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Abstract: This paper describes an alternative approach to
software architecture, where the classical division of
responsibilities between operating systems, programming
languages and compilers, and so forth is revised. Our
alternative is organized as a set of self-contained
environments which are able to communicate pieces of
software between them, and whose internal structure is
predominantly descriptive and declarative. The base
structure ‘within each environment (its diversified shell) is
designed so that it can accomodate such arriving software
modules.

The presentation of that software architecture is done in
the context of an operational implementation, the SCREEN
system (System of Communicating REsidential
ENvironments).

1. This paper describes alternative principles for software
architecture.

Software design today is based on a number of universally
accepted assumptions, particularly about the tasks that
ought to be performed by operating systems, compilers, and
other software tools, and about what tasks ought to be
performed by ’application’ programs. Each of those tools
provides a package of services. For example, the practical
_operating system provides not only resource management,
'but also the top-level dialogue which allows the user to
switch between various services, and to transfer data
between them. The conventional compiler provides a
.number of services, such as data description (through
declarations; also performed by the data base system),
consistency checks, and code generation. The ’application’
program is assumed to be in tharge of e.g. all but the most
trivial aspects of the user dialogue for the application.
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The purpose of this paper is to question this conventional
division of responsibilities between the major parts of
software. We describe a different overall architecture of .
the software which we believe is more appropriate. Our
view of software architecture has been implemented as an
experimental but fully operational system, called the
SCREEN  ("System of Communicating REsidential
ENvironments") system. Although the the main results that
are reported in this paper is the architectural philosophy
and not the piece of university-quality software, we shall
make frequent references to SCREEN, in order to avoid
the possible suspicion that the ideas are mere speculation,
and to emphasize that the designs described here are the
resuls of practical experimentation over several years.

2. Application example: an office information system.

For concreteness, let us start with one particular class of
programs whose treatment relies heavily on the
characteristics of SCREEN, and use it to explain how the
system works and how it is used. In the development of the
experimental Linkoping Office Information System, LOIS
(ref. Pl, P2), we wanted to provide support for information
flow in an office environment, i.e. the scenario where one
user is able to instantiate a ’transaction’ (e.g. a purchase
order, or a request to have certain analyses made for a:
patient), send it to another user who (immediately or later)
performs some operation on that ’transaction’ (e.g.
authorizes the purchase order), and passes it on again. (For
a survey of some recent work on information-flow models,
see ref. 1) Within one organization, we will usually have
many such information-flow paths, and a many-to-many
relationship between flow-paths and users: each path passes

by several users, and each user has several paths come by.

In an office environment with personal computers for all
employees, we will want each user’s personal computer to
account for his or her role in each of the information-flow
paths that he participates in, and to do so in a
well-engineered and coherent dialogue. Thus at run time,
the complete system for the organization consists of one
sub-system far each user. But at design time, we instead
want to design each information-flow application
separately, so that the roles performed by different users
for this flow are co-ordinated and fit well together.



In our project, we have designed a (primarily graphical)
language for describing information flows, and an
implementation which supports the design and debugging
of an information-flow application, as well as the
distribution of the segments of the flow to the separate
user stations (ref. P3, P4). The application calls for an
interesting and non-trivial structure in the receiving,
“end-user" computing environment.

Let us consider this from the point of view of the end
user. We assume that he or she already has an: office
information system with the standard facilities, such as:

- a computer mail system

- a personal data base system, where he or she may store
data, organized according to the user’s preferences using
simple data definition commands, and where browsing and
report generation from the data is also supported

- an agenda facility, which allows the user to maintain
notes about pending duties of several types: "make the
following phone calls: ..", “talk to the following people
around the office..", "meetings:

.", "write the following
reports with the following deadlines:...", etc.
Each of these sub-systems uses a reportoire of interactive
commands, and some will also use other, orthogonal menues,
e.g. the reportoire of agenda classes, or the reportoire of
data sets in the personal data base.

