. MEDINFO 80, Lindberg/Kaihara, Editors
© IFIP, North-Holland Publishing Company (1980)

A CUSTOMIZED PROGRAMMING ENVIRONMENT FOR
PATIENT MANAGEMENT SIMULATIONS

Johan ELFSTROM (1), Jan GILLQUIST (1), Hans HOLM GREN (2)
Sture HAGGLUND (2), Olle ROSIN (3) and Ove WIGERTZ (3)

1) Department of Surgery, Linkoping University, S-581 85 Linkbping, Sweden
2) Informatics Laboratory, Linkoping University, S-581 83 Linkoping, Sweden
3) Dept. of Medical Informatics, Linkoping University, S-581 85 Linkdping, Sweden

Patient management simulations have emerged as a technique to trainm medical students in
clinical decision making. We present a prototype system, MEDICS, which has been
implemented as a customized programming environment allowing the teaching physician to
interactively develop such simulation programs. Simulated cases are stored as structured data
in a database and development of a new simulation problem is viewed as editing operations
upon the description of the simulated patient. Execution of a simulation is monitored by
extendible interpreters and procedural code may also be attached to the data structures for
exceptional cases. The system supports abstract domain specific concepts and notations in
addition to general programming facilities of a conventional type. Thereby the system does

not necessarily demand computer
powerfulness and flexibility.

1. INTRODUCTION.

One important aspect of medical work is decision
making, e.g. regarding which investigations are
relevant and justified, considering their cost and
possible harm, when encountering a new patient. This
kind of decision making is hard to train in the
education of medical students, where it could only to
a limited extent be accomplished by confrontation
with real clinical cases.

Simulation of patient management was pioneered by
Rimoldi <9> as a method to train medical students
in clinical decision making through simulations. This
technique with patient management problems (PMPs)
was later developed by e.g. McGuire et al. <7> using
text booklets containing a series of sections dealing
with different aspects of the management process.
Within each such section a number of options are
available for selection, by using a special pen to
develop the latent images of the associated
responses.

In Sweden, experiences of the McGuire method of
paper-and-pencil simulations have been gained in
Linkdping since 1976. A research project,
‘investigating the prospects of computerized support
for PMP development and execution, is presently
performed as a joint effort between the departments
of Surgery, Medical Informatics and the Informatics
Laboratory at LinkOping University. The most salient
feature of this endeavour is the pursuit of a
habitable interactive environment for the teaching
physician, where PMPs are easily constructed, tested,
refined, documented and subsequently managed.

Computerized versions of PMPs have been used e.g.
at University of Illinois <8 >, University of Wisconsin

proficiency from

328

its users, while still retaining

<2> and University of Alberta <11>. Another related
approach is the computerized simulation of the
clinical encounter, as developed by Harless et.al
<4>. To develop simple programs of this kind is a
fairly well recognized task from the programming
point of view. However it is a common experience
from this and other similar applications of computer
aided instruction (CAI), that the amount of routine
work required for each single program, is often too
large to make computer programs a viable
educational tool. Thus it seems important that a
main investment is made in the development of
software supporting authors of educational programs.
We feel that previous efforts in this direction have
primarily emphasized language design and not enough
observed the benefits of interactive programming
environments, i.e. systems with interactive tools for
program development.

Our approach to the task of computerizing PMPs is
to design a highly specialized programming
environment supporting a suitably chosen PMP model
framework, thus customizing the system to the needs
of the physician who is creating the PMPs.
Simulation problems are then represented by problem
oriented data structures, which are interpreted at
run-time. These data structures implements a model
of the patient management task, as defined by the
general structure of PMPs. Evolution of the
simulation model is reflected by modifications and
extensions to the structure definitions. Creating a
new problem means declaring what kind of
management is to be simulated, how control is to be
executed and then filling in the data structure with
appropriate instantiated data.

This approach of a PMP editor rather than a
programming language for the author of a problemis

A customized programming environment for patient management simulations 329

essential, since it means that the need for education
of the author himself is substantially reduced. If the
effect of a declaration or modification is
immediately displayed or at least inspectable, it is
not so important to know the details of the
semantics of a statement in the PMP definition
language, especially if restoring back-ups are
supported as in our system. We have also devoted a
considerable effort to design facilities adaptable to
various categories of users, ranging from support of
different terminals (e.g typewriters or CRTs), mixed
initiative dialogue (controlled by the user, not the
program) and functional redundancy, i.e. the
availability of many means to the same end.

