A SYSTEM FOR PILOT EXECUTION AND AUTOMATIC SOFTWARE
GENERATION OF INFORMATION-TRANSPORT SYSTEMS

Author: Erik Sandewall

Affiliation: LinkSping University, Linkdping, Sweden

Abstract: A strategy and a system for computer-aided development of
data processing systems for information transporf has been developed.
Each new application is first described as a model, which '
can be executed (interpreted) by the development system, and which
then serves as a prototype for the set of programs that constitute
final system. When it has been sufficiently tested

and modified, a gradual transformation to a production system is
performed, using language-shift and partial evaluation techniques.

This paper describes the description language and the support
system for developing prototypes, and gives one example of a
concrete application for which the system has been used.

This research has been supported by the Swedish Board
of Technical Development (Dnr)

1. Outline ‘ 2

This paper describes a one part of a system for computer-aided
development of data processing systems for information transport, i.e.
systems which can be characterized as consisting of one or several
streams of tasks, where in each stream tasks are initiated in one

or a few “stations’ and then forwarded through successive stations
which perform other operations. The tasks may represent for example
patients that require hospital care, purchase orders, or grant
applications. The operations may involve interactions with a terminal
operator, accumulation into a file or proceeding along from a file

on a certain condition, or printout on an external medium.

For precision, we shall use the term “information-transport systems’
for such applications, although the term “information system” also
often suggests this kind of system. Information-transport systems
are different from (the conventional view of) data base systems
since they emphasize that information packages are MOVING and
ACTIVE: in an organization, they carry a stimulus or an order to a
person to perform a certain function, while data base systems are
large collections of knowledge which the user can ask questions
from, or add knowledge to.

Furthermore, an information-transport system usually should be viewed
as a set of cooperating programs, which can be run at different times
and/or by different users, and which perform different functions

for the common purpose.

In many cases, people in lower echelons in an enterprise (have %to)
use an information system as an information-transport system, while
people on an executive level are more interested in the data base
perspective. Thus a good information-transport system should contain
files which for its own purposes are resting-places in the data
streams, but which also are the sources for queries made from higher
levels, and summaries provided for higher levels. But it is important
to have tools which can also provide good facilities and flexible
systems for the lower echelons.

The aim of our research program is to develop a tool for design of
information-transport systems (as well as tools for certain other
types of data processing systems), with the following characteristic
properties in the tool:

- to reduce the amount of manpower required to develop a
data processing system for information transport, by providing
more sophisticated computer services to the programmer or system
designer.

- to reduce the (calendar) time that is required to develop a
system

- to increase the flexibility of systems and cut down the time
that is required to change the system in response to user’s
needs

In particular, the tool uses one common system specification as
basis for generating several programs which together constitute the
information-transport system.

In the approach taken in our research program, each system is to be
developed in three steps as follows:

Al

First stage: develop prototype

The prototype version of the intended data processing system is
developed in a highly interactive programming system, and then
gradually transformed into a production system. The prototype is

a model of the information system, which contributes to documentation
and to the flexibility of the system, but it is also a running system
which can be used for demonstrations and trial use by the final

users of the intended system. This makes it possible for users to
understand the system and propose changes to it while it is still

in a formative stage.

The prototype system is to a large extent expressed in a declarative
language, with small segments of application-dependent code
(procedures) attached to it. The system for interpreting the
prototype description is written in Interlisp (ref. 1). This
programming system can best be explained as a data base system

for a data base of moderate size, which is able to store programs
in its data base, and which contains an interpreter and a compiler
for such programs. It is a workspace-oriented system, like APL,
which means that the whole system, including system software,
programs, and the data base are stored in one uniform address
space (virtual memory) .

The tools for developing the prototype are the topic of the present
paper. The second and the third stage (described in other papers)
are:

Second stage: larger data base

In the second development step, the data for the prototype system
are moved out of the Interlisp workspace and to a separate

data base system (see figure 1). This allows the system to handle
larger volumes of data, and is necessary for field tests of the
prototype at least in most cases. The data base system MIMER,
developed at Uppsala University Computing Center (ref. 2) is used
for the data base part. It is in principle an inverted-file type
system, similar to e.g. the 1022 system on DEC-10 computers.

Third stage: generate production system

In the third development stage, the new application system leaves
the "dry dock" of the Interlisp environment, and a production system
is generated. The major change in this step is to increase
performance by eliminating two kinds of overhead in the prototype
version, namely:

- the overhead in the Interlisp system, which has been designed
as a program development tool and not as a production tool. Its
large reportoire of services for the programmer are not needed
in the production system

- the overhead involved in interpreting the predominantly declarative
information in the prototype description. The third step thus
includes a compilation of this declarative information into a
program (although still in a machine-independent language) where
the same information is implicit.

2. Related work

This approach represents a continuation and synthesis of a number
of different ideas and systems, in particular:

The use of a meta-database that contains a description of an object
data base is in a certain sense characteristic of all data base
systems. However, in many systems the meta-database is only
intended to be used by the system itself. Works by Roussopoulos

and Mylopoulos (ref 4) describes the use of an externally available
meta-database, which in their case is a semantic network. The
query-language compiler of Risch (ref. 5) and the SRI natural
language query facility (Hendrix et al., ref. 6) are other examples.