When an information flow application has been designed,
and broken down into the pieces that are to be sent to the
personal sub-systems for each of several users, how is each
flow-piece to be integrated into its user’s personal system?
The easiest way is to say that the segment defines one new
’program’, parallell to the mail ’program’, the agenda
’program’, and all the others. For example, the information
flow between a ward in a hospital and the chemical
laboratory, would generate one program for the head nurse
in the ward, which might be called "laboratory data”, and
which would contain sub-commands such as “order analysis
for patient”, "look through today’s returned analyses”, "look
at patient’s journal® (because returned data for a patient
are assumed to be accumulated automatically to the
patient’s journal), “find out status of pending analysis, etc.
(These fragments occur at the beginning and at the end of
the flow-path for each laboratory request). Some of the
other stations for this information flow would contain only
one or a few operations, if implemented in the same way.

This straight-forward solution is sometimes also the best
one. But very often the system becomes more habitable for
the user if the segment of the information flow is
incorporated into one of -the other services. For example,
the administrator who has to look over and authorize
purchase orders before they can be processed further, but
who also needs to be reminded about this duty in order to
do it, would prefer to see her part of the purchase order’s
path as one further agenda category, where it could rely on
the presumed machinery of the agenda facility for
reminding the user about deadlines, using appropriate
devices such as bells, whistles, or color graphics.
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Similarly, the user who is on an information flow because
he wants to hoard the information in his personal data
base, for later browsing, but who is not interested in seeing
it when it arrives, would rather have Ais segment of the
information flow connect straight into the personal data
base. An finally, the user who files a request for vacation
once or twice per year, and gets back a positive or negative
answer a few days later, would be best served if the answer
comes back as a message in the ordinary computer mail
(although the manager who approved the application may
have seen it differently).

Programs which effect information flow in an organization
are conceptually a limited class of programs, but they are
also a class of programs which represent a very large
volume of actual data processing. These two circumstances

taken together are the rationale for designing a
special-purpose language for describing information flows.
Other classes of programs which satisfy the same

requirements, and for which specialized languages have
frequently been designed and implemented, are for
programming language processors (see eg. ref. 2), for
report generating programs, for data base queries, and for
interactive forms management on a display screen. One of
our basic design considerations has been to support such
special-purpose languages in general; we shall return to that
point.

3. A diversified shell provides powerful support for
applications.

Let us now switch from the special case of
information-flow programs, to the extrapolation to more
general issues. The first point we want to make is that tie
computer system’s (= the operating system’s) top-level
dialogue with the user should be considerably more developed
than what is customary today in conventional interactive
operating systems. The information-flow application
provided an example where the shell should.contain basic
services such as a mail handler, a personal data base
handler, and an agenda facility, and where ’application
programs’ were embedded into the shell at various
locations. We shall use the term diversified shell for a user
dialogue facility with such a reportoire of services, oriented
towards certain application situations or computer/user
interaction modes.

By employing the term skell for the computer’s top-level
dialogue handler, as previously used in the Multics and
Unix (ref. 3) operating systems, we indicate that procedural
services and easy coupling of modules are taken for
granted in the shell, and that we are adding yet another
aspect when going to the diversified shell.

In a conventional operating system, there is only one way
of adding more programs, at least from the perspective of
the common programmer, and that is by storing the object
code for the program as a file, so that it can be invoked
by a 'RUN’ command. In our concept for an office
information system, the mail handler, the agenda handler,
and the other parts of the shell define a number of
different such points where ’programs’ may be added. Each



point makes implications about when the program will be
invoked, or made available to the user, and what
conventions it has to foilow in order to operate correctly.

Notice that the increments do not consist only of
procedures, however. Commands, agenda categories, etc. are
data objects which are associated both with procedural
information (e.g. the code for executing the command) and
descriptive information (e.g. the help text that goes with
the command).

Systems programmers who are working with operating
systems in practice already use these techniques, for
operating = systems actually contain additional ’'dispatch’
points where ’programs’ for specific, system-oriented
purposes may be added, e.g. drivers for various types of
memory devices or I/O devices. However, these additional
dispatch points are not used (and are not supposed to be
used) by regular programmers.

The techniques described here are classical in the context
of Lisp programming. What we have done is to extend
them to classes of applications for which Lisp is not
usually being used, and to relate them to issues which are
significant for software engineering.

