Provisions for flexibility in the Linkoping office information

system (LOIS)*

by ERIK SANDEWALL, GORAN HEKTOR. ANDERS STROM, CLAES STROMBERG.
OLA STROMFORS, HENRIK SORENSEN and JAAK URMI

Linkoping University
Linkoping, Sweden

1. CHARACTERISTIC PROPERTIES OF THE LOIS
SYSTEM

The Linkoping Office Information System (LOIS) is an in-
tegrated system of facilities for text preparation. data base
management, communication by computer. and miscella-
neous other services. It is an experimental research system.
which is used by researchers and secretaries in our own re-
search group.

A significant consideration in the design of this system
was how to provide very large flexibility. so that each user
could have his or her customized variant of the system.
without imposing an unrealistic burden of programming on
either the users or a system group. Two complementary
ways were recognized for achieving that flexibility:

>Adaptation by the user: the system could include novel
facilities which, like modelling clay. allow the user to
adapt them to fit his/her needs:

>Application development tools: there could be tools
which enable a trained person to tailor facilities very
easily, for individual users or groups of users.

Such tools should be easy to use. so that only moderate
training is necessary, but there is no requirement that every
user should be able to use them.

Both of these approaches have their merit, and both have
been used in the LOIS system. The advantage of adaptation
by the user should be clear: and application development
tools are appropriate not only for harder tasks. but also for
facilities which involve several users, i.e., what we shall call
information-flow facilities below.

Another aspect of flexibility was that the standard services
in the system should be easily interfaceable, so that they can
be run together. This is a demand on the programming tech-
niques that are used in building the LOIS system.

A second major purpose in building the system has been
to experiment with unconventional terminal equipment. In
particular, we have set up a low-cost device for output using

* This research has been sponsored by the Swedish Board of Technical De-
velopment (STU) under contracts Dnr 77-4420. 77-4380b. and 78-4165.

569

arbitrary fonts (boldface. italic. larger fonts for headlines.
foreign alphabets. etc.) using a high-resolution electrostatic
plotter. and built software for supporting that medium.

The following sections will describe these various aspects
of the system in more detail. Thus the intended purpose of
the paper is not to discuss the general-purpose facilities in
office information systems. A number of significant and well-
known system development eftorts (for example at Stanford
Research Institute. IBM Research Centers. and the Univer-
sity of Pennsylvania (Ref. 1)) have set the standard for such
systems.

Before we proceed. we should however give a short sum-
mary of the services in the system. as seen from the indi-
vidual user. LOIS recognizes three major ways of structuring
information:

text, i.e. ordinary. continuous text in natural language
(English. Swedish. etc.):

data, where information is organized as a table and/or as
a form containing different fields or slots which may con-
tain items of information:

notes, which is an intermediate form between text and
data. A note is a short text which is associated with ad-
ditioral information organized as a data record. In prac-
tical usage. a note may be a message sent from one user
to one or more other users. containing the text of the
message plus information about sender. receiver(s). date.
topic. etc. In another usage. the note may be one person’s
notes about the contents of a book. with associated in-
formation about author. title. and classification.

From another perspective. users will recognize some fa-
cilities as local, i.e.. only one user is involved when they are
used, for example for personal data bases, and other facilities
which are shared, i.e.. they involve the user in communi-
cation with other users, for example computer mail.

2. TEXT PROCESSING FACILITIES FOR FONTS

The LOIS system uses the common strategy of having
general-purpose text editors and separate formatting (*‘run-

570 National Computer Conference, 1980

off’") programs. Besides supporting some conventional out-
put media such as a Diablo printer, it also has a font printout
system based on a Versatec electrostatic plotter. This system
is able to produce output that approximates ordinary print-
ing. with facilities for several fonts, such as italic font (cur-
sive). larger and bold-face letters for major headings. etc.
Different characters in a font may have different widths. It
is possible to define fonts for other alphabets or for special
signs. and use them freely mixed with the regular text. In
particular, mathematical text as well as many kinds of figures
may be produced in this fashion.

However, the graphic quality of this system is not fully
commensurate with regular printing using typesetting. In
particular, italic letters often appear a little unsteady if you
look at them closely. We still believe that this quality is suf-
ficient for many purposes. When compared to a photo-
typesetter, this equipment has the disadvantage of lower
graphic quality. but also several advantages:

—the system is cheap enough that you can afford to have
it within easy reach of each user:

—fonts may be created or modified at the site:

—the same device may also be used for vector plotting
and grey-scale pictures (facsimile).

