morgan’s survey article, MORS80). The interactive command
language for an operating system has also that character. For such
applications, one may use a syntax analysis tool (JOH78), but if the
desired command language for the application merely consists of a
command verb followed by one or a few arguments (or equivalent uses
of function keys or of pointing into menues), one may prefer a tool
which parses the command line in a standard way, and administrates
the mapping from the command verbs to the procedures that define
them. Facilities for macro expansion of commands and for ’help’ style
user support are more important than a rich syntax. The INTRAC
system (ref. WIE79) is a good representative of this wide class of
systems.

2.3. Layout tools, which support the presentation of data on the
output medium. The major interactive layout tool is the forms
management system, which supports presentation, entry, and editing of
data in forms whose characteristics have been defined by the user.
Forms management systems are available from the major
manufacturers, and more sophisticated systems have been developed as
parts of research projects, e.g. in the Odyssey system (ref. FIK80). In
the System for Business Automation (ref. JONC80) and the DIAL
system (ref. HAMS80), forms management is available as a standard
routine together with a procedural language and a data base. These
systems as well as LOIS (ref. SAN79) and the system of Tsichritzis
and Ladd (ref. LAD80) support forms flow between multiple user
stations.

The classical report program generator was another kind of layout
tool, but oriented towards the presentation of data on ’wallpaper’
listings. The Query-by-Example system (ZLO75) has demonstrated
that layout tools provide an alternative method for formulating
queries, instead of using syntax-rich query languages.

Graphic systems (ref. NEW?79) form another large group of layout
tools, but they are not considered in the work reported here.

Martin (ref. MAR73) has specified a catalogue of 23 different

178

E. SANDEWALL

dialogue methods. Our three main groups seem to cover most of them.

One may argue that these groups of tools merely reflect three
important aspects of interactive application programs, namely the
language aspect (which accounts for how messages to the system are
composed), the navigational aspect (which makes it possible to have
context-dependent interpretation of commands or other messages), and
the presentation aspect (which controls the Ilayout of the
communication medium, e.g. the screen). Each tool provides support
for one such aspect of the intended application system.

Besides environments and tools, a third line of approach is:

3. Programming language features which facilitate writing dialogues.
The Smalltalk language and system (ref. BYT8I) demonstrates how
the class concept originally developed in Simula can be helpful for
window management. String processing and interface to a data base
management system are also significant features in programming
languages that are to be used for programming dialogues (ref.
WASSI).

A common characteristics of these three lines of approach is that they
provide a structure within which procedures or other program entities
are stored, or what we shall call a software structure. In the
operating-system shell, it is the file directories that constitute the
software structure; in the programming languages the software
structure is defined by the global structuring concepts of the
language: blocks, procedures, classes, abstract data types, and the like.
In the interactive software tools, finally, the software structure is
special-purpose: a node in a transition diagram, or a field in the
description of an electronic form, are often associated with one or
several procedures, which are triggered when the respective entity is
used.

This observation explains why there are two standard ways of
implementing software tools, depending on the host programming
language. Incremental programming languages (e.g. LISP) allow the
programmer to introduce new software structures, which means that
the tool can be implemented in an ’interpretive’ way: the software
structure can be available at run-time. Conventional programming
languages, oriented towards compilation and static type checking,
require the use of a pre-processor which ’compiles’ the software
structure, and the procedures attached to it, into one single program
or module. Johnson and Lesk (ref. JOH78) describe compiling
language tools in Unix. The conventional programming language
preempts the choice of software structures.

2. Support of dialegue management in office systems.

The main result in the present work is the design of a software tool
for dialogue management which is unified in the sense that it

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

provides the essential services of the three groups of tools above, and
concise in the sense that it has a clean structure and an inspectable
definition. (The key idea for combining the simplicity and the
generality is a new way of using abstraction hierarchies, which will be
described in later sections).

An upper bound on the complexity of the system is provided by the
present implementation, which is 30 pages (1500 lines) of prettyprinted
Lisp expressions. (The procedural kernel of the system is less than 100
lines). The system is called CAROUSEL (ref. SANS8I), and is available
as a paper listing from the author.

As for all other kinds of software, the challenge has not merely been
to provide all kinds of services in one single system, but to preserve
the conceptual simplicity of the system as the various services are
included.

The need for a unified and concise design became apparent in our
own work on the LOIS Linkdping Office Information System (ref.
SANB80), where a number of dialogue management tools were used
extensively, both for implementation of various application services,
and as a basis for office modelling tools, particularly for modelling
and implementing information flow between workstations. The tools
were quite useful, but the software maintenance problems for the
tools, and the interface problems between the various tools, caused us
to look for a more concise global design.

Similar experience has been reported by other researchers, in informal
discussions and sometimes in publications. Winograd has written: "It is
in the domain of interaction that there is currently the most fo be
gained from developing bodies of descriptive structures to be shared by
system builders. There are already many pieces that can be incorporated,
. Currently each of these is in a world and formalism of its ouwn.
Given a sufficiently flexible tool for describing and integrating
interaction packages, this level of description will be one of the basic
building blocks for all systems. (ref. WGRT9).

Before we proceed to a description of the unified design, we must
however first review the character of office information systems, and
the applicability of the currently available tools.

Office information systems are characterized by a relatively large
number of moderately complex services, such as the familiar computer
mail, personal calendar, personal agenda (tickler file’), text-file
management, and personal data base. In what follows, we shall assume
that the reader is familiar with such application programs through
his or her own use of them.

Other and more specific services are also important, such as for
travel management, scheduling of rooms and equipment, project
management, etc. In fact, most of the applications can be
characterized as 'XX management systems’, where XX ranges over
messages, appointments, text files, trips, rooms, and so forth.