It is interesting to compare also with the CODASYL group
proposal for an end user facility (ref. 4). Although that
proposal only described an EUF with a fixed set of
facilities, it generalizes easily to being a specification for a
diversified shell, to which services could be added
incrementally.

A corollary of our argument is that operating systems
should serve a very signficant role for program structuring.
It is interesting to go back to the classical term ’the
stored-program computer’, where the computer is supposed
to contain one single program, and apply it to the
personal-computer situation. In this view, the program
consists of all the various pieces of executable code that
are stored in (primary or secondary) memory, for example
on files. The top-level structure of that program consists of
the operating system, which is able to invoke lower-level
parts of the program which are stored on files, by doing a
RUN operation. In this view, the program is also able to
amend itself, under user control (usually indirect user
control), so that new services are added and old services
are sometimes deleted. This is done of course by adding or
deleting program files. What we are talking about in this
paper is to reform and improve the currently very primitive
architecture for the stored program of the personal
computer, so that its ability to modify itself (ie. to
facilitate its own software maintenance) is recognized as an
asset, and supported as much as possible.

From this perspective, it is a pity that the sub-discipline
for operating systems thinks of the O.S. as being
essentially an administrator for shared resources, and
nothing else. Brinch-Hansen (ref. 5, page 1) writes:
An operating system is a set of manual and automatic
procedures that enable a group of people to share a
~omputer installation efficiently.

The role of the operating system as a skeleton program
onto which more specific (sub-)programs are to be attached,
is equally important.

A third observation is that the diversified shell must
provide a data repository which can hold those data which
are common for the shell and the various programs that are
attached to it. Operating systems in the Multics family
(such as Tops-20 and Unix) allow one program to invoke
another, ie. to perform the equivalent of the RUN
command. However, if the caller and the callee want to
share data, only crude facilities are available. Incremental
programming systems such as Lisp (ref. 6, 7, 8) and APL
provide a model here: they allow one environment to hold a
large number of procedures, all of which may be invoked
by the user, but which may also invoke each other, and
which share the common data space of the Lisp 'sysout’ or
the APL ’workspace’. An operating system might provide
that service on a global level and in a less
language-dependent way.

One example where such a design would be very useful was
provided by Boehm in (ref. 9), which describes how a small,
interactive application software product was developed in a
controlled experiment. One of the hypotheses was that
"most of the code in (such a) product is devoted to
housekeeping”, i.e. error processing, mode management, user
amenities, and moving data around. This hypothesis was
confirmed by the two independent development teams in
the experiment, which used only 2% and 3% of the code for
implementing the actual cost model that was the real
purpose of the program. The quoted figures seem extreme,
but the general observation seems to recur frequently.

In a computing environment where the -shell provides a
global data repository and an interactive command
language, one should be able to implement such applications
by writing their core (those 2-3 % of the old code) as
programs which operate on data in the global data
repository, and rely on services or general-purpose
commands that are already in the diversified shell for
"moving data around” and other housekeeping chores.

Finally, a diversified shell is the ideal target structure for
special-purpose languages. In a discussion of the use of
program generators, particularly in Unix, Johnson and Lesk
(ref. 2, p. 2156) write:
Program generators have been used for some time in
business  data processing, typically to implement
sorting and report generation applications. Usually,
the specifications used in these applications describe
the entire job to be done /./ In contrast, our
program generators might better be termed module
generators; the intent is to provide a single module
that does an important part of the tatal job. The
host language, augmented perhaps by other
generators, can provide the other features needed in
the application... ‘

We also use that strategy, but just -having module
generators leaves open the task of putting together the
generated modules into a working system. By contrast, a
diversified shell offers to the generators a well-defined
framework into which they can insert the generated
modules. - Also, we prefer using an interpretive technique
called superroutines (ref. P5), rather than the compiler-like
technique of a program generator.



4. Residential environments shoul
receive pieces of software. ’

One of the salient features of our arcaitecture, as
implemented in the SCREEN system is that it is organized
as a number of residential enviremments (this term was
defined in ref. 6), i.e. almost autonomous systems, each of
which has its own diversified shell, and whatever contents
have been placed into it. Software updates are often
performed by having one environment send a patch of
software (programs and/or data) to one or more others.
Each environment typically serves one user, and is tnoughi
of by that user as one piece of software equipment, or a
‘software individual’, because it has a unique existence
through time, and it changes gradually over time as the
result of successive software updates that are sent to it
from outside, or made on it by the user.