2. Text processing facilities for fonts.

The LOIS system uses the common stratezv of having general-purpose text
editors and separate formattiny t"runoff™ prozrams Besides supporting s

conventionil output media such as 1 Dinblo r.at also has a font printout
system based on a Versatec electrostatic piotter This svstem 1s able to produze
output that approximates ordinarv printinz. with faciiities for severai - <t
as ttalic font (cursive:, larger and bold-face letters for major headings. etc
Different characters in 2 font may have different width [t 1s pcssible to define

fonts for other alphabets or for special signs, and use them freely mixed with
the regular text. In particular, mathematical text as weil as many xinds of
figures may be produced in this fashion

Figure 1—Sample printout from the Font Svstem.

Technically, this system consists of a domestic LYS-16
16-bit small computer (soon to be replaced by an LSI-11
computer) combined with a Versatec graphic printer. The
Versatec is an electrostatic raster printer with a resolution
of 200 points per inch (8 points per millimeter). The LYS-16
contains software which will accept bit-pattern definitions
of the characters in one or more fonts. and print a given file
using these bit patterns for each character. The combined
LYS-16 plus Versatec system may be viewed as an “‘intel-
ligent printer.”’

The font system has been modeled on a similar system at
the MIT and Stanford Artificial Intelligence Laboratories.
which however use a Xerox Graphic Printer (XGP) instead
of the Versatec printer. The resolution is almost exactly the
same. On comparison, our system seems to give less con-
trast, but also less noise, and prints at a lower speed (prob-
ably mostly due to a slower processor).

Formatting

The formatting for the font printout system is done using
CRAWL, a locally built formatter which besides the support

of fonts, also has a number of other non-standard facilities:

>automatic hyphenation (more necessary for Swedish
text than for English text since Swedish makes frequent
use of long, composite words—Ilike German);

>the formatter co-exists with a Lisp programming system,
which means that commands in the source text can call
arbitrary Lisp functions for specific purposes. This gives
the same advantages as having a macro facility in the
formatter (as is used in. e.g., the Unix system, Ref. 2),
but with the significant difference that a full program-
ming language provides services such as data base ac-
cess, availability of a program library, and easy interface
with other programs, which a macro system which only
serves the formatter cannot be expected to provide.

A text formatter embedded in the programming language
SAIL at the Stanford Artificial Intelligence Laboratory, of-
fers similar advantages.

Preparation of fonts

In the font printout system, each letter in each font is
defined by a pattern of many small points. An ordinary small
letter in a common font is about 15 points high, for example.
The definitions of the point patterns of the characters in all
fonts are stored on the central DEC-20 computer. and sent
to the font printout device when needed.

The work of building up new fonts may require a consid-
erable effort. Through the generosity of the M.I.T. A. L.
group, we have a copy of their fairly large font library, which
could be used after a routine shift of representation. How-
ever. we also have a need to modify old fonts (for example
to create the Swedish letters with diacritics). and to create
entirely new fonts for specific purposes.

Two tools have been built for these purposes. a font editor
and a font generator.

The font editor

The font editor is a tool for defining and changing the
point-by-point definition of fonts. The font editor is in itself
a program, but it requires a specialized terminal, which has
been built by the Electrical Engineering department at our
university. The system allows the user to edit one character
at a time, and to view the character in two versions on the
terminal's display screen. namely both a blown-up version
where each point is clearly discernible. and a realistic version
which looks like and gives the same impression as the char-
acter will have on paper (only magnified by about a factor
of two). The editor allows the user to add and delete indi-
vidual points or rows of points by hitting keys on the key-
board, and to see the effects of each change immediately.

The font editor has been very useful. both for modifying
MIT fonts to contain Swedish characters, and for building
up fonts of, e.g., mathematical symbols.

Provisions for Flexibility in LOIS 571

The font generator

Although the font editor greatly facilitates the task of
building up a font, doing so still requires a lot of work. Some-
times it is routine work, namely if letters of the same general
shape are desired in several different versions, with different
height, different boldness. roman or italic. with or without
serif. etc. For such situations, we have developed a font
generator, which generates fonts automatically from given
specifications.