17

180

E. SANDEWALL

Q uery-language tools are clearly not adequate for the construction of
such office applications, since the emphasis in the applications is on
customized sets of simple commands, and on very good ’help’ services,
rather than on complex queries in a rich and flexible language.

Navigational tools create a dilemma. If the network structure is
simple, then the user who is action oriented and wants to get a
specific thing done, may easily feel constrained by the fixed structure
of the available topology. This problem is often met by allowing the
navigation space to grow, so that all conceivable user needs can be
met: the PROMIS system has 35.000 nodes (frames’) in its network
(ref. ROB79). However, building such a network requires a lot of
work, and carries with it a danger of costly redundancy in the
network, and costly maintenance. Finally, a significant problem for the
users is reportedly that they lose their orientation in such a vast
space.

Layout tools are often useful, but solve only a part of the whole
problem.

Tools which support application-specific command languages seem to
be the most natural ones to use, since conventional OIS services (such
as mail systems) carry on a simple command dialogue with the user.
The problem is that such tools (in their usual, fairly simple form) will
only handle one application service at a time. A more general solution
is desirable, particularly since most of these services have largely
similar command sets: there is a ’create object’ command, a ’print’
command, an ’edit’ command, commands for storing away objects in
various ’files’, etc. The similarity is a natural consequence of the
applications being XX management systems’. When the users of the
system complain that ’the same thing is called different names in
different services’, the complaint means that the similarity has not
been exploited in the implementation of the total system. That is not
only a disadvantage for the end user; it is also a symptom of costly
software redundancy.

Although many of the important commands are analogous throughout
the various application services, we also have commands which are
specific for one application, or a limited class of applications. For
example, mail systems is an example of ’browsing’ applications where
the concept of the ’current object’ is defined (e.g. the mail message
that is presently being looked at). Operations such as ’'next’ are

restricted to such applications. It follows, therefore, that a simple

extension of the query language strategy would not be adequate: a
general-purpose command language, complemented by a data
definition for each application, would not make it possible to have
application-specific commands.

Besides the simple, command-driven services which are ’xx
management systems’, there are also ’substantial’ services which do
something (e.g. computations) besides data management. However,
when such services are to be used interactively, the management of
the user interaction often accounts for a surprisingly large part of the

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

software volume {in terms of both lines-of -code and
programmer-hours). Boehm reports experiments where the parts of the
program which really perform the task at hand, accounted for only
2-3 % of the software (BOES80). The same considerations as we have
discussed for 'XX management systems’ also apply when tools are to
be used for the interaction part of ’'substantial’ services.

3. The unified design.

We shall describe the basic ideas of the generalized tool in terms of
an interpretive implementation, where the tool is a software
environment which may be used by an end user, and whose detailed
behavior is determined by application descriptions of various kinds,
which are stored in the system. The extension to a compiling strategy
does not seem to offer any problems in principle, but only a lot of
extra work. (Our own implementation, the CAROUSEL system, is
interpretive).

The basic behavior of the software environment is to repeatedly make
interactions with the user. In each interaction, the user specifies an
operation, e.g. ’print’, ’enter’, or ’delete’. He may also specify
parameters for the operation. The methods for specifying operations
and parameters may vary: operations may be entered by typing a
command verb, pressing a function key, or pointing at a menue;
parameters may be typed in, or derived from the current state of the
machine. For example, the current cursor location may be a parameter.

At each interaction, the current state of the machine and the system
determines that it is in a particular context, e.g. ‘mail management’ or
’address directory management’. Thus different applications are
realized not as separate programs, but as separate contexts within the
generalized tool. The methods for inputting operations and
parameters may be defined for each context.

For each interaction, the system looks up the definition of the
specified operation in the present context, and executes it. Thus there
is an operation-defining mapping
od: contexts * operations --> procedures

which is stored in the data repository of the system. Although each
combination of arguments for od may have its own value stored
separately, the system obtains its power from the observation that the
values of od may very often be specified for abstractions of the first
and the second arguments.

The use of abstractions for the first argument realizes the
observation that we made above, namely that analogous operations
may occur in several applications (= contexts). Thus we have a partial
ordering -> on contexts so that ¢ -> cc means that cc is an abstraction
of ¢ (while ¢ is a particularization of c¢c), and we make the rule that
if the data repository contains

¢ ->cc

od(cc,0p) = p

182

E. SANDEWALL

but no definition for od(c,0p), then the listed value p will be used
instead (inherited’). The rule is extended transitively.

Since the major difference between applications is that they use
different data structures, the context-independent definition p of the
operation op, must often be directed by the data description
(declaration’; ’schema’; we shall use the word ’prototype’) that is
associated with the specific context ¢. For example, the operation for
’entering a new object’ will characteristically prompt the user for the
successive fields or properties that should be defined for objects in
the current context.

A necessary prerequisite for this arrangement is that the various
applications or contexts use a common data base structure for
application data. It is convenient to use the same data repository for
both application data and system data (such as the od mapping), and
we shall discuss the structure of the data repository in more detail
below. Let us remark here, however, that the data base allows tree
structured objects, where e.g. a conventional record can be a node in
the tree, with the record’s fields as daughter nodes, and a sequence of
records can be a higher level node, with the successive records in the
sequence as daughters.

Quite often, different contexts require the definitions of operations
to be almost the same. The ’enter’ operation, again, may have to ask
the user for the desired type of the new objects (in contexts where
objects of several types are maintained in parallell), and may have to
insert the object into one or more files {e.g. into the current file, in a
browsing-type context). Thus besides the operation-definition mapping
od, there are other mappings from contexts (or other kinds of objects,
such as operations, or types) to auxiliary procedures which are
invoked by the operation’s main procedure.