In fact the task of PMP construction was chosen as a
test case to accumulate experiences of methods and
program tools for implementation of customized
programming environments for specific classes of
applications <6>. We believe that our approach
represents a significant improvement, when compared
with the mainly program guided scripts for entering
simulated patients, that have been implemented as
an aid for authors in some related systems, see e.g.
<2, 5>,

2, SIMULATION OF PATIENT MANAGEMENT.

Patient management, as being trained by our
computer simulations, consists of a number of
distinct activities to be performed in appropriate
order and in a way depending on the «clinical
condition of the patient. Such activities involves
history taking, physical examination, laboratory tests,
medical treatments etc. The actions of the student
are assessed primarily depending on their relevance
against the background of accumulated information.
Suggestion of the proper diagnosis and treatment
prescriptions are but components in this assessment.

The physician who is designing these patient
management simulation problems has an explicit
model for the management task. This model consists
of a section for each type of activity that may be
performed. Within each section a specific type of
information about the patient may by gathered or
some treatment measures prescribed.

Each section thus typically defines a context where a
number of alternative actions are allowed, for
instance one or more X-ray examinations may be
ordered. In the paper-and-pencil version these options
are explicitly listed, and the corresponding responses
are developed (from latent images) when an
alternative is selected.

Some options defined in the context of a
management section are not pure information
gathering or simple treatment ordinations, but rather
decisions to proceed to another section for continued
work. These items are usually listed separately to be
considered when the activity within the section is
completed. Such branching to a new section may also
be forced by explicit instructions in the response
associated with an item. Figure 1 shows a simplified
example of such a section in a (paper-and-pencil)
PMP.

Section D. Physical examination.
Choose as many items as you think are indicated.

1. Abdomen.
2. Blood pressure.

3. General appearance.
4. .

After collecting this information, select from the
list below what further action you wish to take.

Choose only one!

Take detailed history.

Order chemical investigations.
Order X-ray examination.
Give emergency treatment.
Admit the patient to the ward.

N

Figure 1. Example of a PMP section.

2.1 Computerizing simulations.

Given this kind of simulation task, what would we
expect a good computerized support system to look
like? It is obvious that the paper-and-pencil version
of a PMP is programmable in a rather
straight-forward way, especially if a CAI language
such as e.g. TUTOR <3> is used. However writing a
conventional - program does not only, usually, mean
tedious repetitions of similar code sequences, but
also demands an intermediary programmer or at least
a physician with a certain degree of computer
proficiency. ‘

It would be better if we could use a specification
language, where details of run-time control are left
out as far as possible. Still such a language is a
formal 'programming" language that has to be
learned and correctly mastered. Making such a
language small enough to be easily comprehended
means either that flexibility or power of expression
is lost.

Our solution to this problem is to implement an
interactive programming environment specially
designed for development of PMP simulation
programs. In order to support a physician, who is
prepared to use an on-line terminal, it is essential
that the concepts and structures used in the system
be as close as possible to the mental model of the
PMP designer. Another important aspect is the
dialogue facility used for interactions between the
physician and the system. Basically there is a choice
between some kind of command language and a
guided dialogue, where the user is prompted for
input. In the former case the user controls the
actions of the system by issuing various commands.
In the latter case a strict script for the dialogue is
programmed where the user only has to supply
missing information when prompted by the system. In
practice a certain mix of these extremes |is
preferable, depending on the characteristics of the
application situation.

330 J. Elfstrom, et al.

To create computerized patient
simulation problems we thus need:

management

1. a general model framework for the patient
management task.

2. a formal specification language, implemented
€.g. as an interactive command language and a
set of supporting utility procedures, adapted to
this model framework.

3. a data base facility where the description of a
simulated patient and the corresponding
management task is stored.

4. a script for the dialogue between the student
and the program, complete with screen layout
descriptions etc.