Environments are similar to ADA configurations (ref. 10),
since they are built up from available modules, but they
differ from configurations in being able to receive updates
and to modify themselves as well. Implementation-wise, in
SCREEN they are Interlisp ’sysouts’ (analoguous to APL
"workspaces’)(one environment may be one single ’sysout’ or
several of them which invoke each other).

This section describes the reasons for, as well as some
interesting consequences of that architecture.

The information-flow scenario above provided one reason
why different end users need their private end-user
environments, i.e. customized systems which have the same
shell, but filled with different contents. Other reasons are
because each user may need his or her own customized
reportoire of data base queries, report specifications, edit
macros, etc., and because a user which is able to modify the
appearance of his or her system is likely to be more
satisfied with it (just like having control of your physical
working environment is psychologically valuable).

At the same time, there are strong reasons why the personal
systems should not be self-contained, but instead should be
able to communicate software between them. Although
advanced tools, such as query languages and forms
handlers, enable end users to make some software additions
by themselves, certainly the end user will need to be helped
in some cases by a programmer. The programmer should
then be able to implement the new service on Ais personal
system, which could contain professional tools for testing
and debugging, support for special-purpose languages for

professional use, tools for keeping track of what software
updates have been sent to which users, and other software
development services. Since new services are often

implemented using special-purpose tools, rather than a
general-purpose programming language, we shall use the
term development environment, rather than the possibly
more narrow term ’'programming envircnment, the
environment used by the ’programmer’.

for

Although software updates may also be made directly in
the end-user environment, the use of separate development
environments is advantageous not only because extra toels
may be made available, but also because many services may
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...... several

by users, and because (like in
information-flow applications) some services require
different but co-ordinated pieces of software to be sent to
different end-user environments.

However, if pieces of software are developed in one
development environment (DE) and transferred for
execution in another environment (EUE), special care must
be taken that they are inserted correctly. There are in
principle three possible (although non-exclusive) ways of
handling that problem:
- DE:s (oniaiin a ioi ‘kinowledge’ about the internal
structure of the various EUL:s
- there is a central data base which contains descriptions
of the structure of the EUE:s
- each EUE contains ’knowledge’ about its own structure,
incoming updates can contain abstract
specifications of where they are to be inserted, and the
EUE decides actively where the patch should be inserted.
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We avoid the first approach, because multiple DE:s are
needed, and SCREEN uses a combination of the second
and third approaches, with as much use of self-description
in the EUE as possible. One touchstone for the design of
the self-description has been the following: each
environment must be able to re-generate itself, i.e. it must
be able to generate a ’program’ which, when executed
within a blank Lisp system, will load into that system those
modules which are necessary in order to re-create a
rejuvenated equivalent of the originating environment.

There are potentially other kinds of environments, such as
end-user programming environments, which enable an end
user to specify the system’s behavior patterns in
application-oriented terms, and control environments which
autonemuously control some aspect of the total system’s
behavior without wuser dialogue, e.g. causing certain
programs to be run at certain hours (like a batch
controller). We have however not yet tried using these
openings.

5. Structures built from concepts (named objects) provide
an updatable structure in each environment.

Through the global data base or by other means, the DE:s
and the EUE:s must share some knowledge about the EUE:s
structure. It is clearly a good idea to express that
knowledge in terms of what the EUE:s do, rather than Aow
they do it. For the reasons described above, the mapping
from the what model to the how model is stored in the
EUE. It is therefore also natural to store at least parts of
the what model itself in the EUE.

There is also another good use for that information in the
EUE. When the end user has to deal with a continously
computer  system, there must be some
charactenstics in the system which remain stable, and there
should also be a frame of reference which allows the user
and the system to communicate about how todays system
structure relates to last week’s structure.

cha ntnpq

An analogous problem of finding one’s way around in a
changing environment occurs in a city where construction



often goes on, but only locally. The street map in the city
then serves as a framework for the inhabitant, and allows
him to accomodate to the changes.