The use of pilot systems as a way for the final user to influence
system design has been described by Berild and Nachmens (ref. 7).
The CS4 system which they propose as a tool for prototype systems
has some facilities which are similar to those of Interlisp, but

we have also made heavy use of Lisp’s facilities for analysis

and generation of programs.

Strong tools for the programmer in a system for interactive program
development, has been pioneered by Teitelman (ref. 8).

The approach in the REMORA project (ref. 12) is similar to ours
but. does not seem to be in a concrete implementation phase, and
does not give any specific advise about what we call phase ftwo
and three.

3. A concrete example

T S ——

When our tools are used, the first stage in the system development
process is to build the prototype and to use it for test runs. We
shall describe how the prototype is developed, and to make the
discussion concrete we will use a specific case from the Linkdping
University Hospital, namely the information flow between the
patient wards and the chemical laboratory. This section describes
the example.

This application has the following characteristics in the current,
non-computerized organization. Requests for laboratory analyses are
prescribed by a doctor, and notes are taken by the head nurse. She
completes forms for the same requests, and forwards them to the
laboratory. Sometimes the nurse also takes the test samples; in other
cases the laboratory receives the requests, prepares lists of which
test sample(s) to take from which patient, and laboratory personnel
collect the samples.

In the laboratory, test samples are processed according to the instructions
on the request forms. Usually samples requiring the same analyses

are grouped into batches that are processed together. A result list

for each batch is produced, and the results are transferred to the

analysis request forms, which are then returned to the ward.

The head nurse sorts the returned lab results by patients. Once a
day (usually), a doctor inspects the results and prescribes
further action. The nurse then transfers the results to a table
containing the analysis results for the patient over a period of
time, with one column per day, one line per analysis.

This is the main structure of the application. It contains a number
of fine points, and the reader can probably guess many of them:

the ward nurse keeps records of analysis requests which have been
sent but not yet been returned, and takes action if they take too
long time. This time is widely different for different types of
analyses. The laboratory keeps back-up copies of all results, and
also accumulates charge information. There is often a transformation
from the raw data produced by the analysis itself, to the data:
desired by the doctor, for example the transformation from
concentration and volume to amount for a certain substance.

In summary, this application can be characterized as an

information transportation system, where packets of information

are generated at one time, obtain more information attached to them
as they circulate through the system, and also sometimes stay in
information buffers for a duration of time before they proceed.

The present manual system requires these data to be re-arranged
several times (for example from being sorted by patient, to being
sorted by analysis, and later back again). In the present organization,
all information is carried on paper, and the reorganization is done
manually. It is an obvious candidate for computer support, and

we believe it is typical of many DP applications, in medicine and
el sewhere.

Let us now describe how this application is approached using our
current. system.

4, Building a prototype for the application 7

——— - ——— —— —— ————— — " ———— o o T] s o

4.1 The specification of the intended system

The intended information-transport system is initially described
by the user-programmer in four ways. (In Cobol terminology, the
description consists of four ‘divisions”):

- specification of the STATIONS, and types of stations, that are
used in the application. Technically, a station is an intended
program that serves one user or small group of users. In the
present application, there would be one station type for ‘wards’
(with one instance for each ward), one station type for analysis
works in the lab, one station for archive, and so forth.

The specification of stations only introduces their names and a
fem simple facts about them. Additional information about each
station is provided implicitly by the other three “divisions’:

- specification of the data types that are to be used in the
application. This is a fairly conventional description of
records consisting of terms, nested sub-sequences of sub-records,
etec. In addition, the data type description also specifies
the HISTORY of each term; this will be explained below.

- specification of the LAYOUT(S) that is(are) to be used for
displaying each data type on screen and/or paper. This specification
is entered using an interactive tool which enables the user to
build up and edit the desired layout on the CRT screen.

- specification of the INFORMATION TRANSPORT LINES that are used in
the application. This concept is crucial for our system, and
will be abbreviated IT LINE. An IT line is a standard path (through
stations) along which information packets are sent for processing.
In the sample application, there is one major IT line from wards
to laboratory and back to the originating ward. Other lines are for
complaints for lost analyses, and for checkin/checkout of patients
(a new information packet is set up when the patient checks in, and
is transferred to archive when he or she checks out). :

The specification of an IT line indicates which record structure(s)
are used along the line, and which operations are performed as
packets move along the line.

To insure that the model is viable, it is important to have a
sufficiently powerful set of such operations. Besides operations

for data entry, output, waiting in queues, and accumulation and

data extraction in files, we also need operations for transformations
on record structures and operations where several lines are
intermeshed, e.g. “wait for mate” operations.

4.2 The transformation to the executable model

The four parts of the system specification have to be reorganized
somewhat in order to provide a model which can be executed as a prototype.
When it is executed (= interpreted), the model must specify for each
station which operations can be performed in the station. For example,
in a ward there may be operations for "send laboratory request",
"receive results from laboratory", "check in patient", "check out
patient", and others. Each operation in a ward may be realized e.g. as
a separate program, or as a set of parameters for an existing, more
general program.

Each operation in a station is usually an aggregate of several
consecutive operations along an IT line. For example, if an IT line
specifies that a lab request is to be entered interactively,
accumulated to a local log file, and then sent to the lab, these
three IT line operations together constitute one operation in the
station.