The font generating program takes two kinds of inputs.
One input is the desired specification for the new font, i.e..
values for the desired height of big and small letters, a mea-
sure of the'desired boldness, etc. This input is specified anew
each time the program is run.

The other input consists of structural descriptions of the
characters in an alphabet, saying. e.g.. that a capital “'L"" is
a vertical line with a shorter horizontal line extending to the
right from the base of the vertical line. These descriptions
are expressed in a formal language. and are semi-constant.
in the sense that the description of the Latin alphabet can
be used repeatedly for different dimensions, but also if some
other symbol set is desired (such as mathematical symbols)
it is well defined how to write the structural descriptions of
them also.

A program for the same purpose written by Knuth at Stan-
ford uses mathematical functions (splines) to describe the
curvature of the letters. Our system builds up letters from
pre-defined segments, which can be designed by a combi-
nation of manual design and automatic generation. This is
particularly useful for bit-matrix output devices whose res-
olution is almost discernible for the eye, since the effects
of direct discretization of continuous functions may then be
disturbing.

In addition, there are a number of smaller service pro-
grams for operating on fonts, such as a program for rotating
the characters in a font by 90 degrees. and a program for
rotating each page in a text file correspondingly.

3. STRUCTURED DATA FACILITIES

A significant part of the routines in an office environment
deal with structured data rather than free text. The struc-
tured data facilities in the LOIS system, which aim to sup-
port this need, are organized around a screen-oriented data
editor called IFORM. This system allows the user to view
structured data on his display screen, organized into forms,
i.e., fixed layouts containing certain fixed text fields and other
fields, data fields, which can be filled with the desired data.
Just like a text editor is used both for entering text and for
changing existing texts, the IFORM data editor is used both
for entering, viewing, and changing structured data.

Typical uses of the data editor in an office environment
may be to maintain an address register, a register of reports
and memoranda, a register of allocation of offices, or a reg-
ister of equipment used in the group.

The basic idea in the IFORM system is of course available
also in some commercial systems on the market, but IFORM

contains some facilities which are not usually found, in par-
ticular:

>programmability: each data field may be associated with
procedures in a number of different **slots’* for defining
specialized rules about how to interpret input into a field,
check restrictions on the proposed input, print out the
contents of a field on the screen, obtain consequences
(side-effects) from new values, etc.

>tables within a form: a form may contain a table which
consists of a number of occurrences of a sub-record.
This is useful for example when the form for a person
contains a table of the trips he has made during the year,
indicating the date, purpose, and destination of each,
displayed with one line for each trip and one column for
each fi Single-key editor commands allow manipu-
lation of these sub-records. e.g., insertion and deletion
of sub-records in the sequence.

To support this data handling facility. there are a number
of other tools. in particular:

Data base with exchangeable uccess methods

The forms supported by IFORM are a standard interface
for the user. through which he or she can access a number
of different data bases, potentially even on several com-
puters of different kinds. (This is in accordance with the
proposals of the CODASYL End User Facility task group.
and this idea has been articulated and extended within our
cjllaboratory by Erland Jungert). IFORM is therefore orga-
nized so that access to the data base goes through a number
of access routines associated with an access method. Ad-
ditional access methods may relatively easily be added.

The ability to exchange access methods for the data base
is in fact useful for two reasons:

>for interfacing IFORM to a new data base:

>for using one access method during development of an
application and in its prototype stage. and another ac-
cess method during production use of the same system.

The layout editor

IFORM uses a form description, i.e.. a structure which
describes the desired layout on the screen: which fields are
used, what are their X-Y coordinates. etc. The lavout editor
is an interactive tool for building up and modifying such
forms.

4. NOTES AND COMMUNICATION

The third information structure in the LOIS system. notes.
are objects which consist of a short segment of free text,
combined with a number of properties, each of which is a
keyword and a corresponding value. The following is an

572 National Computer Conference. 1980

example of a note which a user may have during or right
after a telephone call:

TALKWITH: Larsson

DATE: 1978-10-24

TOPIC: Holiday season, Vacations. Production

TEXT: Unusually many people are using remaining vacation
days for extra vacation around Christmas. Production of
bicycle chains will be particularly delayed.