These considerations led to two crucial design decisions:
First, the software structure is organized around concepts,
structures, and processes which are seen and used by the end
user, or which are useful for describing the application
environment.

In SCREEN, eg. as used for the LOIS office information
system, the top-level structure is to give the user a choice
between several contexts (i.e. sub-systems such as mail,
agenda, personal data base). Within each context, there is
usually additional choices to be made in one or more
dimensions, e.g. the choice between commands in most of
the contexts, the choice between agenda categories, between
data sets in the personal data base, etc.

Secondly, since this basic framework of contexts, commands,
categories, etc. is needed for multiple uses when the
end-user environment is running, it is represented explicitly
as a data structure, not only in DE:s but also in EUE:s. In
that data structure, each context name has attached
information about what commands are available in it, what
local variables are bound in the context, what expressions
have to be executed when the context is entered, etc. (We
will refer to this structure as a ’data structure’, rather than
as a ’'data base’, because it is internal to the environment,
rather than globally available data).

The information that is stored in the data structure for
each environment, can clearly be viewed as specifications
for that environment. In our architecture, these
specifications are not a “source” from which the
“executable” system is constructed or generated; instead they
are the dominant structure in the executable system.

The data structure that we use in SCREEN is a frame
system as developed in artificial intelligence research (for
an introduction to frames, see e.g. Winston (ref. 7, page 291
ff). It is constructed from named ob jects (corresponding to
what is otherwise often called ’concepts’) and relationships
between them, implemented using ’slots’. Therefore, the
elementary piece of information is the assignment of a
value to an object. (This is an assignment in a static sense
- the object has a value - rather than in the dynamic sense
of an assignment operation such as the algolish :=). One
object may have several slots, and an assigned value in
each of the slots. The assignment can be given explicitly,
inherited, computed when needed, or augmented when
needed, all using data-driven procedures (cf. Winston, ibid,
page 211 ff).

Concepts are often associated with procedures or other
pieces of code. Consider for example the agenda (tickler
file) facility in the office information system, whose
standard version allows the user to ask the EUE to later
remind her of phone calls, compyter mail that remains to
be read, and other duties. An external contributor (e.g. a
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user, or another environment) may now add more classes of
tasks to the agenda, so that an agenda printout may be

4 PHONE CALLS TO MAKE OF WHICH | ASAP

11 NEW MESSAGES IN COMPUTER MAIL

LISP CONFERENCE PAPERS DUE NEXT WEEK

6 LEAVE OF ABSENCE REQUESTS PENDING

14% OF WORKING TIME THIS WEEK SCHEDULED FOR
MEETINGS

Here the last three items are the printouts for three
additional, and user-specific objects in the type
agenda-tasks. The agenda facility of course knows how to
look up all currently relevant agenda-tasks, and for each of
them to look up and invoke the little data-driven procedure
which inspects the current data structure to compute the
figures, and composes the appropriate printout line. The
user can proceed directly from this agenda menue to doing
the work it suggests (for example pointing at line ¢ will
bring her into the routine for looking at and approving
leaves of absence), or she may merely find out more about
the work (for example look closer at the list of intended
phone calls). In all cases, her actions causes the invocation
of other programs or data attached to the agenda-task.

In many cases, the user obtains multiple, orthogonal options,
again often physically represented by menue choices. For
example, the services for handling text files, in the LOIS
office information system, work with a number of different
object types, including:

text files (the objects of direct interest to the user. Reports
from the data base may be implemented by associating
some file names with procedures for generating the file
automatically when needed);

classification categories of text files: teaching, research,
etc.;

format of text files: letter, memo, contract, etc. (Each
format may be associated with e.g. a procedure which
generates the beginning of a file automatically)

formatter used to operate on text files. The formatter
object is associated with information both about the pieces
of software that make up the formatter, the conventions
for calling it, and the command conventions that are used
in the text file; ’

language (English, Swedish, etc.) in which the text is
written. Has implications e.g. for the choice of fonts, for
the choice of reserved words in the formatter ("page',
“chapter”, etc)., and for hyphenization rules. Much of this
information is best given by procedures associated with the
language name.