The same mechanism turns out to be quite useful for abstraction on
operations as well. When the basic operations such as ’print’, ’enter’,
’edit’, etc. are relieved of their context-specific details, the remainder
is in most cases a tree traversal, which is performed in parallel over
the current object and the prototype for the current object. We can
therefore extend the use of abstractions to the second argument of
the operation defining mapping od: the standard operations have a
common abstraction ’traverse’, and all cases of standard operations in
standard contexts are accounted for by one single entry in the data
repository,
od(common-cx, traverse) = travproc

where travproc does a tree traversal, and invokes both
context-specific and operation-specific procedures at well-defined
points.

The most important operation specific procedure is the leaf procedure,
i.e. the procedure wkich determines what the operation is to do
whenever it reaches a leaf. A ’print’ operation prints out the current
value; an ’enter’ operation prompts the user for a new value, etc.
Other operation specific procedures are needed for various kinds of

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

exception conditions, for example the missing daughter procedure: if
the tree traverser expects to see a branch to a particular daughter,
which however does not exist in the current data base, the action of
the traverser depends on the choice of operation: a ’get’ and a ’delete’
operation will bypass the missing subtree, whereas an ’enter’ operation
will create an appropriate subtree in this place.

The various operation-specific procedures are often shared between
groups of operations. Thus we do not need to define each such
procedure for each operation; instead we define an abstraction
hierarchy on the operations, and associate the operation specific
procedures with nodes on different levels in that hierarchy, with
inheritance in the obvious way. For example, operations which act on
one single term in a record ('get’, ’put’..) often have counterparts
which do the same operation on the whole record (’print’, ’enter’,..).
Corresponding pairs in these sets of operations can share abstractions,
and beyond it they need only one single procedure to define them - a
procedure which is invoked in the process of identifying the tree
structure that is going to be traversed.

We can see how concepts from programming languages carry over to
the generalized interaction tool, but they re-appear in new forms. As
could be expected, the concept of rype is also significant. It comes in
most importantly as follows: among the ’leaf’ operations for the
various operations or operation abstractions, several must also depend
on the type of the value in the leaf. Printout, data entry, editing, etc.
is done differently depending on the current type. Such leaf
operations therefore use another mapping of two arguments, the
type-leaf definition
tld: operation # type --> procedure

which specifies a procedure for doing that operation on leaves
containing a value of that type. As for od, the possibility of
inheritance in each of the two arguments turns out to be very useful

Besides the instances of tree traversal, there are also other kinds of
operations. Some, such as the operation for switching contexts, or the
operation for asking for help, are defined in all contexts, and depend
on context-specific information, but do not participate in any
operation abstraction, and do not use the traversal procdure. Others,.
such as the operation for moving to the next item in the browsing
sequence, are defined over a more restricted context abstraction, and
use no operation abstraction. Again others, such as the operations for
maintaining catalogs (such as mailing-lists, or sets of particular
groups of messages in a computer mail system) can be implemented as
temporary shifts into an alternative context (which is derived from
the current context), and performing one of the standard operations
Some additional examples of operations will be discussed in section 6.

The traversal procedure captures the fact that several operations
share the same control structure: it is analogous to the mapcar-type
functions in LISP, and an example of a control abstraction in the
sense of Liskov (LIS77). (Hdgglund (HAG80) has extended the concept
of control abstraction to the case when one descriptive structure

184

E. SANDEWALL

allows several different interpreters).

In the CAROUSEL implementation, the use of the control abstraction
has led to the following proportion between various types of
information in the source file: the traversal procedure is about 90
lines of prettyprinted procedures, the prettyprinted representations of
the information for the central contexts and commands is about 500
lines, and low-level procedures for manipulating the data
representation and miscellaneous interface procedures is about 800
lines of prettyprinted procedures. Since the information in the latter
two groups can be specified and analyzed on a procedure-by-procedure
or definition-by-definition basis, and only the executive procedure
need be analyzed as a single chunk, this represents a successful
modularization.

4. The structure of the data repository in CAROUSEL.

The data repository should be able to store both the information in
the applications, and the information required by the system itself. In
particular, it should be able to store the abstraction hierarchies for
contexts, operations, and value types, and the various mappings from
these kinds of entities to procedures (such as od and tld).

Presumably, most data base structures would be able to represent this
information. In our CAROUSEL implementation, the data repository
is organized around entities and frames. The ’entity’ concept is used
as in Chen’s original paper (CHE76), i.e. entities are representations in
the data repository, of concrete or abstract objects which bear a
significance for the computer user. Persons, cars, computer terminals,
operations, and contexts are examples of entities.

Entities are organized in a taxonomical structure using the -> relation.
Besides its use for the system information, which has already been
described, it is well known that such structures are also useful for
modelling application data (see e.g. ref. Q UI69 and MYLS80).

The CAROUSEL system contains not only a transitive -> relation, but
also a set membership relation =>. The latter is however not necessary
for the purposes described in the present paper.

Each entity is associated with a frame, i.e. a tree structure where the
terminal nodes may contain a value (e.g. a string, a number, a text
file, another entity, or a set of entities), and where non-terminal nodes
have a number of daughters, which are again frames, recursively.
Each arc from a non-terminal node to a daughter is marked with a
tag. Access to information in the data repository is usualily specified
as the name of an entity, whose frame is to be accessed, and a
sequence of tags which are to be used for selecting the appropriate
daughter in the successive steps down into the frame.

As usual in such systems, the -> relation on entities defines an
inheritance condition for the frames, ie. if a value or subtree

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

corresponding to a certain tag sequence is missing in the frame for a
concept ¢, and ¢ -> cc, then a default is provided by the leaf or
sub-tree in the frame of cc under the same tag sequence.