The following is an example of a note which describes a
computer terminal used in a research group:

TYPE: Hackmatic 1521

INVENTORY-NUMBER: 410

LOCATION: NB-156

CONNECTED-TO: DEC-20. PDP-11C

TEXT: This unit has required repeated service with various
faults and seems to be flaky. Erasure of one line at a time
does not work and seems to be permanently unfixable.

The POST subsystem in LOIS maintains for each user a
database of notes. and enables the user to retrieve notes with
given properties. to add new notes. to modify the properties
of existing notes. and to call an ordinary text editor for mod-
ifying the textual content of a note. This information struc-
ture can be utilized for a number of different purposes. as
suggested by the examples.

The POST system should really be viewed as a data base
system which is able to also contain textual objects. It al-
ready provides non-trivial search facilities in this data base.
and interfaces to other data base handling facilities. such as
IFORM in the LOIS system, seems straightforward.

The present POST system encourages the texts to be
short, but it is a straightforward extension to also allow
notes whose text parts are conventional. larger text files for
manuscripts. A system like POST might then be used as a
more powerful substitute for the conventional file directory,
and would allow the user to store arbitrary information about
his files in the POST data base. This design would also give
the user full data base capabilities for administering his
“‘directory.”

One particular use of notes is for communication between
users, where each message is well expressed as a note. with
properties indicating the names of sender(s) and receiver(s) of
the message. the date the message was sent. the topic and
other classification of the message. etc.. and where the es-
sential content of the message is conveyed in the free-text
part, at least for simple messages. The POST system includes
a message-passing facility, so that each user can send and
receive messages, and the general-purpose data base facil-
ities of POST can be used for administering incoming and
outgoing mail.

Notice that the properties associated with the note are not
only used for *‘system’’ purposes in the mail system. such as
administrating the names of sender and receiver. They are
also used by the sender and the receiver for representing
information which classifies or otherwise describes the con-

tent, purpose, or use of the message. In particular, the re-
ceiver may change the values of properties, or add new prop-
erties, to messages that he. has received. Also, it is
sometimes very useful to represent some or all of the con-
tents of the transferred message as values of properties,
rather than in the free-text section.

One example of the use of such structured messages is
the following: a message about a seminar may represent the
name of the lecturer, the topic, the date, time, and location
as separate properties. This greatly facilitates interfacing the
message sending system to other facilities, such as a com-
puter based calendar, or a system for generating summaries
of recent activities.

The idea to base a computer mail facility on a data base
handler for information organized as notes, appears to be a
Very powe; yne. It provides a good basis for other com-
municative facilities, which may be more structured than
simple mail sending, for example a computer conferencing
system (which we have programmed but not yet put in op-
eration), or for computer based decision making.

As the name indicates. the POST system started as a mail
system, and its usefulness for storing one user's private in-
formation was recognized and exploited only gradually. The
ability to organize one’s personal information as a large col-
lection of notes. and to have a full data base facility for
keeping the notes organized. are only starting to be ex-
ploited. and we believe that several additional uses of this
structure will be found as the system is used.

5. APPLICATION DEVELOPMENT TOOLS FOR
INFORMATION-FLOW FACILITIES

The office environment contains many routines where a
“packet’” of information circulates between several **stations’’.
For example. a purchase order is initiated by one person,
and passes stations for approval. for selecting the vendor,
for receiving and checking the goods. and for paying the bill.
Each such application can be characterized as a flow of in-
formation packets. which follow certain paths: which some-
times are delayed awaiting some external event: which ac-
cumulate and give off information during their path through
the organization: and which require human intervention at
many of the stations.

As seen from the human user. these information flows are
used for routine communication within the organization. In
paper-based communication. one often prefers to use forms
for this purpose. and in a computer-based system one would
also desire fixed layouts (forms) rather than the free format
of computer mail. For information flow with very high vol-
ume, for example in banks. this has of course been realized
since a long time, but we are concerned with tools for low-
volume information flow which must be supported locally.

Each information-flow application will involve several
users, and symmetrically, one user will often be involved
with several different information flows. In a hospital for
example, the head nurse of a ward will be involved with at

Provisions for Flexibility in LOIS 573

least the following flows:

>patient registers, undergoes treatment, and leaves:

>"‘purchase’’ orders for laboratory analyses for patients
in the ward;

>scheduling of working hours for different categories of
personel in the ward;

and so forth. The entire office information system should
therefore have a matrix structure with “*users’’ in one dimen-
sion and *‘information-flow applications’’ in the other.