Classical programming languages such as Simula certainly
allow one or more procedures to be associated with
identifiers (e.g. Simula class names) in the program.
However, the language definition in those cases does not
account for treating those same identifiers as known
entities at run-time. The examples given above show how
many kinds of named objects which are needed at run-time,
may also need to be associated with procedures. A case
statement is in fact a mapping from symbols to pieces of
code; our architecture represents that mapping more
explicitly by slot assignments.



6. Superroutines
generators.

are an improvement over program

In every applications area, there is a need for special tools.
In office automation, tools for data base queries, report
generation, and forms handling are commonplace. There are
two common strategies for such tools:

- general-purpose programs with parameters, where some
aspects of the program’s behavior can be controlled by
setting the parameters. A description of a form (giving
X/Y coordinates for all fields) is an example of a
parameter which is a data structure.

- program generators which translate from a specification
language, to a source program in a programming language,
which may then be further compiled.

As a rule, program generators may provide greater
flexibility. Often they are organized so that there is a
fixed top-level structure for the generated program, but
some positions in the program called kandles are variable,
and their contents are to be written out in the
specification, or are computed from information in the
specification.

For example, in the parser generator YACC (ref. 2), there
is one handle where code fragments (written in C)
associated with each production in the syntax, are
incorporated into a case statement, and one handle called
yylex where a lexical procedure may be inserted,
hand-written or generated using the separate tool Lex.

The procedures or code fragments which are stored as slot
values in the data structures of our environments, would be
contributions to program generators that we might have in
our system. However, since the procedures are already in
the environment used at execution time, no program
generation is in fact necessary - these code fragments can
be called directly.

The technique that we are using then has been called
superroutines (ref. P5). It is the interpretive equivalent of
program generators. The superroutine is identical to the
’fixed, top-level structure’ for the generated program, but it
is available at run-time, and the variable parts of the
program are either computed when needed and executed
immediately, or stored in the data structure, and retrieved
and executed when needed.

In another view, the superroutine is a geheralization of the
parameterized program, where the parameters are not
restricted to flags or codes, but they may also be
procedures or pieces of programs, which are stored in the
data structure, and invoked indirectly through data access
chains.:

For example, SCREEN contains a superroutine for forms
handling called IFORM, which accepts a form layout
description as a parameter, and where each field in the
form may be associated with a number of procedures, such
as:

- a procedure for checking the correctness of values
entered by the user
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a procedure for transforming values entered by the user,
to their appropriate, internal form, and for performing any
forward side-effects of the entry of these data
- an inverse procedure for printing out values in the data
base in appropriate format on the screen
as well as a number of others. The major advantages of
the interpretive character of the superroutine are that
errors are more easily controlled, updates are performed
more easily, and it is easier to make multiple use of the
same information (i.e. the information is more ’'declarative’
rather than ’procedural’).

Superroutines may be said to be interpreters for
special-purpose languages, e.g. the forms description
language. However, one must realize that the forms

description (as well as several other of the special-purpose
languages) is only used internally in the data structure of
the environment. For the user, the forms description is
entered by "drawing” the form on the screen, and is edited
in the same fashion. It would in fact be better to reserve
the term 'language’ for the expressions typed by the user
and by the computer during that dialogue, and to use the
term ’knowledge representation’ for the large expression in
a formal language that describes the whole form. Thus
superroutines are more precisely used as interpreters for
special-purpose knowledge representations (which have often
been communicated using  special-purpose  dialogue
languages).

SCREEN environments contain a limited and fairly fixed
reportoire of superroutines (for command dialogue,
form-oriented dialogue on the screen, report generation,
search in the data base, etc, as well as for a number of
system-oriented purposes), together with a large structure of
conceptual entities which stores information ranging from
specifications and documentation, to information which
directs the superroutines. Also, it should be clear at this
point that the diversified shell is just one of those
superroutines - it is a fixed procedure with a lot of
handles, where the contributions from various applications
are attached.

With some simplification, we may then distinguish two
kinds of contents in environments: fixed, procedural parts,
namely the diversified shell dnd the library of
superroutines, and a data structure part which is variable
in the sense that it is tailored to each user, and that it
changes over time, more fluently than the procedural parts.
These two parts interrelate because the procedural parts
often access the data structure to retrieve procedures which
are immediately invoked, and which in their turn may
often call one of the standard superroutine tools.