For each operation in a station, it must be specified:

- where input information packets for the operation are to be feftched
from, and where output information packets are to be sent

- which record type is used
- which IT line operations are to be performed

- which layout (or other interaction format) is to be used in the
operations. (Usually each station operation consists of exactly
one interactive operation, and optionally one or more
non-interactive operations)

Thus the transformation from the user’s system description to

an executable model cuts up the IT line descriptions into segments,
each consisting of one or a few IT line operations, and adds each
segment to the appropriate station or station type.

In principle, each record type is associated with a form description,
which may be used for all interactions along a line, i.e. in

several operations in different stations. However, the layout (_ form)
must be used somewhat differently in the different steps, since
typically a few fields in the record are completed when the record

is initiated, and other fields are assigned contents in subsequent
steps.

Each layout therefore exists in several variants, which differ with
respect to which fields are to be protected, which fields are to be
entered from the user, which fields are to be assigned values by
reference to existing files in the data base, etc. The most

convenient way to enter these variants seems to be the following:

the record declaration specifies for each term where along the IT line
that term is to be assigned a value, and in what way the value is
obtained. This is what we called term history information above.

The record declarations, the IT line descriptions, and the basic
layout description (consisting of only the X-Y coordinates for each
field on the screen as well as auxiliary text there) may then be used
to generate the variants of the form thaf are to be used at the varlous
interaction points.

9

In summary, the executable model is hierarchical rather than parallell:
it consists of stations, each of which contains a number of operations,
each of which consists of a number of IT line operations, some of which
are associated with layouts, which consist of term descriptions,

which contain variant information derived from the record declaration.
The transformation from user-defined model to executable model is

a transformation from a parallell to a hierarchical structure, and is
outlined by figure 2.

4.3 The chemistry-lab example worked out

Let us work out the chemistry-lab example of section 3 in more detail,
to illustrate the previous section. We cover only the IT lines for
checkin/checkout and lab requests (not complaints), and also make some
other simplifications to save space here.

We need two major record structures: PATIENT and LABREQUEST. The first

record type contains fields such as:

- patient’s name (PATNAME)

- patient’s identification (such as social security number) (PATNR)

- date of checkin

- date of checkout

- bed number

- previous lab results (which for the present purpose may be viewed
simply as a sequence of records of type LABREQUEST) (LABRES)

Mnemonics for term names are given in those cases when they will be
used in the subsequent example. Other information such as "ailment"
are of course essential for the application as such but not for

the present example.

The second record type, LABREQUEST, contains fields such as:
- patients name (PATNAME)

- patient’s identification (PATNR)

- ward that the patient is in (WARD)

- desired analysis (ANALYSIS)

- identification number of the sample (SAMPID)

- date of sample

- result of analysis

Since several analyses are often ordered at the same time for the same
patient, it is convenient to have one additional record type LABORDER
which is like LABREQUEST except that instead of the term ANALYSIS

there is a term ANLIST whose value is a list (sub-sequence) of desired
analyses for this patient.

The layouts for these record types offer no surprises. (For the real
application, many more fields are needed, and the screen becomes
rather jammed) .

The two IT lines are described graphically in figure 3 and in equivalent
formal notation in figure 4. Appendix 1 contains the reportoire

of operations that we are presently using; the set is of course continously
revised. Figure 5 describes the structure of stations, with one station

for each ward, one for each analysis workplace in the lab, one each for
receiving and delivery in the lab, and one for archive. The arrows in
figure 5 specify the normal paths of information flow.

10

Figures 3-4 should be read as follows. The IT line for patient checkin/chec
out starts at CI, where new information packets (records) are entered each
time a patient checks in. These records are accumulated to the register

of current patients (in the ward), CPAT. At CO, records in the file

CPAT are released when patients check out, and are then accumulated to

the archive file ARCH.

The other IT line, for ordering lab analyses, starts at OLA where the
patient number and list of desired analyses are entered, as a

record of type LABORDER. The patient’s

name (and other information about the patient) is fetched from the
current patient register CPAT dynamically during data entry. The record
is expanded into several records, one for each analysis, which implies
a transformation to records of type LABREQUEST. Each such record is accumu-
lated to the register of pending requests, PREQ. It is also dispatched
to the appropriate analysis station in the lab, on the basis of the
desired analysis (ANALYSIS field) and a procedure which knows which

lab station performs which analysis.

In the appropriate station within the lab (in position RA),

the results of the analysis are entered. It is then forwarded to the

exit station of the laboratory, where results are accumulated to the

backup file BU, and also dispatched to the originating ward on the basis of
the contents of the term WARD. Back there, each record goes two ways:

to an interaction operation DI where the doctor is enabled to inspect
recent results, and to being accumulated into the patient register

CPAT as a sub-record of the main record for the patient.

The reader will have noticed that the formal description in figure 4

is more specific than the graphic description in figure 3, particularly
with respect to which data fields are affected in the

various steps. Of course, one may informally add text in the figure,

or in an appendix to the figure, if one does not wish to proceed
directly to the formal representation.

The present, implemented system makes it possible to input the application
description in the user-oriented notation, and to generate and execute

the prototype model fully automatically. The convenience of this system
makes it practical to tailor the information transport system very
closely to user’s needs, for example to design different stations
differently to conform to specific local needs.