There is a significant structural difference between de-
velopment time and usage time, then. When the system is
used, each user wants to have his system as an entity. and
to be able to switch easily between his part of each of the
applications. In particular, he wants to be able to transfer
data easily between the messages in different information
flows. But when an application is developed, it is essential
that all the work stations for that application are developed
together.

Such information-flow applications are supported in the
LOIS system by a combination of two measures. First. the
software in the usage-time systems that are run by the in-
dividual users, have a well-defined structure so that addi-
tional facilities can be inserted automatically. Second. the
LOIS system includes a modelling language and an appli-
cation development tool which allow its user to build a de-
scription of an information-flow application in problem-ori-
ented terms, and generate the appropriate contributions to
the relevant usage-time system automatically.

The description of an application consists of three parts:

>a description of the information flow as such, showing
the successive operations (initialization, additional data
entry, delay, copying, etc.) which happen along the way:

>arecord declaration which describes the structure of the
information packets that travel in the flow:

>a form description which defines the appearance of this
record on screens and paper. This description is entered
and maintained using the IFORM sub-system that was
described above.

In addition, there is one master description of the organi-
zational structure, which is used as a common reference by
all information-flow models, and which relates them to the
usage-time systems.

This application development tool is somewhat interesting
from the point of view of programming methodology: usually
a programming system handles entities (**programs’’) which
contain the specification, or a part of the specification. for
one executing process in the computer system. In our case.
the application development system contains specifications
for a set of coordinated processes, which are to be run by
different users and often at different times. and which are
all generated from the application description.

A more detailed description of this system has been given
in Ref. 3. A system with some similarities has been developed
by Hammer et al. (Ref. 4).

6. DIRECTORY SERVICES

Many parts of the LOIS system require that the system
maintains directory information, i.e., information about in-
formation stored in the system. Examples of directory in-
formation are:

>catalogues of the text files and data files maintained in
the system:

>classification information for notes:

>structure descriptions (**declarations’’) for the data files
maintained using [IFORM. including information about
the intended content of each data field.

In addition there is directory information which is essen-
tial for the |)er functioning of the system, but which is
or at least should be invisible to the user, such as:

>information about the different versions of a text file
which appear in the course of successive operations
(formatting. transcription to another alphabet. transfor-
mation to the printout conventions of a particular output
device. etc.):

>information about the access method used for a data file
maintained by IFORM's data facility.

One basic design decision in LOIS has been that all such
directory information should be maintained in the data base
of the system, so that it can be accessed and used by the
standard software facilities in the system. and by a gradually
growing set of application programs. At present the following
services are provided:

>classification of data entities in an application-oriented
hierarchical system. so that entities may be classified.
e.g.. with respect to what part of the owner's responsi-
bilities they are used for. Such a structure is necessary
when the number of text files and data files in the system
increases: simple mnemonic naming of each file individ-
ually is not sufficient for structuring this body of infor-
mation;

>documentation of program modules, user systems, etc.;

>automatically performing certain routine operations on
text files. such as formatting and similar transformations
before printout. This facility is viewed as a first step
toward a system which “‘knows'' about what routine
data processing is needed in the application environ-
ment. and performs the appropriate operations at ap-
propriate times. There are many similarities between this
concept, and the modelling of information flow berween
users described in the previous section.

7. ARCHITECTURAL CONSIDERATIONS FOR
FLEXIBILITY

New users are introduced to the LOIS system by learning
about the basic facilities, for operating on texts. structured

574 National Computer Conference, 1980

data, and notes. But these sub-systems may be modified and
recombined in many ways, and we expect that such mod-
ifications shall be done each time the system is used in a
new environment or for a new class of tasks. It is not in-
tended that every user should be able to modify the system,
but it is intended that modifications can be done very close
to the environment where they are going to be used. and
preferably by one user of the system.

This flexibility of the system has been exercised to some
extent within our environment. although additional experi-
ments remain to be done. Several programming techniques
are used to achieve flexibility and adaptability:

Use of a residential programming svstem

A residential programming system can be viewed as a data
base system which is able to contain programs in its data
base, and which contains an interpreter for programs that
are stored there. Such systems provide unusual possibilities
for program structuring. since programs and data can be in-
tegrated. This is useful for example for all programs that
decode a repertoire of commands, and take appropriate ac-
tion for each of the commands. There are many examples
of such programs in office applications, for example editors
and formatting programs for free text.