7. On programming techniques and programming style.

Environments organized with those two kinds of contents,

encourage the programmer to make -software updates by

extending the data-structure part of an environment. Some

heuristics for the programmer (or more generally, the

person that develops or extends the software) are:

- when a system is extended with new features which are
analoguous to existing ones, for example support for



additional output devices, or introduction of a new kind
of structured inter-user messages: try making the
extension by introducing additonal named objects into
the environment, and providing it with the descriptive
information that is needed for execution, documentation,
and maintenance;

for all kinds of system extensions, always look out for
concepts which are defined in the application, and try to
organize the software around it. This technique is useful
both because it suggests a structure for the software, and
because it prepares the ground for future addition of
analoguous features.

For the end user, this software structure hopefully means
that he or she can often form a reasonable model of how
the software works and how it changes. Users can
frequently communicate in terms of embedded languages, at
least with a programmer and sometimes (given enough
support software) even with the computer system.

The use of application-oriented concepts as a software
framework also makes it easier to arrange that the system’s
behavior, and the changes in its behavior, is
comprehensible for the end user. When operating the
system, the end user regularly encounters situations where
he has a choice of options, be they commands, formats,
data set, language, or whatever, and where changes during
the evolution of the software are often merely reflected by
additions to a menue, or warning texts that a certain,
previously existing item has been changed. Requests for
software changes that are sent from the user to a software
developer, are of course organized in the same ways.

Not surprisingly, updates that are sent from one
environment to another often have the same structure, i.e.
they consist of definitions for a small number of new
objects, assignments to slots for these objects, and
assignments to new slots for old objects which already exist
in the receiving environment.

This style of working with software marks another
departure from old habits. When working with traditional
programming languages, we become used to thinking of
data as an appendix to the program: the program is
essentially an algorithm, and it conteins declarations, and
data structures are created dynamically as the program is
executed. Using SCREEN, we think instead of the update
as being essentially @ collection of data, built from ob jects
and relationships, although some attributes of some of
those objects may be interpretable as procedures.

8. Incremental advising is useful when the application
does not naturally offer named objects (concepts).

The technique of making software updates by introducing
new, named objects, or adding slot assignments to existing
objects, is not always sufficient. Although we can always
resort to conventional code wupdates or classical
Interlisp-style advising (ref. 11), other and more precise
techniques are desirable. '

Incremental advising is such a technique. When it is used, a
procedure may contain a named advise point, i.e.-a point to
which incremental code ('advise’) may be added, and other
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modules may contain advise to the advise point. (An update
message that is sent from one environment to another, may
constitute such a module). Each piece of advise therefore
has the form ’module M gives advise to advise point P
that <code>’. Several pieces of advise may be given from
different modules to the same advise point, and the origins
of these pieces of advise are maintained separately, so that
individual pieces of advise may be deleted, or passed on to
other environments.

Advise points may be either named objects (like ordinary
procedures) or slots of arbitrary objects (i.e. the advise
point is a data driven procedure).

Incremental advising is used for many purposes in the
software for the SCREEN system itself, and in the
superimposed LOIS office information system. For example,
there are advise points for the entry and exit of a context,
for temporary detachment from an environment (Interlisp
'sysout’ function) and for the corresponding resumption; for
the regeneration of an environment, and so forth. Various
services give incremental advise to these advise points; for
example, the resumption of an environment has incremental
advise for bringing it up to date with what may have
happened while it was asleep, e.g. picking up various kinds
of messages, as contributed by modules that make use of
the respective kinds of messages.

5. Tools for administrating large numbers of named
objects should build 'upwards’ from the elements of the
data structure.

The number of objects and slot assignments grows quite
rapidly. The present LOIS system already contains many
hundreds of them. Conceptual tools and software tools for
administrating them are therefore necessary. SCREEN
suggests and supports a certain uniform structure on the
data. This structure is useful both inside environments, and
for defining the extraction of modules from environments
and the incorporation of modules into environments. The
structure is based on two orthogonal concepts, the block
concept and a fairly conventional z9pe concept. They can be
characterized as pragmatic and semantic, respectively: types
characterize what data have the same structure; blocks
describe what data are to be processed or used together.