4.4 Application dependent meta-data and procedures

In many applications, it is useful to have application dependent
meta-data. This observation was previously made by Higglund and Holmgren
in another project in our group. Examples of such meta-data in the
example of this paper are:

~ for each analysis, one may specify the range of normal results.
It is sometimes desired to provide this information on the result
form, or to provide the result only if it is outside the range.

- for each analysis, there is also an expectancy for how long it
should take at the lab. This information is used by the head
nurse at the ward to determine when to complain about a missing result.

- there are groups of analyses which may be obtained using the
same sample. This information is used when more than one of the
analyses is prescribed by the doctor.

11
Our meta database system makes it easy to enter and administrate
such information, and to use it for table-driving the application
dependent procedures. This facilitates modification of the
pilot system to conform to changing specifications.

Notice that the application dependent meta-data are strongly
intermeshed with the general-purpose meta-data. For example, each
analysis usually appears as one term in some record for analysis
results, and the different analysis stations in the laboratory are
also stations from the point of view of the information system.

Similarly, it is sometimes necessary to write specific pieces of
program for an application, and embed them in the model so that they
are executed as steps along an IT line. Also, one often wishes to
associate pieces of program with fields in a form, for example for
automatically computing the contents of the field, for fetching it
from another file, for checking correct input data, or for performing
a side-effect when a certain term value is

entered in a record. This can easily be done in our system, and is
available as a consequence of LISP’s almost unique facility for
DATA-DRIVEN PROGRAMS (see ref. 9). Buf since the general framework
is provided by the generel-purpose system, such application-specific
programming may be restricted to those parts that are really specific
to the application. Often it comes out as only a few lines of code.

4.5 The executive for the information-flow model

In order to test and demonstrate the prototype, one uses an executive
which may be viewed as an interactive simulation system for the
information-flow model. The prototype may be run either RESIDENT or
DISTRIBUTED. In resident mode, one single Interlisp workspace is used
for all work stations, and the system devotes attention to one of
them at a time. It may run with one terminal for all work stations
(this is the usual mode in early checkout by the programmer), or

with one terminal for each of several work-stations. In distributed
mode, several copies of the workspace are set up, and are specialized
to service one station each, with one terminal for each station.

The distributed mode of use is preferred for demonstrations to. final
users.

For early stages of checkout, the executive is directed by user
commands such as "execute operation 0" (for example the operation where
the nurse creates lab request records and sends them to the lab)

or "what are the contents of channel C?" 1If the required operation

is to be performed manually, the interaction is performed over the

same terminal; if it is an automatic operation it just runs, and

prints out a message when it has finished.

In later stages of checkout while still in resident mode, a higher-
level executive may be used which essentially calls different
operations according to the obvious strategy of first clearing
channels by doing "receive"-type operations, and then performing
operations which create new transactions.

12
For distributed execution of the prototype, the prototype system

is able to create a number of copies of itself, where each copy is
customized at least to the extent that the copy knows which operations
it \is to perform, and which terminal it is to run on. It is also
possible, but usually not useful, to trim each copy so that it only
contains the meta-database information that it really needs.

The presently implemented system only allows us to execute the
different programs in the generated system on one single computer,
but the possibility of distributing “stations” in the sense of our
system over several computers is an obvious possibility.

4.6 Status of the prototype system

In summary, the prototype system enables the programmer

or system designer to enter his system description in a notation
which is predominantly declarative, and which is stored in the meta-
database. This description is interpreted by the standard programs
in our system, such as the data editor and the station/operation
executive. In addition, most applications require a number of small
application-dependent procedures to be written (or retrieved from
the library) and attached to entities in this description.

This prototype system is entirely embedded in Interlisp, meaning that
standard programs have been written in this language, that the

system description is stored in the Interlisp data base, and that

the attached procedures must also be written in Lisp.

The standard models in the system (i.e. for forms, information flow,
etc.) are not final. The characteristics of the programming sytem
makes it easy to modify these models as we go along, and we are
making use of this possibility. The significant result of this
research is by no means the models, but the system which allows us

to maintain a spectrum of meta-information, ranging from the standard
patterns to the very application specific.

All parts of the software for prototype support as described here
have been implemented and are running on our computer, a system
DEC-20. The implementation language is Interlisp, with certain
low-level routines in assembler (Macro-10 and LAP). The present
status can be characterized as experimental use; the system is not
yet stable enough for export.

L

Thus the development system contains programs (i.e. sets of procedures)

for the following services on system prototypes:

- entry of the prototype descriptions ~

- administration of the meta-database that contains descriptions
of prototypes

- interpretation of a prototype, as used in stages one and two

- compilation of a prototype, i.e. performing the operations of the
third stage.

The compilation program takes the description of the

prototype as input, specializes the program (in the sense described
in section 5 below), and generates the corresponding, customized
program or (more often) set of programs in a lower-level programming
language, namely BCPL (ref. 3).

The essential advantage of this strategy is that it allows the
use of a truly problem-oriented representation of the application
in the enviromment of the prototype system. Also, since the
Interlisp system is strongly oriented towards manipulation of
structured data, including programs and other formal languages,
one may fairly easily build a reportoire of tools for analyzing
models and for generating pieces of programs from models of

the application or the intended DP system.