Another advantage of residential programming systems is
that programs can be gradually modified and extended. even
during an interactive session. This makes it easier to main-
tain a system as a collection of modules. which are loaded
when needed.

Rich parameter structures

Several of the programs are directed by parameters which
are represented as LISP list structures, which allows a rich
and easily manipulated parameter language. Examples of
use:

>the IFORM data editor is parameterized with respect to
layouts. The layout description specifies the location.
content, etc., of each field. The non-trivial facilities in
IFORM, such as for supporting embedded sequences of
sub-records, depend strongly on this parameter struc-
ture;

>the character description language used by the font gen-
erator, DRAW, is an example of a rich parameter lan-
guage.

The use of a residential programming system facilitates
the use of rich parameter structures, since programs and
parameters are stored in an integrated fashion in the pro-
gramming system'’s data base.

Superroutines, i.e., programs with handles

Parameter structures are usually set up so that the param-
eters and/or the object data may contain the names of LISP

functions, which are called when the data are processed.
This technique assumes of course equivalence between pro-
grams and data. Some examples of its use are:

>the layout descriptions used by IFORM contain handles
where calls to arbitrary (LISP) functions may be in-
serted, for specifying specialized printout formats, read-
in functions, checking functions, or other aspects of the
system'’s processing:

>the POST sub-system allows messages and other notes
to have a property which names a (LISP) function which
is called when the note is processed. In this fashion it
is possible to arrange that messages are processed au-
tomatically on reception, without need for manual in-
tervention by the nominal receiver of the message. For
exampl 1ser may send out a query to a group of other
users, where each query requires the recipient to answer
a number of questions (represented as properties) and
return the questionnaire, and where the initiator may set
up a program which receives and summarizes the re-
turns.

>the CRAWL text formatter is designed so that the source
file may contain calls to arbitrary (LISP) programs,
which are executed when the call is encountered, and
which, e.g., may generate a part of the desired printout
(e.g.. may make data base access and generate a table
of structured data).

Extendible command sets

Several of the sub-systems contain specialized command
languages, either for interactive use or for use in source files
(in CRAWL). Usually they have been set up so that addi-
tional commands can be defined as LISP code in a modular
fashion. and so that definitions for additional commands may
be loaded into a sub-system even in the course of an inter-
active session. This technique makes it possible to keep the
basic system small and simple. Instead of proliferating it with
a large repertoire of special-purpose commands. the spe-
cialized commands are kept as separate modules and loaded
into the system when needed.

>the IFORM data editor may be extended with new com-
mands which are specialized for application-oriented
situations. For example. if IFORM is used to maintain
information about patients in a hospital ward. one may
have specific commands which are used when a patient
enters or leaves the ward. and which initiate the oper-
ations (such as transfer of information to and from an
archive) which are required at this event:

>the layout editor which supports IFORM may similarly
be extended with specialized commands, for example
for introducing new kinds of fields. As one example,
when the IFORM system was adapted to supporting
VIEWDATA terminals, special commands were defined
for inserting color shifts into the layout description.

Provisions for Flexibility in LOIS 575

Message passing between programming svstems

For each user, or group of users with similar needs, there
is a version of the residential programming system which has
been loaded with the programs. parameter structures, and
other data which that user needs. Orthogonally to this set
of user systems, there is also a set of development systems,
namely one for each information-flow application. and one
for each general facility (such as the formatter). The con-
tributions which are made from development systems to user
systems are transferred by a kind of message passing. The
“'systems’’ in this sense are therefore viewed as independent
entities with local autonomy.

Combinability

Another characteristic property of the system is that dif-
ferent modules can be made to interface with each other.
using either ‘‘subroutine’ calls or data transfer as the in-
terface. This property of the system is made possible by a
combination of two circumstances, namely (1) the flexibility
properties which have just been described, and (2) the **call-
ability’” properties through all levels of software in the sys-
tem we are using. This latter property is based on the TOPS-
20 operating system, which for example makes it easy to let
one process call another process recursively, including the
operating system; but it is also due to the Interlisp system.
which forwards these properties of the operating system to
the programmer on the Lisp level.