When a mapping m of n arguments x1, x2, .. xn is to be stored in
the data repository, it is convenient to store the value in the frame of
x1, under the tag sequence m, X2, .. xn. The inheritance rule for
frames then accounts for the use of abstractions in the first argument
of m.

For mappings such as od which use abstractions in both arguments,
additional machinery is required. In CAROUSEL that is arranged by
allowing the tags in the frame to be not only entities, but also pairs
{r, e) where r is a relation symbol such as ->, and e is an entity. If a
non-terminal node in the data repository has a daughter whose tag is
(->, e}, and an access is made where the access chain requires the tag
¢, then that daughter is selected iff ¢ -> e. The scheme is generalized
to other relations in the obvious way; tags ’without’ a relation symbol
are considered to contain the equality relation. Combined with the
inheritance rule for entities, this mechanism is sufficient for
representing mappings which use abstractions in more than one
argument.

Generalized tags may also be occur in the access chain, which is very
useful. The tree traversal operations usually do not want to traverse
the whole frame (tree structure) that is actually stored in the data
repository, but only a selection of it which is described by the current
'view' (in the usual data-base sense of that word) of the data
repository. This is conveniently arranged, in many cases, by defining
the view as an access chain where some of the links have the form
(->, e), which means that it matches all actual tag values in the
corresponding place in the data repository, which agree with or are
particularizations of e.

The actual system allows other relations besides = and -> in the tags,
including tags which cause the match condition to be computed by a
procedure. Propositional connectives on the tags would be a
straight-forward extension. Such facilities are needed for more
complex applications, but what has been described so far is sufficient
for the information required by the system itself.

The information structure described here is of course not new. Sibley
has remarked (ref. SIB80), possibly with some exaggeration, that
virtually all current ideas with respect to data modelling have been
fairly well described already in the 1960’s, and some even in the 1950’s.
The ’entity’ concept is very widespread, under various names. ’Frame’
structures as described above, i.e. discrimination trees which interact
with a taxonomical {= abstraction) hierarchy, have been particularly
much used in artificial intelligence research. Carbonell (ref. CAR80OB)
discusses inheritance from an A.L. viewpcint, and provides additional
references. The choice of such a widely used representation makes it
likely that it is satisfactory for comrmon applications.

186

E. SANDEWALL

The use of the data repository for system purposes is not restricted to
the storage of procedures as leaves in the frames: there is an
analogous need to store brief verbal descriptions of entities, to be
used for documentation and for on-line user assistance (‘help
information’). The structure for the procedures that has just been
described, applies equally well for descriptions: just as procedures can
be shared among the members of an abstraction, so can the
corresponding textual description, and just as some subordinate parts
of an inherited procedure may need to be specified separately for
each participant of the abstraction, the same applies for some parts
of the inherited text. For example, the brief description of the
abstract ’'add’ operation may be "add one more member to the <field>
field in the <item>". When this string is inherited to the ’cc’ command
in the ’mail’ context, the local information fills in the slots to create
“add one more member to the CC field in the message”. The
substitution of "message" for “<item>" was defined by the ’mail’
context, and the substitution of ’CC’ for ’<field>’ was because we have
cc -> ownadd -> add

where ownadd is the abstraction of commands which add one more
member to the field whose tag equals the command name.

5. Relationships to conventional programming languages.

A conventional programming language contains modes of expression
both for procedural behavior (such as conditional expressions and
loops), and for what we have called software structures above. The
design described here, as well as its implementation in the
CAROUSEL system, only considers the software structure, and can be
used together with any reasonable language for procedural behavior.
In that respect it is similar to O.S. shells and to software tools.
However, we have seen how familiar concepts in programming
languages, such as data abstraction (ref. 1.IS74), and inheritance of
information in a hierarchy (ref. DAHL72) have carried over to the
design described here. In this way it continues the trend that was
formulated by Jones (JON77), namely increasing the number of
concepts that are shared between programming languages and
operating systems.

Our software structure has been explained in terms of the -> relation,
and the mappings od and tld which identify a procedure definition in
the data repository, and which allow inheritance in both their
arguments. The similarities and differences with the software
structures of conventional programming languages, are most easily
seen if they also are presented as similar mappings, instead of the
usual BNF-oriented notation.

In algol 60 (ref. NAUB62), the significant entity for software structure
is the block. If we let -> be the inclusion relation between blocks, so
that bb -> b means that the block bb is enclosed within the block b,
then algol uses a procedure-defining mapping

pd: biocks x procedure-names --> procedure-definitions
where pd allows inheritance in its first argument, just like od, but not

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

in its second argument (where the -> relation is not defined).

Since our intention is only to give a cue about the similarities and
differences between the CAROUSEL design and a few programming
languages, we restrict the discussion to the identification of
procedures.

The Smalltalk language (ref. BYTS8I) contains a class hierarchy, where
-> is the relation from a class to its superclass. Each class has a
number of methods (roughly: procedures), each characterized by a
selector. Methods are invoked when a message is sent to an object
which is a member of a class. Let mc(obj) be the smallest class of
which the object obj is an instance. The methods which are given in
a class definition express a method-defining mapping
md: classes * selectors --> methods

With this notation, the appropriate method to be invoked when a
message with the selector s is sent to an object obj is md(mc{obj), s),
where again we notice that md inherits in its first argument, but not
in the second one.