Since the prototype system contains a description of the desired
target system (programs and data base), we refer to it as a META
DATA BASE. It contains the "data dictionary" of other systems, but
the term meta data base emphasizes that the programmer can easily
extend it with more information, and he can make use of the

meta information in any way he wishes.

In this approach, object data and meta data are handled by two
different systems with different characteristics, in our case
MIMER and INTERLISP. The first system is oriented towards large
volumes of uniform, bulk data, the latter system towards smaller
data bases with very rich structure.

This paper describes the prototype system used for stage one, since
most of the software for the other stages has been described before
(ref. 2, 3, 10, 11). The software that is described here :

for the first stage has been developed and is in experimental use.

5. Downloading the prototype into a production system 13

In .the second and third step of the system development, the
performance of the prototype is improved by transferring it out

of the Interlisp environment, by specializing programs, and by
knitting parts of programs closer together by eliminating data-driven
procedure calls. The details of how to do this are being reported
elsewhere, and we will here only describe this process in short,

for completeness, and report on the status of that work.

The second stage is to enable the prototype to communicate with larger
volumes of data, administrated by the MIMER system for bulk data.
This requires two things:

- the Interlisp system must be able to co-exist with and communicate
with the MIMER system. This has been done at Uppsala Computing
Center for the IBM 370-based systems, but we are running on a
DEC-20 system for which MIMER has noft yet been implemented. That
work is in progress and is well understood.

- the form-oriented data editor must be able to access data from
MIMER. This has been prepared for in the following way: the
data editor assumes that each
file is associated with an ACCESS METHOD, and each access method
is characterized by a number of access procedures. All data access
in the data editor goes through the access method’s procedures
for the current sequence. Thus in order to communicate with
MIMER, a new set of access procedures has to be written. However,
the set of procedures that the access method manager requires,
is similar in structure to the procedures that are implemented in
MIMER, so again we do not foresee any substantial problems.

The third step is to transfer the whole program out of the Interlisp
environment. The strategy for this is to write a translator from
Interlisp (with certain restrictions on the language) to the
low-level, semi-machine-independent language BCPL, as well as the
necessary run-time system in BCPL for operating on LISP’s
characteristic data structures. This software is being completed; it
has so far been used successfully on a subset of the data editor.

The prototype system contains general-purpose programs such as the
data editor and the executive, which operate on parametric data.

One may use the translator in a straight-forward fashion to
translate the general programs to BCPL, but in many cases one would
prefer to generate a specialized program which has been customized .
to the chosen parameters. This process is called PARTIAL EVALUATION,
and has been the subject of a number of studies (see e.g. ref. 10
and the survey of previous work therein).

In simple cases, one can identify certain procedure calls in the
general program where some of the procedure’s arguments are
parameters, and thus can be considered as fixed within each
application. One may then use conventional macro techniques to
expand the expression to one which is specialized for the constant
parameters. We are doing this already when our system is compiled in
the Lisp compiler, and the required macro facility is included in
the Lisp-to-BCPL translator.

\

14

A more systematic specialization requires a full scan of the general
program in order to perform constant propagation and various algebraic
operations on the program. A system called REDFUN for performing this
task has been developed within our group by Anders Haraldsson (ref. 11),
and using this system is part of the future plans for the project.

We first want to see how far we can get using the macro techniques.

In certain cases, inner loops of parts of the system may be
distributed out to local processing capacity in (or close to) the
terminal, for example for the core of the data editor. In such cases
partial evaluation may not be of interest at all, since fthe program
in the terminal may run better interpretively.

6. Conclusions 15

The approach and the system described here offer a powerful method of
supporting the development of data processing systems, and to meet
the objectives stated at the beginning, i.e. to cut manpower costs
for programming, cut system development time, and increase the
flexibility of the developed system. In looking for possible dis-
advantages of the approach, two aspects are of particular interest:

- Run time performance. The prototype is developed as a declarative
structure, which means that the executive ("interpreter") for the
prototype is a very strongly parametrized program. The classical
disadvantage of such programs is low performance. We offer a set
of techniques for dealing with that, namely:
= cross compilation

macro techniques

= partial evaluation

all of which rely on Lisp’s almost unique facilities for program

manipulation. Although these techniques have been successful

in other contexts, they have not yet been tried for any problem-

where the programs are as big as here.

- Complexity. The programmer or system developer who specifies each
new application by building the right declarative structure, will
need a fairly detailed knowledge of the development system. Training
time may be a problem. Also, the development system must be very
well engineered before it is put in regular use, otherwise the
system developer will end up fighting the development system instead
of (as now) fighting his own programs.

The obvious approach for dealing with these problems is to make the
development system interactive and self-instructing, and to develop
it gradually while doing a number of applications with it. This
work is in progress.

In summary, the software for stage one is in experimental use; the
software for the second and third stage exists and has been reported
before; and integration of the full system has not yet been done.

It is therefore too early to say whether the possible problems with
the approach have been solved, namely performance and complexity, but
we have reasonable expactations to be able to handle them both.

16
7. Future plans

The immediate plans of the project are to use the system for a number
of applications, to gain additional experience with the selected
approach and the existing development tools.