The callability property has of course also been followed
up within the LOIS system itself, where various sub-systems
have been set up so that they can be operated both by direct
user commands during an interaction, and as subroutines
which are called from other programs.

Some examples of this combinability property in LOIS
are:

>the note handling system may call the text editors re-
cursively, for operating on the textual content of a note.
The same applies for the data editor:

>the data editor has been equipped with a command which
generates messages automatically using information in
the data base, and calls POST for having them sent out
to recipients. This is useful, e.g., for sending out re-
minders automatically according to criteria in the data
base, such as a reminder to return a borrowed book when
the time is out;

>the text formatter CRAWL goes into a dialogue with the
user when a syntax error in the input file is detected,
allows the user to correct the error, and then proceeds
through the same source file with no need to start over
from the beginning of the file;

>through the ability to define reception procedures for
messages, it becomes possible to arrange that the con-
tents of structured, incoming messages are gradually
accumulated to the data base, where they can later be
inspected using POST or IFORM

Additional services

A few other programs have been written besides the basic
facilities and their derivatives, in particular:

>a personal calendar, with facilities for displaying and
editing the current state of the calendar. and for booking
a common meeting-time for several users of the system:
>a personal agenda. i.e., a program which maintains a
structured list of assignments that the user intends to
perform, and provides support for editing this agenda.

8. IMPLEMENTATION TECHNIQUES AND
EXPE NCE

The LOIS system has throughout been intended as an ex-
perimental system, developed as a research project. The
system has been designed so that it could be used withinthe
group (for testing and for feedback on the design) but has
not been intended for wider use. We therefore assigned high
priority on the ability to modify and extend the system in
the course of the project. For these reasons. and since we
had access to a sufficiently large and powerful computer, we
made the essential design decisions to let most part of the
system operate on the DEC-20, and to write most parts of
the system using the programming system INTERLISP.
(Remaining parts have been written in assembler or Simula.)

At the same time, we also wanted to distribute some of
the functions in the systems to separate and smaller pro-
cessors. The locally built LYS-16 computer was used for this
purpose.

In this final section. some aspects of this software strategy
will be discussed.

Workspace systems vs. conventional systems

Traditional computer programs operate with one or more
files as input. similarly for output, and perhaps some inter-
action with a user. However. the INTERLISP system (like
other LISP systems. and like APL systems) are organized
so that the user will conduct an interactive session talking
to a system which maintains a workspace for the duration
of the session. This property is very significant for debugging
and general maintenance of programs. It does not have to
be used for the application situation, since one can write
LISP functions which have the traditional file-in. file-out
organization, but it is possible to use it for the application
situation as well.

In LOIS, both approaches have been used. Some pro-
grams, such as DRAW and CRAWL, are essentially file-in,
file-out, although with some possibilities for the user to ini-
tialize variables, etc., at the beginning of the session. Others,
particularly POST and IFORM. rely heavily on LISP’s work-
space structure.

As a consequence, two different methods for maintaining
structured data are both used:

576 National Computer Conference, 1980

>a block of data (for example, one or a few *‘relations.”
or assignments of a number of **properties’” to a number
of **objects’’) may be stored as text files between sessions,
and loaded into the data base when needed during a
session. If data are changed. a new text file has to be
produced. but this need only happen at the end of the
session, or occasionally during the session but then only
for reasons of backup and reliability. This method will
be called residential storage of the data base;

>alternatively, data elements (such as individual records
in a relation, or property assignments to one ““object™’)
may be stored primarily as a segmented disk file even
during the interaction session. Each data element is read
into the workspace when it is needed. and if changed,
the change is immediately performed on the disk file.
This method will be called external storage of the data
base.

Residential storage is the classical modus operandi in a
LISP environment. and is very strongly supported by the
INTERLISP system itself. which therefore is to be viewed.
among other things, as a database system in the present con-
text. External storage is sometimes advantageous. particu-
larly when relatively little processing is performed on each
data element, and when data and their updates are to be seen
simultaneously by several users.

Other useful properties of the INTERLISP system

Some other properties of the INTERLISP programming
system which were significant for the development of this
system, are:

>the very advanced support for program development
activities: administration of programs. debugging. etc.:

>the possibility to store parameter structures in the built-
in data base (within the LISP workspace) and obtain
services for the maintenance of this data base:

>systems-programming facilities. such as easy interface
to assembler code and to operating-system calls.