The type concept is the familiar one: each object has a
type, which implies the existence of certain slots in the
object, and sometimes also restrictions on the possible value
in the slot. We allow for both the conventional type
mechanism, where the type name is a new object whose type
is types, and for A.L-style IS-A hierarchies where slots and
slot values may be inherited from superior objects in the
hierarchy.

While the data structure is resident in an environment, it is
viewed as merely a large collection of slot-value
assignments. When information is to be transferred from
one environment to another, one usually has to transfer a
number of slot assignments. Some possible strategies are to
let the sending environment compute by a dependency
analysis which slot assignments will be needed by the
receiver for a given purpose, or to let the receiving
environment ask for assignments when they are needed.



Both of these strategies are likely to be time-consuming.
We have therefore chosen instead to use a block concept
for meeting the same ob jective.

In principle, a block is simply a set of object/slot pairs.

Relative to the current contents of an environment at one

point in time, it defines. a set of object/slot/value triples.

Some operations on blocks that may be performed within

environments are:

- dumping the block, i.e. putting its set of ob ject/slot/value
triples in textual form on a file (sequential file or
direct-access file)

- loading the block, ie. an environment may incorporate
the contents of a block as dumped by another
environment

- checking well-formedness of the contents of a block
within an environment

- presentation of a block (or the union of several blocks)
to the user in a well readable format

The block concept originates from the Interlisp makefile
technique (ref. 11), where blocks are dumped to and loaded
from sequential text files. We have used that facility in
SCREEN, but the sequential-file technique has many
draw-backs, and we are gradually shifting to a direct-access
technique. The use of blocks for other purposes besides
dumping and loading has also turned out to be very
convenijent. In particular, blocks are the donors of
incremental advise as described in the previous section.

The important lesson to be learnt from that experience is:
in designing tools for controlling masses of software, do
not start by assuming the currently available storage
devices (e.g. text files), and then think of ways of filling
them with contents. Instead, first make clear what are your
elements of information, then how you want to group it, then
how what operations you rave on those aggregates of
_information, and finally, how you want to store them. If you
still think you can use ordinary text files, you have
probably done something wrong.

10. The meta level should be handled in the same way as
the object level.

The currently running, SCREEN-based software consists of
about ten environments, containing software that is
organized as several hundred blocks, and using named
objects in about one hundred different types, each with
potentially a considerable number of slots. The whole
system is required to change dynamically, not only because
of evolving research ideas, but also because of new
application requirements.

It goes without saying that maintenance tools are needed
for such a structure. In fact, one additional reason for
organizing software wusing the frame-oriented data
structure, was the idea that documentation could be
integrated into the same data structure in a simple,
convenient, and natural fashion.

That hypothesis has in fact been confirmed when working
with the system. It has been natural to store various kinds
of documentary information in the SCREEN environments.

Also, just as named objects and object types are introduced
for various applications, the task of software maintenance
gives rise to a number of object types: environments (each
of which has a name), modules or what we call dlocks (each
of which of course has a name also), facilities i.e. software
development undertakings (the handling of fonts could eg.
be one facility, containing a font generator, a font editor,
an addition to the formatter for accounting for fonts, etc.
Thus a facility contains a number of blocks, subsets of
which are given to different environments, and it is also
associated with a set of programmers, a set of documents,
etc.)

An extensive description of the documentation structure
that is built within the SCREEN system, has been
published elsewhere (ref. P6). Let us just emphasize again
one crucial characteristics, namely that the meta level task
of describing the system is handled in the same way as
object level tasks, and using the same techniques and the
same software tools.

11. Conclusion.

Software design has been sub-divided into the tasks of
designing operating systems, programming languages,
program generators, data base systems, and so forth.
Sub-disciplines of computer science and software
engineering have dedicated themselves to studying each of
these kinds of software. Unfortunately, the top-level design
is obsolete. It does not change easily, partly because of old
habits, and perhaps also because each sub-discipline focuses
on its own task, and takes the rest of the world more or
less for granted. The purpose of this paper has been to
suggest that we should take a fresh look at those basic
design assumptions.
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