MEDICS (Medical EDucation with Interactive
Computerized Simulations) is a prototype software
system, specialized for the PMP application. In the
next section we will describe the main features of
PMP representation and construction tools, as
realized in the MEDICS system.

3. PROGRAM ORGANIZATION.
3.1 The structure of a PMP "program".

A rewarding strategy to gain insight into the nature
of the program organization problem is to use design
iteration. In our case this meant that simulation
problems were first implemented using conventional
programming techniques. The resulting programs
were then analyzed and experiences from their usage
were collected. Building upon this material a
generalized design was formulated as a foundation
for a second generation implementation.

In the first generation design, each management
section had its own procedural code. It turned out
however that this code could be classified according
to basically two independent aspects. We prefer to
name these aspects the execution type and the
management type of the section respectively.

These concepts are cornerstones in our current
approach. The management type is used as a
declaration of what kind of activity is modelled in
the section. Thereby application dependency is
introduced as an indication of which default
structures and data should be chosen if not explicitly
stated by the user. For instance, if the management
type is declared as "laboratory tests", a section with
standard screen layouts and laboratory test data for
a normal patient is generated. Of course, the
contents of the section may be completely changed
subsequently using editing commands.

While the management type labels the semantics of
data stored within a PMP section, it still remains to
declare how the actual execution of the simulation,
using this data, is to be performed. Thus the
execution type defines how control is executed at
run-time. Presently, execution type is primarily used
to define whether management options should be
selected from explicitly displayed menus or suggested

in a free text format, whether a section is to be
executed as a tree structure of subsections, e.g.
depending on space limits of the screen when menus
are used etc.

Ideally the dialogue mode may be changed simply by
assigning a new execution type to a given section,
although in practice some extra data or structures
are often needed. The concept of execution type
facilitates introduction of more elaborate simulation
models with a minimal demand for reprogramming of
existing cases. It is also very useful for experimental
studies, e.g. in order to estimate the influence of
technical matters upon the perforfnance of the
students, by letting different student groups run the
same PMP with different versions of the dialogue.

We have tried as far as possible to store the
specification of PMPs as structured data in a PMP
database. Procedural definitions of how control is to
be executed are then reduced to small program
modules, typically a few pages of code, acting as
standard interpreters of the data structures.
Extending the simulation model may be done by a)
rewriting an interpreter, b) writing a new interpreter
and assigning a new execution type, or ¢) attaching
executable program code instead of constant text
responses to items available within the section. We
expect alternatives b and ¢ to be the standard
methods in continued use of the system, while
alternative a has been used extensively in the
iterations during development of the MEDICS
prototype.

This program organization method provides a basis
both for evolution of the simulation model and for
successive implementation of various utilities, e.g.
for editing, testing and documenting the PMPs.
Before we proceed to a short description of this
programming environment, we will conclude with a
few examples elucidating the extensibility gained by
separating control and the simulation model.

At a rather late stage the idea was introduced that
it would be interesting to interrogate the students
regarding their current diagnostic hypotheses during
the simulation. An interpreter submodule,
implementing the desired interaction with the
student, was easily written and connected to the
existing standard interpreters. Then any PMP
previously implemented, could be modified to
perform this dialogue variant by a simple update of
an attribute for each section where an hypothesis
should be articulated. The same strategy was used,
when the menu selection technique originally used
was to be replaced by prompting without clues, e.g.
in the laboratory test section.

Another example concerns a feedback system, that
was implemented in order to help the students to
evaluate their performance. One component of this
system is the option to reenter management sections
afterwards. Then special variants of the section
interpreters are used, which display the options and
their associated score, with an asterisk marking
those items previously chosen by the student.

A customized programming environment for patient management simulations 331

3.2 The programming environment.

From the PMP designer’s point of view, MEDICS
appears as an interactive environment, where
simulation problems are developed, tested, refined
and executed. The different services of the system
are invoked from the top level on a command issuing
basis, but the user may at any time choose to be
guided by the system instead, which means that e.g.
valid options are displayed and explained.

The following classes of facilities are available at
the top level of the MEDICS system:

1. Invocation of subsystems for creation of new
simulation problems, data entry of elementary
medical items, rearranging of problem
structure, test execution of problems etc.