The major negative property of the system has been the
relatively long time required to learn it. Since the language
and the programming system is intended as a tool for the
professional programmer. its high power must be paid by a
relatively long learning time.

Performance

Since the intended purpose of the present project has been
to develop an experimental system, which could be easily
modified, but which also could be used within our group.
the question of how much emphasis we should place on per-
formance has recurred in the course of the project. Better
performance can be achieved at the cost of more work and
(often) a less transparent program. In particular, the use of
LISP for major parts of the system represents a very high

priority for ease of development and maintenance, perhaps
with a danger of slow performance.

Have we then obtained performance problems as a resuit
of this strategy? This depends on how you look at it. Like
most time-sharing systems in research environments, our
computer system is sometimes badly overloaded, and the
continued development work on parts of LOIS is not the
least of reasons. However, if one judges the response times
and general behavior of the LOIS system as seen by a user
at times when the system is reasonably loaded (i.e., not
thrashing). it seems that all major parts of the system are
sufficiently quick for their intended purpose. The parts
where response times are critical are the ones which have
been programmed in assembler. and they form a relatively
small part of the total software. The other parts, which have
been writte LISP. are characterized either by a small
amount of processing (although often of considerable com-
plexity). especially in IFORM. or by a semi-batch mode of
usage where longer execution times are tolerated especially
if advantages of flexibility are offered instead.

This point may be illustrated with some figures. The
CRAWL text formatter. entirely written in LISP. is about
ten times as slow as the RUNOFF system. written in as-
sembler. One should then remember that:

>CRAWL provides certain additional services. such as
variable-width fonts:

>no attempt has been made to optimize CRAWL. A pre-
liminary survey of what can be done indicates that there
are several simple things one can do in the innermost
loops. using short assembler routines:

>the timings were made using the regular INTERLISP
compiler: the block compiler could be used to speed it
up.

In some cases. the first version of a program turned out
to be too slow and had to be rewritten to gain speed. This
only happened for a few. small programs (such as the low-
level mail receiving program) and may to a large extent have
been due to the programmer’s short experience of LISP pro-
gramming.

Continued strategy

In summary. we believe that the chosen implementation
strategy has been a good one. Our continued strategy will
be to develop additional facilities in LISP. and gradually im-
prove the efficiency of existing facilities by a number of
measures:

>optimizing within the LISP context;

>transfer by semi-automatic means to another program-
ming language (for programs which do not need all of
LISP’s facilities):

>transfer to smaller and cheaper processors for dedicated
purposes, where CPU requirements may become less of
an issue.

Provisions for Flexibility in LOIS 577

ACKNOWLEDGMENTS

Many members of our group have helped with good ideas
and constructive critique. in particular Jim Goodwin, Erland
Jungert, John Walters, and Jerker Wilander, and Peter Fritz-
son and Dan Stromberg who also participated in the pro-
gramming.

The variable-font printout system relies on several kinds
of hardware built at the Electrical Engineering department
of our university and in the Lysator society: the LYS-16
computer, the T2 special-purpose graphic terminal used for
editing fonts, and others. In particular, we are grateful to
Olov Fahlander for building the T2 and to Robert Forchhei-
mer for a continuous interchange of ideas and information.

The project owes gratitude for the body of ideas and the
software that we have inherited from the MIT Artificial

Intelligence Laboratory. from Xerox Palo Alto Research
Center, and from Bolt, Beranek and Newman, Inc. in Cam-
bridge. Mass.

REFERENCES

I. Morgan. H. L. . Office Automation Project. Proceedings of the 1976 NCC
Conference.

2. Kernighan, B. W. et al.. Unix Time-Sharing Svstem: Document Prepa-
ration. The Bell System Technical Journal. Vol. 57. No. 6. Part 2. July-
August 1978.

3. Sandewall. E.. A Description Language and Pilot-System Executive for
Information-Transport Svstems. Proceedings of the Fifth International
Conference on Very Large Data Bases. Rio de Janeiro. 1979.

4. Hammer. M -* ~\.. A Very High Level Programming Language for Data
Processing .~ ations. Comm. of the ACM. Vol. 20. No. 11. Nov. 1977.