Smalltalk has inherited the class concept from the Simula language
(ref. BIR73), where cc -> c is expressed syntactically as
¢ class cc ...

followed by the rest of the description for cc. However, since it
remained in the algol 60 tradition, Simula has its class hierarchy
within a block hierarchy, which means that the Simula counterpart of
the me mapping is defined using inheritance in the block hierarchy,
and that we must separate between the name and the definition of a
class (since the same identifier may have several definitions as a class,
in different blocks).

In summary, the rules for identifying procedure definitions (or what
closely corresponds to them) in a number of programming languages,
are similar to CAROUSEL’s rules since they are defined over a
hierarchy of some kind of entities, and allow inheritance in that
hierarchy, but at least the programming languages considered here
only allow inheritance in one argument of the identification mapping:
one-dimensional inheritance.

Inheritance mechanisms in other areas also tend to favor
one-dimensional inheritance. Carbonell’s classification of inheritance
mechanisms (ref. CAR80B) focuses on the inheritance of properties
between ob jects (while we prefer to think of inheritance characteristics
for mappings). One then has a choice between allowing a single
superior for each object, which results in quite rigid structures, or
allowing several superiors, which may be too general (leading to a
lack of structure). Focusing instead on inheritance for mappings,
provides in fact a structured and restricted way of allowing
inheritance from several superiors.

Many operating systems allow a ’path’ technique for arranging locality
of files, commands, etc. Bourn (ref. BOU78 p. 1981) and Doloita (ref.
DOLS80 p. 47f.) have discussed the use of such structures among Unix

188

E. SANDEWALL

users, and remark on the use of paths through directories that
represent successively larger organizational structures: assignment,
programmer, small group of programmers, whole project. The
resulting, single-dimensional inheritance pattern reflects the
organizational hierarchy.

Some cases of true multi-dimensional inheritance also exist in the
literature. The TAXIS system (ref. MYL80B) allows the user to define
composite objects using functions (in the predicate calculus sense of
the word), e.g. "the enrollment of a particular student in a particular
course”, and such a composite object may inherit properties along the
hierarchies of its arguments, eg. "the enrollment of a particular
student in any CS ccurse"; "the enrollment of a foreign student in any
course”.

Hewitt’s ACTOR system is reported (informal discussion) to allow
two-dimensional inheritance in the following way: it is similar to
Smalltalk (ref. BYTS81), but every message is an object, and has a
position in the abstraction hierarchy which was determined when it
was created. When a message is sent to (or rather, arrives at) an
object, the resulting event is determined by inheriting for both the
message and the receiving object. - Both TAXIS and ACTOR are of
course highly experimental systems or designs.

Returning to conventional programming languages, we have noticed
that single-dimensional hierarchies are often expressed using textual
inclusion. If textual representations of programs are considered
significant, it would be a straight-forward exercise to design a
notation along the lines of algol 60 or Simula for expressing the od
and tld mappings in CAROUSEL. However, in a computing
environment which is interactive both for development and for
production use of programs, the textual representation of the whole
program is of marginal significance, and the primary realization of
the software structure is in terms of mappings and,
implementation-wise, as structures in the software repository. A
variety of different methods may be used for displaying excerpts of
the structure to the user.

6. Realization of various services.

The claim for this work is that the services of traditional software
tools have been unified and generalized. We have already shown how
that works with respect to the implementation of the command
language, and the possibility of defining commands across
applications. We shall now discuss how the other types of applications
are handled.

Navigational systems based on state-transition models can clearly be
easily accomodated by letting each state be a context. It is
advantageous to let all nodes in state transition netwnrks be
particularizations of one common abstraction, which serves as the
range for the operations that manage the context-switching.

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

If one wants to have contexts (nodes) whose primary purpose is to ask
one question to the user, get the answer, and proceed to the next
node, then the command parsing procedure for such contexts should
assume that there is one standard, default operation ’ANSWERIS’,
and that what the user types in is the single parameter for that
operation. (In the MEDICS application system built on IDECS, such
nodes are often used; ref. ELF80). Exception-creating commands
whereby the user can ask e.g. "what is the purpose of this question” or
"what are the allowable answers" can be easily accomodated: the
parsing procedure should recognize them as ways of overriding the
default operation.

Among layout tools, we consider particularly forms management
systems. Such systems should consist of two parts: a design tool for
entering a forms description, and a production tool for data entry,
data editing and data presentation using an existing form.

The production-tool services are conveniently set up by embedding the
formatting information (such as the X and Y coordinates of each
field) in the prototype. When the general-purpose traverser procedure
traverses the current frame and its prototype in parallel, it is the
latter that determines the choice and order of frames. This is natural
both because the prototype defines the current view, and because the
current frame may sometimes be empty, e.g. during data entry. The
prototype also contains the information about the types of the values
in the leaves. For these reasons, we can obtain layout descriptions
simply by extending the type hierarchy downwards into instances
which contain coordinate information. For example, if a standard
prototype for an address-directory service stipulates that the ‘name’
field should have the type string, we may compose an alternative
prototype where the type in the ’name’ field is string4, where
string4 -> string
tld(string4, print) = pri4 ,

where pri4 might be a procedure which prints its argument in
position (X = 4, Y = 0) on the screen. (More likely, it will be a
procedure which does a cursor movement to a position given as
another leaf in the frame of string4). All other information for
string4 is inherited from string. By creating a prototype from such
further instantiated types, we obtain what is effectively a forms
description that can be understood by the general-purpose traverse
procedure.