2. Editing of contents and layouts for sections in a
simulation problem. This is usually done directly
during test execution and the effects of editing
commands are immediately visible to the
problem designer.

3. Utility programs, e.g. for production of
formatted listings of the database, consistency
control, scoring support, print-out of booklet
versions of computerized PMPs etc.

4. General declarations adapting the system to the
needs and skills of the present user, such as
terminal characteristics, degree of dialogue
verbosity etc.

5. Dialogue control commands for reviewing
previous interactions, back-up with updates
nullified, resuming after back-up, screen
refreshing etc.

We feel that the "undo" facility supplied by the
possibility to back-up in the dialogue, having the
PMP database restored to its previous appearance, is
of utmost importance for a casual user of the
system, since a trial-and-error approach is
encouraged with limited risk of disastrous mistakes.
Unexperienced users are further supported by the
availability of guided prompting as a supplement to
parameterized commands.

3.3 Entering new PMPs.

There are basically two modes of entering new
simulation problems into the MEDICS system. One
way is to start with a sequential input of the
medical items relevant for the patient at hand. Then
follows screen layout decisions and procedural
additions for specific parts of a problem if they cant
be accommodated within the standard conceptual
framework., Final adjustments and refinements are
done during test execution of the problem. Notice
that these subtasks corresponds to demand for typing
skills, computer programming expertise and medical
insights respectively. Thus a division of labour may
be made, although our experience is that the
responsible physician very well can perform all three
steps himself.

As an alternative, we have implemented a more

elaborate system, designed to support the physician
who is prepared to use the system directly as an aid
for the PMP construction process. Here parametric
specifications for the simulation problem are entered
initially, followed by editing of a generated standard
problem. In fact we feel that this top-down
specification method is a very advantageous way to
create new PMPs. Notice that the quality of a
simulation as described here is increased the more
management alternatives and overall information are
available. Since however most of the information is
irrelevant and seldom asked for, standard or
randomly generated values may be used for many
items with little loss in overall quality.

The initial specification of problem characteristics
may bé more or less extensive. Presently a relatively
detailed, basically system guided, dialogue is used
where overall structure, management and execution
types for sections, standard or specific medical items
etc. are chosen. It would also be possible to use the
principle of ‘'"editing the healthy patient", which
means that starting from a simulation problem with
perfectly normal clinical conditions, personal
characteristics and abnormal conditions are
successively introduced until the desired case is
reached.

Whichever mode is chosen for construction of
simulation problems, it is essential that after
typically a few hours work at the terminal, a new
problem may be run and tested. Notice also that
each section is executable as soon as it has been
declared and some items defined. We believe that it
is most important for a good final result that the
first version of the resulting program is runnable as
early as possible and that subsequent additions and
refinements are done with powerful computer support
during test run of the system.

3.4 Implementation details.

The MEDICS system has been implemented in Lisp
1.6 on DEC System-10, using a set of program
packages supporting dialogue management, file
management, structure editing etc. <6>. Lisp is an
interpretative language, with some features which
makes it an excellent vehicle for experimental
implementation of special-purpose language
environments. Program-data equivalence facilitates a
program organization with procedural code and
parametric data structures intermixed as dictated by
the convenience of the user. The availability of list
structuring primitives and uniquely named property
list carriers, atoms, makes implementation of
dynamically extendible data structures easy. The
price to be paid for this flexibility mainly concerns
space consumption rather than execution time, since
I/O activities typically dominate time performance in
the kind of highly interactive applications treated
here. For a general introduction to Lisp principles,
see <10>.

The Lisp system contains a core-resident database
for management of structured data during execution.
Unfortunately there is no shared external database
facility available for Lisp and we use the ordinary
file management system for permanent saving of
PMP sections in files. These files are loaded into the

332 J. Elfstrom, et al.

address space of Lisp when referenced.

In the prototype system no real effort has been made
to optimize the finished PMPs. However we use a
special environment for students” executions.
Interpreters and other programs are transferred to
this environment from the MEDICS system, if
needed. One reason for this division is to reduce the
core .space needed, which is the critical resource in
our system. Another reason is the desire to have a

pilot study of the possibilities to translate or rewrite

the simulation monitors to another run-time languge
environment, having a suitable representation of data
for a specific PMP generated from MEDICS.