Medium-range plans emphasize:

- the generation of software for distributed systems from the
prototype

- more systematic methods for partial evaluation, in particular using
the REDFUN system

- use of the prototype to document and control the production use
of the generated system, i.e. as a “job control system’ that
supersedes current “job control languages’.

Longer-range plans include interfacing the system to a model of the
application environment as such (including other aspects than the
informations processing aspects).

17
Acknowledgements

——— i o o s o o

Dr. Werner Schneider, head of Uppsala Computing Center, has helped us
by being a constant supply of inspiration and ideas. He and his
organization have also developed the Mimer system, which is a necessary
part of the basis for the approach and the system described in this
paper.

We owe gratitude to professors Ove Wigertz and Olof Sérbo for providing
access to typical medical applications and the support of

the medical organization, and to doctor Lennart Tegler for taking the
time to provide specific information for the case study described

in this paper.

Members of our research group have contributed to parts of this

system:

- Erland Jungert originally suggested the significance of forms for
modelling information access

- Gunilla Lonnemark has participated in the development of the
current form-oriented data editor, IFORM

- an earlier version was written by Erland Jungert and Katarina
Sunnerud

- ‘the LISP-to-BCPL translator is being developed by Peter Fritzson
and Dan STromberg

18

References

1.

10.

11

12.

+ Warren Teitelman

INTERLISP reference manual
Xerox Palo Alto Research Center
Palo Alto, Calif., 1974

A. Berghem, Anders Haglund, Sven G. Johansson, Ake Persson

A partially inverted database system with a relational approach,
MIMER (earlier RAPID)

Uppsala University Data Center (UDAC), July 1977

Martin Richards

BCPL reference manual

Technical memorandum 69/1

University of Cambridge, Computing Laboratory, 1969

Nicholas Roussopoulos and John Mylopoulos

Using Semantic Networks for Data Base Management

Proc. 1st International Conf on Very Large Data Bases, 1975
pp. 144-172

Tore Risch

Compilation of multiple file queries in a meta-database system
Dissertation

Link6ping University, Sweden, 1978

Gary G. Hendrix et al.
Developing a Natural Language Interface to Complex Data
ACM Transactions on Data Base Systems, Vol. 3, Nr. 2 (June, 1978)

Stig Berild and Sam Nachmens

CS4 - A Tool for Database Design by Infological Simulation
Presented at 3rd International Conference on Very Large Data
Bases, 1977. (To appear in ACM Transactions on Database Systems)

Warren Teitelman
Toward a programming laboratory
Proc First International Joint Conf Artlflclal Intelligence, 1969

Erik Sandewall
Programming in an interactive environment: the "LISP" experience
Computing Surveys, Vol. 10, No. 1 (March 1978)

Lennart Beckman, Anders Haraldson, Osten Oskarsson, Erik Sandewall
A partial evaluator, and its use as a programming tool
Artifical Intelligence Journal 7 (1976), pp. 319-357

." Anders Haraldson

A partial evaluator, and 1ts use for compiling iterative
statements in LISP

Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, 1978

pp. 195-202

0. Foucault and C. Rolland

Concepts for Design of an Information System Conceptual
Schema and its Utilization in the Remora project

Proceedings of the 4th International Conference on Very Large
Data Bases, 1978.

19

v namQﬁ%a,w)¢ T

oy by 2 2yop- 33

ey e

5

R(<J_ 0 Jn. S\% .Zu

o erlroye TV ™M

(:

Ty 2 ¥4yl - S5V

~5 oo

)
"33 ds
w1 G ol

\CS\UP,M.TV,. e\ j

w)))rmw

Ty

3®

MQJFJE rn

e I SR T

20

A\ﬁé AMY LY A)

tb(x >y

\S, gg yun)SZ.W‘.

A aMYY W
oA sywevpende

Sy Ll P
Ipeas P

\(Cd.\(,.ﬁn
Xy M

qgmﬂo

AR

s () (O @
| ; 7
3 g £

vy Mgl ey TRV - vion Ay

POy SUR) <y w\s%.v,_

AN x oY YMYT
Al cprolers ey

>.%i£.w

R P 4 ; H ! : | i i
B } i ! ! i i

B
P

21

, d3qUSAV] A.l.fe

N

—_ |
2
v

B P -
IENC TR

22
TEKNISKA HOGSKOLAN I LINKOPING PM filnamn:

Emnesgruppen f6r datalogi 1979-03-09 CHEM
Erik Sandewall/#¥ .

Description of chemistry-lab application’s information flow
in IFL notation

- - S - T - — " " ——— - " " " o

IT line for patient checkin/checkout:
record structure: PATIENT

operations: (STATIONTYPE WARDS)
EENTRY CIA
ACCUM CPAT)
(RELEASE CPAT CO)
(STATION ARCHIVE)
(ACCUM ARCH)