The resulting forms descriptions are somewhat elaborate, and it is not
convenient to enter them manually. However, the most convenient way
of entering a new form is anyway to ’paint’ it: the user moves the
cursor around thé terminal screen, and makes commands such as
’create a data field here’ or ’delete that data field’ when the cursor is
in appropriate positions, and preferably using control keys or
functions keys on the keyboard. Thus the characteristic commands are
’put’, 'delete’, ‘'move’, ’add information to’, and so on, just as in the
other applications. Form entry is therefore gracefully accomodated
using contexts which operate on a fixed frame (viz. the forms
description that is currently being edited), in which the node for the

190

E. SANDEWALL

whole form has the individual form fields as daughters, and
discriminates between them using the X/Y coordinates as a tag. This
allows us to treat the characteristic form editing operations (insert
field, delete field, etc.) as particularizations of the general operations
put, delete, etc, while the parameter is an X/Y coordinate which is
defined by the present position of the cursor.

By contrast, the representation of the form as a modified prototype
for production use, requires that the record’s field name be used as a
tag, and the X/Y coordinates be represented as values in leaves. The
transformation between the design tool’s representation znd the
production-time representation, is a simple and symmetric reversal of
the tag and one of the leaves, in each of the nodes that represent a
form field.

Data base queries can be expressed in several ways. If a query is to be
formulated as one single, complex expression using e.g. Boolean
connectives, then the facilities described in this paper are not
adequate (unless the context mechanism is used to implement an ATN
parser). However, the design does support the case where the query is
expressed as a succession of short commands which make restrictions,
joins, and other operations on a ’working relation’. Also, since design
of forms is accomodated, it should be possible to state queries in the
present system using Q uery-by-Example-like techniques (ref. ZLO75).

Operating system shells provide a command dialogue with the user.
The design described here has all three characteristics of a shell: it
maintains a data repository (of which the file directory is a special
case); it performs a command dialogue; and it is able to invoke
programs or procedures that are stored in the data repository. Thus it
is a generalization of the conventional O.S. shell.

Although the presentation here has by necessity been brief, it has
hopefully been sufficient to demonstrate in principle how the services
of conventional software tools and software environments have been
unified.

7. Discussion.

Many authors have emphasized the need for systematic and powerful
methods for dialogue management, for example Terry Winograd as
quoted in section 2 above. A statement by Hoare (as cited in ref.
WEG?79) also applies very well: "In many applications, algorithms play
almost no role, and certainly present almost no problem. The real
problem is the mass of detailed requirements; and the only solution is
the discovery or invention of general rules and abstractions which cover
the many thousends of cases with as few exceptions as possible.

The present work has been done in the same spirit as both those
quotations express. We have shown that interactive user services
which are traditionally provided by operating systems and a number
of software tools, can be provided in a unified way by a simple and

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

concise interactive system. Operating systems and software tools are
usually considered to be on a level ’above’ the programming language.
This is particularly true from the viewpoint of classical algorithmic
languages, which maintain strict separation of programs and data,
where the software tools must be implemented as program generators.
The results presented here suggest that concepts and services can and
should be moved ’upwards’, from the realm of the procedural
programming language, to the realm of a software environment that
combines the salient features of operating systems and software tools.

In the traditional division of responsibility between the software
environment (realized by the operating system) and the application
program (expressed in the programming language), the software
environment provides a fairly narrow and well-defined set of services,
and all the application-specific things as well as the continous
dialogue, happen within each application program. The application is
realized as a monolithic program at least at execution time: when the
end user has passed ’through’ the operating system shell ’into’ the
application program, he or she has no contact with the operating
system (except for low-level data management and communication
services that are clearly ’below’ the level of the application program).

The present work suggests a development where the computing
environment takes over much more of what is presently done in the
application program: it takes responsibility for the user dialogue, and
for data management or "moving data around" in the words of Boehm
(ref. BOES80). Furthermore, through the use of the control
abstractions, the context machinery, and the embedding of directive
information in prototypes, it takes responsibility for a large part of
control, which in the definition of Salter (ref. SAL76) is "the
mechanism that activates functions in the desired sequence", or (in
interactive situations, we might add), the mechanism that activates
functions at the desired time.

Instead of having a large monolithic application program,
encapsulated in the thin shell provided by the operating system, we
therefore see having an application description which consists of
number of separate entity descriptions (in our case, frames), which are
individually stored in the data repository provided by the software
environment, and whose role is to steer the general-purpose behavior
of the system, rather than to define the behavior from scratch for
each application.

This viewpoint provides an different perspective on the relationship
between programming languages and programming environments.
Speculatively, we argue that it is wrong to design a programming
language first, and think about the design of the programming
environment afterwards, as has been the case in the ADA effort.
Since hierarchical structures are needed both in the programming
language and in the programming environment, it would be reasonable
to use the same hierarchy and a uniform representation for both
purposes. A software repository which can represent hierarchies, and
accomodate various kinds of software structures, may allow and

192

E. SANDEWALL

encourage representations of programs which do not appear easily
when language design is done in the framework of the classical algol
60 syntax tradition. The two-dimensional inheritance that plays a
crucial role for the generality and simplicity of the CAROUSEL
design, emerged in the data repository representation of the software.

However, the issue is not only about whether the textual
representation or the data-base representation of a program should be
the primary one. It is also concerned with what kinds of entities
should be used in the hierarchy for the software structure.

deRemer and Kron (ref. REM76) have made the distinction between
’programming in the small’ (i.e. writing individual procedures) and
’programming in the large’ (i.e. organizing the global structures where
the procedures are components). We agree about that distinction, but
disagree with their view of what ’programming in the large’ is about.
deRemer and Kron describe a module interconnection language, MIL
75, for programming in the large, and write: "The universe of
discourse of MIL 75 consists of three sets: resources, modules, and
systems. Resources are atomic, .. e.g. variables, constants, procedures,
data types, etc." (third page of paper). We believe instead that the
universe of discourse for programming-in-the-large should be entities
in the system’s behavior as seen be the end user: operations, contexts,
forms, data files, features that can be turned on and off, printers
where the output may appear, etc. These are the things that it is
important to describe. In the course of describing them, it is
frequently necessary to associate procedures or other program ob jects
with them, but that is a secondary circumstance.

in addition to describing the system’s behavior,
programming-in-the-large should also be concerned with building
models of the application. That issue has not been addressed by the
present paper, but previous projects in our laboratory (ref. ELF80,
SANB80) indicate that once we have tools for modelling the system’s
behavior, the next higher level of modelling the application domain
can be built with considerable convenience.