4. SUMMARY AND EXPERIENCES.

A central concept in our approach is the
representation of ‘a PMP simulation problem as a
data structure rather than as a program text. This
means that programming is in some sense reduced to
- a database . editing problem. By supporting domain
specific concepts, such as e.g. medical item, decision
item, treatment section etc., and giving immediate
feedback of editing operations as far as possible, the
MEDICS syétem can be. used with only -a minor
. introduction to -Computer specific aspects of PMP
constructlon :

In the ch01ce between a concentration upon author
support or implefmentation of elaborate simulation
models, we have assigned a high priority to the
former task. However a well-defined strategy for
extension of ‘the ‘simulation capabilities is part of our
approach, due to the separation of the -description of
the patient and the management task on one hand
and the procedural interpreters executing a
simulation on the other.

.About twenty PMPs' have been constructed and made
available to the 'students during the successive
development of -the MEDICS system. This has
resulted in-a prolific interaction between practical
~ experiences and system design decisions, although a
considerable cost in terms of resources for backward
compatibility has to be paid when this approach to
system development is - used. Some preliminary
experiences of using ‘the system are reported in <1>.

As an indication of the achieved degree of
acceptance of MEDICS as a construction aid for PMP
development, it may be mentioned that the system

has also been regularly used to produce the text. =
booklets ., used in surgery ~examination at our

university. Then PMPs are first entered by the

responsible physician as ordinary computerized :
simulations and edited if necessary. Finally a special .. .

utility program is used to print the stored

information in the format used for paper-and-pencil o o

: 51mulat10ns. :

- ACKNOWLEDGEMENT:

This work was supportedv by the Swedish ‘Board for
,Techmcal ‘Development under contracts 77-7535,
7855269, 79-4958.. - .. ‘ IR e

Fooe

REFERENCES:

L

Eifstrom, J., Gillquist, J., Holmgren, H. and
Higglund, 8., Experience with a System for
Training Medical Students in Patient
Management. Proc. of the 3rd int. conference
of EARDHE, Klagenfurt (1979).

Friedman, R.B., Korst, D.R., Schultz, [V,
Beatty, E. and Entine, 8., Experience with the

" ~"Simulated Patient-Physician Encounter. J.

10.

Med. Educ., 53, pp 825 - 830, (1978).

Ghesquiere,], Davis, C. and Thompson, C,

Introduction to TUTOR. Computer-based
Education Research Laboratory, University of
Illinois (1975).

Harless, W.G., Drennon, G.G., Marxer;].J.,
Root, J.A., Wilson, LL. and Miller, G.E., CASE
- A Natural Language Computer Model
Computers in Biology and Medicine, 3, pp.227 -
246 (1973).

Harless, W.G., Drennom, G.G., Marx,ei}z J.J
Root, J.A., Wilson, LL. and Miller, G.E,

.GENESYS - A Generating System for the

CASE Natural Language model. Computers in
Biology and Medicine, 3, pp 247 - 268 (1973). .

Higglund, S., An Application of Lisp as an
Implementation . Language for the Domain
Expert’s Programming Environment.” Report
LiTH-MAT-R-79-39, Informatics Laboratory,
Link&ping University, Sweden (1979).

McGuire, Ch., Solomon, L.M. and Bashook,
P.G., Handbook of written Simulations.
Center for Educational Development, University
of Chicago, Illinois (1972).

Nelson, C.D., Sajid, A.W. and Solomon, LW,
Diagnose: A Medical Computer Game Utilizing
Deductive Reasoning. Med. Educ., 10, pp 55
- 58, (1979).

Rimoidi, H.J.A, The test of Diagnostic
Skills. J. Med. Educ., 36, pp 73 - 79, (1961).

Sandewall, E.,‘ Programming in an Interactive
Environment: the Lisp Experience. ACM
Comp. Surveys, vol. 10, no 1, pp 35 -71 (1978).

Taylor, W.C, Grace, M., Taylor, TR,
Fincham, SM. and Skakun, EN. The Use of
Computerized Patiént Management Problems in
a Certifying Examination. J. Med. Educ, 51,
pp 179 - 182, ‘(1976)