- -
i ; oM
g -4 gAY
It o A
7 ey e T
IT line for orders of lab analyses: - : . . “Au]
R N R i
initial record structure: LABORDER -~ L\ﬁﬁ-hkvﬂ

operations: (STATIONTYPE WARDS)
(ENTRY OLA)
<k CETF-ROM~CRAP~(PATNR=PATNR) —({PATNAME))) e
(EXPAND - ™
(LABREQUEST ANLIST (...) (...)) BQQQQVU»xﬂuT— \
(BRANCH NIL NIL sV
(ACCUM PREQ) bobav— /
(RELEASEBY (READY PREQ (SAMPID SAMPID))) e
(STATION LABENTRY)
~ (DISPATCH (STATIONFOR (GV#¥* ANALYSIS)) RQSTPORT)))
"(STATION; LABSTN)
(CHANNEL ROSTPORTI— @ 1€
(MODIF RA)
(STATION LABEXIT)
(BRANCH NIL NIL (ACCUM BU))
(DISPATCH (GV#* WARD) FROMLAB)
(STATION WARDS)
(CHANNEL FROMLAB) '
(AUTORELEASE READY)
(BRANCH NIL NIL (MODIF DI))
(ACCUMSUB (CPAT (PATNR PATNR) LABRES))

- %
i > v L reaRAx

5 SM\/ H V‘CW*”"“W‘“’“W it
T igqurti'q- o

i

23

: : -
Mo~~~

A s \b\x /\;,
. 3, - v

o
e ye

Aaapn

TR ONLTTN

(
um.

SV

F‘YV\) ol
TEKNISKA HOGSKOLAN I LINKOPING PM filnamn:

Emnesgruppen f6r datalogi 1979-03-08 IFL
Erik Sandewall/#

Notation for description of Information-Flow Lines

The following pages describe the notation for expressing operations
along an IF line. These operations are almost identical when they
(after automatic transformations) they have been associated with a
station or station type, and are part of the executable model. (Only
the operations RELEASEBY and AUTORELEASE have been modified to account
for the interconnection between them).

There is also one directive which only appears in the IF line description,
and not in the executable model, namely the command

(STATION s)

which marks that the fragment of subsequent commands up to the next
STATION or DISPATCH command are to be associated with station s.

Notation: each operation is denoted by a parenthesized expression
with the operation name as the first element (inside the parentheses)
and the arguments as subsequent elements. Some operations take one
or more other operations as arguments. The arguments may also be:

- form names (the description of the form or layout is entered
separately using the special interactive tool)

- file names, for structured data (sequences of records) or for
text files (intended printout)

- record names, which make reference to a record declaration which
is entered separately

- term names in records

- conditions, which are Boolean expressions (expressed in usual
LISP notation)

- connections, which are triples (t1 t2 r), where t1 and t2 are term
names and r is a binary relation such as = or <. A connection is
used to indicate the criterium for selecting a record in a file
that corresponds to the current record along an IT line. If r is
omitted, = is used as default.

- transformations, which are used to specify how a current record

is transformed to another record structure, or how information is
transferred from one record to another. A transformation is a list
of elements each of which specify an assignment to one term in the
output record or, possibly based on the input record ir, and which
may (currently) have the following syntax:

(term) or.term := ir.term

(term fn) or.term := fn(ir,term,or)
Additional varieties of transformation elements may be added.

25

(puBwwOO [BUOTJZIDPPE UE SE
ueJfoad eyjy Juturjep Aq pozZTIESJ)
d weJafoud orjroads-uorjeotTdde

SUTT LI Jo pus

*UOTJBUWLIOJSURBJY TINU B pue HONVYYL
Bursn psute3qo oJe sfAeM oM} S20%
pJOD8J SUO 8JaUM Soyoduedq :3jJewsy

pJoosdJ Jurj[nsed syjy uo s, do

oy3 L1dde pue ‘uJi UOT3IBUJIOJISUBJY
Juisn 08J sJnionJiys Jo

pJOO8d B 03 DPJOOSJ 3ULJJNd WJIOJSUBJY

MoTaq

pouTJop 9JB SUOTLBWJIOJSUBJ]} PUB SUOTZ02UUOD :MJBWDY
‘uJ3 uorjeuwJgojsuedl) Sutd1dde usyn

pue ‘Uuuod UOT3108UUCD 03 JUIPJOOOB PJOISJI QUSJIJIND

S8YO03BW 3BYUY3 STTJ UT pJodoad JUuTAJTiUSpT
48JTJ £Q ©TTJ WOJJ UOTJBWIOJUT UYo39J

9ITJ 03 PJODOdJ 3UBJJIND ©31BTNUNOOR

UJOJ WJO0J 89Ul JUTSn pJodsJd quaJJnod
03UT UOT4BWJIOJUT TRBUOTATPPE Jojue

WJOJ WJO0J
2U3 JuTrsn Jesn WoJJ PJOOSd J93US

aNHEDHT

(**° Bue 3Jue J) -

(*°° do do do
uJl o8J HONVHH)

(udy uuodo oITJ WOHALID)

(8TTJI WNOOV)

(w10 AIAOW)

(waoJ XYINH)

NOILVION TVWYOd

--.UOI:

.