Acknowledgements.

Sture Higglund has strongly influenced the work described here, and
also given valuable remarks about earlier drafts of the manuscript,
and a number of valuable references. Anders Strom has argued for a
long time that data abstraction should be incorporated into our
software tools.

Implementation.
The present implementation of the design described here, CAROQUSEL,

is written in Interlisp for the DEC-20 computers. With the exception
of the scetch for a query facility, all services described in this paper

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

have been implemented in the existing CAROUSEL system.

References.
BIR73 Graham Birtwistle et al: Simula begin. Auerbach, 1973.

BOE80 Barry W. Boehm: Developing Small-scale Application Software
Products: Some Experimental Results. In SH. Lavington (ed):
Information Processing 80. North-Holland, 1980.

BOU78 S.R. Bourne: The UNIX Shell. The Bell System Technical
Journal, Vol. 57, No. 6, July-August 1978, pp. 1971-1990.

BURS0 jJohn F. Burger: Semantic Database Mapping in Eufid.
Proceedings of the ACM-SIGMOD 1980 International Conference on
Management of Data (Peter P. Chen, ed.), pp. 67-74. ACM, 1980.

BYT81 BYTE Magazine, Vol. 6, No. 8, August 1981: special issue on
Smalltalk.

CAR80 Eric D. Carlson and Wolfgang Metz: Integrating Dialog
Management and Daia Base Management. In SH. Lavington (ed):
Information Processing 80. North-Holland, 1980.

CARS80B Jaime G. Carbonell: Defqult Reasoning and Inheritance
Mechanisms on Type Hierarchies. Proceedings of the Workshop on
Data Abstraction, Databases, and Conceptual Modelling. SIGPLAN
Notices, Vol. 16, Nr. 1, January 1981

CHE76 Peter P. Chen: The Entity-Relationship Model - Towards a
Unified View of Data. ACM Transactions on Data Base Systems, Vol
1, No. 1, (1976).

DAHL72 Ole-Johan Dahl and C.A.R. Hoare: Hierarchical Program
Structures. In O.-]. Dahl, EW. Dijkstra, and C.A.R. Hoare: Structured
Programming. Academic Press, 1972.

DOD80 U.S. Department of Defense: Requirements for Ada
Programming Support Environments - "Stoneman”. 3DI079 Pentagon,
February 1280.

DOL80 T.A. Dolotta and J.R. Mashey: Using a Command Language
as the Primary Programming Tool. In D. Beech (ed): Programming
Language Directions, pp. 35-55. North-Holland, 1980.

ELF& Johan Elfstrém et al: A4 Customized Programming
Environment for Patient Management Simulations. Proceedings of 3rd
World Conference on Medical Informatics, Tokyo, 1980.

FIK80 Richard E. Fikes: Odyssey: A Knowledge-Based Personal
Assistent. To appear in Artificial Intelligence.

194

E. SANDEWALL

FOR79 M. Ford: PRESTEL - The British Post Office Viewdata
Service. Proceedings of the 1979 International Conference on
Communications. IEEE, June 1979.

GHE75 J. Ghesquiere, C. Davis, and C. Thompson: Introduction to
TUTOR. Report, Computer-Based Research Laboratory, University of
Illinois, 1975.

GOL81 Ira Goldsteinn A4 Network Representation for Office
Information Systems. 1981 Office Automnation Conference Digest, pp
367-369. AFIPS, 1981.

HAG75 Sture Hagglund and Osten Oskarsson: /DECS2 Users’ Guide.
Report DLU 75/3, Datalogilaboratoriet, Uppsala University (Sweden),
1975.

HAG80 Sture Higglund et al: Specifying Control and Data in the
Design of Educational Software. Proceedings, CAL8l Symposium on
Computer Assisted Learning, Leeds, 1981.

HAM77 M. Hammer, W.G. Howe, V.]J. Kruskal, and 1. Wladawsky:
High Level Programming Language for Data Processing Applications.
Communications of the ACM, vol. 20, no. 11, 1977, pp. 832-840.

HAMS80 Michael Hammer and Brian Berkowitz: DIAL: A
Programming Language for Data Intensive Applications. Proceedings
of the ACM-SIGMOD 1980 International Conference on Management
of Data (Peter P. Chen, ed.), pp. 75-92. ACM, 1980.

HER80 Christopher F. Herot: Spatial Management of Data. ACM
Transactions on Database Systems, Vol 5, Nr. 4, pp. 493-513
(December, 1980).

JOH78 S.C. Johnson and M.E.Lesk: UNIX Time-Sharing System:
Language Development Tools. The Bell System Technical Journal, Vol
57, No. 6, July-August 1978, pp. 2155-2176.

JON77 Anita K. Jones: The Narrowing Gap Between Language
Systems and Operating Systems. in B. Gilchrist (ed): Information
Processing 77, pp. 869-873. North-Holland, 1977.

JONGB80 S. Peter dejong: The System for Business Automation (SBA):
A Unified Application Development System. in S.H. Lavington (ed):
Information Processing 80, pp. 469-474. North-Holland, 1980.

HER79 Christopher F. Herot: Spatial Managament of Data. ACM
Transactions on Database Systems, 1979.

KAM78 1. Kameny et al: EUFID: The End-User Friendly Interface to
Data Management Systems. Proceedings of the Fourth International
Conference on Very Large Data Bases, Berlin, September 1978.

LAD80 Ivor Ladd and D.C. Tsichritzis: An Office Form Flow Model.

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

Proceedings of the 1980 National Computer Conference, pp. 533-539.
AFIPS Conference Proceedings, Vol. 49.

LIS74 Barbara H. Liskov and Steve Zilles: Programming with
Abstract Data Types. Proceedings of the ACM Conference on Very
High Level Languages, SIGPLAN Notices, Vol. 9, April 1974, pp.
50-59.

LIS77 B. Liskov, A. Snyder, R. Atkinson, and C. Scaffert: 4bstraction
Mechanisms in CLU. Communications of the ACM, Vol. 20, Nr. 8, pp.
564-576 (August 1977)

MAR73 James Martin: The Design of Man-Computer Dialogues.
Prentice-Hall, 1973

MORS80 Howard Lee Morgan: Research and Practice in Office
Automation. Invited paper, in S.H. Lavington (ed): Information
Processing 80. North-Hoelland, 1980.

MYL80 John Mylopoulos, Philip A. Bernstein, and Harry K.T. Wong:
A Language Facility for Designing Database-Intensive Applications.
ACM Transactions on Database Systems, Vol. 5, No. 2, june 1980, pp.
185-207.

MYL80B John Mylopoulos and H.K.T. Wong: Some features of the
TAXIS data model. Proc. 6th Annual Conf. on Very Large Data
Bases, Montreal, Sept. 1980

NAU62 Peter Naur (ed): Revised Report on the Algorithmic Language
Algol 60. Regnecentralen, Copenhagen, 1962.

NEW79 W. Newman and R. Sproull: Principles of Interactive
Computer Graphics. McGraw-Hill, 1979. :

NIE79 J. Nievergelt and J. Weydert: Sites, modes and trails: telling
the user of an interactive system where he is, what he can do, and how
to get to places. Proceedings of IFIP Conference on the Methodology
of Interaction. North-Holland, 1979.

QUI68 M.R. Quillian: Semantic Memory. in: M. Minsky (ed):
Semantic Information Processing, pp. 216-270. MIT Press, 1968.

REM76 Frank deRemer and Hans H. Kron: Programming-in-the-Large
Versus Programming-in-the-Small. IEEE Transactions on Software
Engineering, June 1976.

ROB78 G. Robertson: Some Design Considerations for the ZOG
Man-Computer Interface. Proceedings of the Third NATO Advanced
Study Institute on Information Science, Chania, Greece, 1978.

ROB79 G. Robertson, D. McCracken and A. Newell: The ZOG
Approach to Man-Machine Communication. Report CMU-CS-79-148,
Carnegie-Mellon University, 1979.

196

E. SANDEWALL

SAL76 Kenneth G. Salter: A Methodology for Decomposing System
Requiremenis into Data Processing Requirements. Proceedings of the
2nd International Conference on Software Engineering, IEEE, 1976.

SAN78 Erik Sandewall: Programming in an Interactive Environment:
The LISP Experience. ACM Computing Surveys, Vol 10, Nr. 1, pp.
35-72, March 1978

SAN79 Erik Sandewall: A4 Description Language and Pilot-System
Executive for Information-Transport Systems. Proceedings of the Fifth
International Conference on Very Large Data Bases, Rio de Janeiro,
1979.

SANS80 Erik Sandewall, Goran Hektor et al.: Provisions for Flexibility
in the Linkdping Office Information System (LOIS). Proceedings of the
1980 National Computer Conference, pp. 569-577. AFIPS Conference
Proceedings, Vol. 49.

SANS81 Erik Sandewall: SCREBAS Provisional Reference Manual.
Internal report, Software Systems Research Center, Linkoping
University (Sweden), March, 1981

SCH79 J. Schultz and L. Davis: The Technology of PROMIS.
Proceedings of the IEEE, September, 1979

SIB80 E.H. Sibley: Database Management Systems _Past and
Present_ Proceedings of the Workshop on Data Abstraction,
Databases, and Conceptual Modelling. SIGPLAN Notices, Vol. 16, Nr.
1, January 1981

STR81 Ola Strémfors and Lennart Jonesjo: The Implementation and
Experience of a Structure-Oriented Text Editor. Proceedings of ACM
SIGPLAN/SIGOA Symposium on Text Manipulation, 1981

TEI78 Warren Teitelman et al: Interlisp Reference Manual. Xerox
Palo Alto Research Center, Palo Alto, CA, 1978

WAS8! Anthony I. Wasserman: User Software Engineering and the
Design of Interactive Systems. Proceedings of the bth International
Conference on Software Engineering, IEEE, 198L

WEG79 Peter Wegner: Research Directions in Software Technology.
MIT Press, 1979.

WIE79 Johan Wieslander: Interaction in Computer Aided Analysis
and Design of Control Systems. Thesis, Department of Automatic
Control, Lund University (Sweden), 1979.

WGR79 Terry Winograd: Beyond Programming Languages.
Cemmunications of the ACM, Vol. 22, Nr. 7, pp. 391-401 (July 1979)

WIN81 Patrick Henry Winston and Berthold Klaus Paul Horn: LISP.
Addison-Wesley, 1981.

UNIFIED DIALOGUE MANAGEMENT IN THE CAROUSEL SYSTEM

ZLO75 M. M. Zloof: Query by Example. Proceedings of the 1975
National Computer Conference, pp. 431-437. AFIPS Conference
Proceedings, Vol. 44.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