NOILVION OIHAVYD

26

*AeM SnOTAQO

89U} UT 90uspuodsedJdJdod ayj SoUSTTqe)lse
jueudTe WeU 8yl 'Y SUTT J0J uoTrTaeoIJIoads
eyj UT pueumwod ASYVATIYOILNY BurpuodsaJaaod
ay3y pue ‘g ouTrl J0J uoTyeOoTJTOods

9Y3 Ul pepniloul ST puewwod ZFASVATHY SUL

*pJOOSJ PogeBaTaJ 8Yjl UO
peuaojaed suae s do syl ‘wayjy USLSM3IaQ
UOT3BWJIOJUT JO JdJSUBJY] S[qBUS ABU puB
‘paoosd peJeB3TJay oU3 03 FurJueIITTJl 8y7y WOoJJ
pauaojJaad ST UJ3 UOTQBUIIOISURJY

9], " UuUO® uUOT3108UU0D 09 JurpJoooe ‘bes

9TTJ J83JnQq UT SpJodosda Jurpuodsadaod
9sBaTeJd ¥ @UuIT II UT spJoosd Jurssed

*pJOOSJ POSEBOTSJ 9Uj} 031 pPappe oq

03 ST 3BYUj} UOTYBUWJIOJUT JO UOT1BOTJTO=ads
urejuoco osIe ABW pue ‘Jgosn ayjy 03
uotlejusseJad JOJ pesn ST WJIOJ WJOJ BYJ
*SuTl oyy JuoTe pesdodd 03 SpPJodSJd
9SBOTOJ UOTUM SPUBWUWOD OATT pue

‘bas o1TJ Jojjnq 30adsur 03 JosSn MOTTIE

09J 9Jn30NJ3s JO pPJOdOSd
03} PJOOSJ 3USJJND SWIOISUBJIY
yoTyMm J wedSoud otrJyroads-uorieorrdde

(weu FSYITIHOIAY)

(*°° do do
(uay uuoo bes weu)

XgISVHETHY)

(wxoJ bes ASYATIY)

(o8ua
(=" 8ae J) ASNVYL)

27

“2A0QE ONVJXHI U3TM 2U0p ST

yojeq e Furioedun " TINJ ST Ydieq ayjy
usUM 14T oseaTad pur ‘spJoosd Jurtwoour JoO
yoj3eq B 93BINUMOOEB 03 " J°9 pasn aq

Leur uotyeuado nggsmod sSTIUL :JeUDY

‘41 uo -+ ‘do ‘do suorgedasdo

L£1dde -o°1 ‘pesooud 019 34T MOITE puE
bes woJJ pPJOOSJ POTIJTIUSDI dOY3} 9SBOTOJ
‘onJl ST pue S3STXS UPUOD UOTATIPuUod JT
‘PISTI

WJ93 S3T 03 PJODaJ 3jUaJJnd 94BTNUNOOR
pue ‘uuod uUOT3108UU0D 03 JUIPJIOOOE
pJ0OdaJ juaJJno 03 spuodsadJdod 3e'ygy bes
UT pJoO9dJ L£JTauepl °‘WJIS]} ST auwelU

osouyM wJe3) ur oouenbas-gns SUTBLUO0D
bes oT11J oys :eoouenbas—-gns 03 93BINUNOOE

* pJoOsJa Jutofgyno

yoes uo s do ayjy A1ddy - paoosa IJuroFgno

2U3 03 pJoddJ=gns 3UsJdJnd oyl uWoJdJ
(UOT3RBWJIOJSURIY~QNS) UJ3S pue ‘pJoosd Jutrodino
yoes 07 JUTWOOUT WOJJ (UOTIBWJIOJ

-suedy doiy) udagy A1ddy ° pJoosda-qns yoes

J0J 2uo ‘aurTl oyjy JuoTe 1USS oJe

1BY3 SpJodaJd JO Jaqunu B 03Ul puedxy
*SpJoDaJ=-qns JO sousnbes ST YoIym

WJ93PTOTJ 2UO SUTIBZUOD pPJODaJ SuTwWoOUT

UOT1BNUTIZUOD UOWWOD d9Uj3 JOJ SWRU ®
03 SJ9jeJ UOTUM ‘puewWOD (AAI0Yd ® ST
SUIT SuTwWOOUT Yoes UT PUBUMOD

4SBT 2yl "soutrl Sur8JsAuod

(*+* do do upuoo
(wasy uuoo bes)
gNSWNOJY)

(-+* do do
(UJ}S UJ33 WI] DdJ)
aNvdxd)

(|UTT QEID0UI)

28

"qJ0d SB PaTJT4USDT
(340d =) Touueyd FUTWOOUT WOJIJ DPJIOODJ 1383

*3Jg0d psuru (enenb gqndut)

,aJdod, uT STQBRIIBAR 3T oYeW DPUB. ‘ujs
uorssaudxe oyjy Jurgenieas £Qq psurejqo ST
SWEBU 9SOUM UOTI3B3S O3 UOT4BWJIOJUT puss

TUSVATHHOLAV pue 3D0TD

Jutsn pesesTod pue ‘oTIJ J9IJNg B UT

pejeTnUNOOR ST .UOTj3BWJIOJUI °*ATTEOTpOTJad

pewgojJed oq 03 aJe suorgeJdado UTBIJISO

usyM pesn ST uoTaegsado STU] & Jewsy

anJ3 ST upuoo

UOT3IPTPUOD usym ‘gndur L3dwe Y3TM UJ] UOTIBUWIOJ
~sueJdl Jurop Aq pejeJasusl pJoOSJ puss

WJOJ 3noAeT
Jursn oTTJ UO PJOOSJ JUSJJIND D7TJIM

(3J0d TINNYHD)

(340d U3sS HOLVASIA)

(uay upuod ¥0070)

(wao0J STTJ HITYM)

|

